mirror of
https://github.com/ecency/ecency-mobile.git
synced 2024-12-23 05:13:04 +03:00
237 lines
7.2 KiB
C++
237 lines
7.2 KiB
C++
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
// variance.hpp
|
||
|
//
|
||
|
// Copyright 2005 Daniel Egloff, Eric Niebler. Distributed under the Boost
|
||
|
// Software License, Version 1.0. (See accompanying file
|
||
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#ifndef BOOST_ACCUMULATORS_STATISTICS_VARIANCE_HPP_EAN_28_10_2005
|
||
|
#define BOOST_ACCUMULATORS_STATISTICS_VARIANCE_HPP_EAN_28_10_2005
|
||
|
|
||
|
#include <boost/mpl/placeholders.hpp>
|
||
|
#include <boost/accumulators/framework/accumulator_base.hpp>
|
||
|
#include <boost/accumulators/framework/extractor.hpp>
|
||
|
#include <boost/accumulators/numeric/functional.hpp>
|
||
|
#include <boost/accumulators/framework/parameters/sample.hpp>
|
||
|
#include <boost/accumulators/framework/depends_on.hpp>
|
||
|
#include <boost/accumulators/statistics_fwd.hpp>
|
||
|
#include <boost/accumulators/statistics/count.hpp>
|
||
|
#include <boost/accumulators/statistics/sum.hpp>
|
||
|
#include <boost/accumulators/statistics/mean.hpp>
|
||
|
#include <boost/accumulators/statistics/moment.hpp>
|
||
|
|
||
|
namespace boost { namespace accumulators
|
||
|
{
|
||
|
|
||
|
namespace impl
|
||
|
{
|
||
|
//! Lazy calculation of variance.
|
||
|
/*!
|
||
|
Default sample variance implementation based on the second moment \f$ M_n^{(2)} \f$ moment<2>, mean and count.
|
||
|
\f[
|
||
|
\sigma_n^2 = M_n^{(2)} - \mu_n^2.
|
||
|
\f]
|
||
|
where
|
||
|
\f[
|
||
|
\mu_n = \frac{1}{n} \sum_{i = 1}^n x_i.
|
||
|
\f]
|
||
|
is the estimate of the sample mean and \f$n\f$ is the number of samples.
|
||
|
*/
|
||
|
template<typename Sample, typename MeanFeature>
|
||
|
struct lazy_variance_impl
|
||
|
: accumulator_base
|
||
|
{
|
||
|
// for boost::result_of
|
||
|
typedef typename numeric::functional::fdiv<Sample, std::size_t>::result_type result_type;
|
||
|
|
||
|
lazy_variance_impl(dont_care) {}
|
||
|
|
||
|
template<typename Args>
|
||
|
result_type result(Args const &args) const
|
||
|
{
|
||
|
extractor<MeanFeature> mean;
|
||
|
result_type tmp = mean(args);
|
||
|
return accumulators::moment<2>(args) - tmp * tmp;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
//! Iterative calculation of variance.
|
||
|
/*!
|
||
|
Iterative calculation of sample variance \f$\sigma_n^2\f$ according to the formula
|
||
|
\f[
|
||
|
\sigma_n^2 = \frac{1}{n} \sum_{i = 1}^n (x_i - \mu_n)^2 = \frac{n-1}{n} \sigma_{n-1}^2 + \frac{1}{n-1}(x_n - \mu_n)^2.
|
||
|
\f]
|
||
|
where
|
||
|
\f[
|
||
|
\mu_n = \frac{1}{n} \sum_{i = 1}^n x_i.
|
||
|
\f]
|
||
|
is the estimate of the sample mean and \f$n\f$ is the number of samples.
|
||
|
|
||
|
Note that the sample variance is not defined for \f$n <= 1\f$.
|
||
|
|
||
|
A simplification can be obtained by the approximate recursion
|
||
|
\f[
|
||
|
\sigma_n^2 \approx \frac{n-1}{n} \sigma_{n-1}^2 + \frac{1}{n}(x_n - \mu_n)^2.
|
||
|
\f]
|
||
|
because the difference
|
||
|
\f[
|
||
|
\left(\frac{1}{n-1} - \frac{1}{n}\right)(x_n - \mu_n)^2 = \frac{1}{n(n-1)}(x_n - \mu_n)^2.
|
||
|
\f]
|
||
|
converges to zero as \f$n \rightarrow \infty\f$. However, for small \f$ n \f$ the difference
|
||
|
can be non-negligible.
|
||
|
*/
|
||
|
template<typename Sample, typename MeanFeature, typename Tag>
|
||
|
struct variance_impl
|
||
|
: accumulator_base
|
||
|
{
|
||
|
// for boost::result_of
|
||
|
typedef typename numeric::functional::fdiv<Sample, std::size_t>::result_type result_type;
|
||
|
|
||
|
template<typename Args>
|
||
|
variance_impl(Args const &args)
|
||
|
: variance(numeric::fdiv(args[sample | Sample()], numeric::one<std::size_t>::value))
|
||
|
{
|
||
|
}
|
||
|
|
||
|
template<typename Args>
|
||
|
void operator ()(Args const &args)
|
||
|
{
|
||
|
std::size_t cnt = count(args);
|
||
|
|
||
|
if(cnt > 1)
|
||
|
{
|
||
|
extractor<MeanFeature> mean;
|
||
|
result_type tmp = args[parameter::keyword<Tag>::get()] - mean(args);
|
||
|
this->variance =
|
||
|
numeric::fdiv(this->variance * (cnt - 1), cnt)
|
||
|
+ numeric::fdiv(tmp * tmp, cnt - 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
result_type result(dont_care) const
|
||
|
{
|
||
|
return this->variance;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
result_type variance;
|
||
|
};
|
||
|
|
||
|
} // namespace impl
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
// tag::variance
|
||
|
// tag::immediate_variance
|
||
|
//
|
||
|
namespace tag
|
||
|
{
|
||
|
struct lazy_variance
|
||
|
: depends_on<moment<2>, mean>
|
||
|
{
|
||
|
/// INTERNAL ONLY
|
||
|
///
|
||
|
typedef accumulators::impl::lazy_variance_impl<mpl::_1, mean> impl;
|
||
|
};
|
||
|
|
||
|
struct variance
|
||
|
: depends_on<count, immediate_mean>
|
||
|
{
|
||
|
/// INTERNAL ONLY
|
||
|
///
|
||
|
typedef accumulators::impl::variance_impl<mpl::_1, mean, sample> impl;
|
||
|
};
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
// extract::lazy_variance
|
||
|
// extract::variance
|
||
|
//
|
||
|
namespace extract
|
||
|
{
|
||
|
extractor<tag::lazy_variance> const lazy_variance = {};
|
||
|
extractor<tag::variance> const variance = {};
|
||
|
|
||
|
BOOST_ACCUMULATORS_IGNORE_GLOBAL(lazy_variance)
|
||
|
BOOST_ACCUMULATORS_IGNORE_GLOBAL(variance)
|
||
|
}
|
||
|
|
||
|
using extract::lazy_variance;
|
||
|
using extract::variance;
|
||
|
|
||
|
// variance(lazy) -> lazy_variance
|
||
|
template<>
|
||
|
struct as_feature<tag::variance(lazy)>
|
||
|
{
|
||
|
typedef tag::lazy_variance type;
|
||
|
};
|
||
|
|
||
|
// variance(immediate) -> variance
|
||
|
template<>
|
||
|
struct as_feature<tag::variance(immediate)>
|
||
|
{
|
||
|
typedef tag::variance type;
|
||
|
};
|
||
|
|
||
|
// for the purposes of feature-based dependency resolution,
|
||
|
// immediate_variance provides the same feature as variance
|
||
|
template<>
|
||
|
struct feature_of<tag::lazy_variance>
|
||
|
: feature_of<tag::variance>
|
||
|
{
|
||
|
};
|
||
|
|
||
|
// So that variance can be automatically substituted with
|
||
|
// weighted_variance when the weight parameter is non-void.
|
||
|
template<>
|
||
|
struct as_weighted_feature<tag::variance>
|
||
|
{
|
||
|
typedef tag::weighted_variance type;
|
||
|
};
|
||
|
|
||
|
// for the purposes of feature-based dependency resolution,
|
||
|
// weighted_variance provides the same feature as variance
|
||
|
template<>
|
||
|
struct feature_of<tag::weighted_variance>
|
||
|
: feature_of<tag::variance>
|
||
|
{
|
||
|
};
|
||
|
|
||
|
// So that immediate_variance can be automatically substituted with
|
||
|
// immediate_weighted_variance when the weight parameter is non-void.
|
||
|
template<>
|
||
|
struct as_weighted_feature<tag::lazy_variance>
|
||
|
{
|
||
|
typedef tag::lazy_weighted_variance type;
|
||
|
};
|
||
|
|
||
|
// for the purposes of feature-based dependency resolution,
|
||
|
// immediate_weighted_variance provides the same feature as immediate_variance
|
||
|
template<>
|
||
|
struct feature_of<tag::lazy_weighted_variance>
|
||
|
: feature_of<tag::lazy_variance>
|
||
|
{
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////
|
||
|
//// droppable_accumulator<variance_impl>
|
||
|
//// need to specialize droppable lazy variance to cache the result at the
|
||
|
//// point the accumulator is dropped.
|
||
|
///// INTERNAL ONLY
|
||
|
/////
|
||
|
//template<typename Sample, typename MeanFeature>
|
||
|
//struct droppable_accumulator<impl::variance_impl<Sample, MeanFeature> >
|
||
|
// : droppable_accumulator_base<
|
||
|
// with_cached_result<impl::variance_impl<Sample, MeanFeature> >
|
||
|
// >
|
||
|
//{
|
||
|
// template<typename Args>
|
||
|
// droppable_accumulator(Args const &args)
|
||
|
// : droppable_accumulator::base(args)
|
||
|
// {
|
||
|
// }
|
||
|
//};
|
||
|
|
||
|
}} // namespace boost::accumulators
|
||
|
|
||
|
#endif
|