mirror of
https://github.com/ecency/ecency-mobile.git
synced 2024-12-12 13:05:41 +03:00
382 lines
13 KiB
C++
382 lines
13 KiB
C++
|
/**
|
||
|
*
|
||
|
* Copyright (c) 2010 Matthias Walter (xammy@xammy.homelinux.net)
|
||
|
*
|
||
|
* Authors: Matthias Walter
|
||
|
*
|
||
|
* Distributed under the Boost Software License, Version 1.0. (See
|
||
|
* accompanying file LICENSE_1_0.txt or copy at
|
||
|
* http://www.boost.org/LICENSE_1_0.txt)
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#ifndef BOOST_GRAPH_BIPARTITE_HPP
|
||
|
#define BOOST_GRAPH_BIPARTITE_HPP
|
||
|
|
||
|
#include <utility>
|
||
|
#include <vector>
|
||
|
#include <exception>
|
||
|
#include <boost/graph/properties.hpp>
|
||
|
#include <boost/graph/adjacency_list.hpp>
|
||
|
#include <boost/graph/depth_first_search.hpp>
|
||
|
#include <boost/graph/one_bit_color_map.hpp>
|
||
|
#include <boost/bind.hpp>
|
||
|
|
||
|
namespace boost {
|
||
|
|
||
|
namespace detail {
|
||
|
|
||
|
/**
|
||
|
* The bipartite_visitor_error is thrown if an edge cannot be colored.
|
||
|
* The witnesses are the edges incident vertices.
|
||
|
*/
|
||
|
|
||
|
template <typename Vertex>
|
||
|
struct bipartite_visitor_error: std::exception
|
||
|
{
|
||
|
std::pair <Vertex, Vertex> witnesses;
|
||
|
|
||
|
bipartite_visitor_error (Vertex a, Vertex b) :
|
||
|
witnesses (a, b)
|
||
|
{
|
||
|
|
||
|
}
|
||
|
|
||
|
const char* what () const throw ()
|
||
|
{
|
||
|
return "Graph is not bipartite.";
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Functor which colors edges to be non-monochromatic.
|
||
|
*/
|
||
|
|
||
|
template <typename PartitionMap>
|
||
|
struct bipartition_colorize
|
||
|
{
|
||
|
typedef on_tree_edge event_filter;
|
||
|
|
||
|
bipartition_colorize (PartitionMap partition_map) :
|
||
|
partition_map_ (partition_map)
|
||
|
{
|
||
|
|
||
|
}
|
||
|
|
||
|
template <typename Edge, typename Graph>
|
||
|
void operator() (Edge e, const Graph& g)
|
||
|
{
|
||
|
typedef typename graph_traits <Graph>::vertex_descriptor vertex_descriptor_t;
|
||
|
typedef color_traits <typename property_traits <PartitionMap>::value_type> color_traits;
|
||
|
|
||
|
vertex_descriptor_t source_vertex = source (e, g);
|
||
|
vertex_descriptor_t target_vertex = target (e, g);
|
||
|
if (get (partition_map_, source_vertex) == color_traits::white ())
|
||
|
put (partition_map_, target_vertex, color_traits::black ());
|
||
|
else
|
||
|
put (partition_map_, target_vertex, color_traits::white ());
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
PartitionMap partition_map_;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Creates a bipartition_colorize functor which colors edges
|
||
|
* to be non-monochromatic.
|
||
|
*
|
||
|
* @param partition_map Color map for the bipartition
|
||
|
* @return The functor.
|
||
|
*/
|
||
|
|
||
|
template <typename PartitionMap>
|
||
|
inline bipartition_colorize <PartitionMap> colorize_bipartition (PartitionMap partition_map)
|
||
|
{
|
||
|
return bipartition_colorize <PartitionMap> (partition_map);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Functor which tests an edge to be monochromatic.
|
||
|
*/
|
||
|
|
||
|
template <typename PartitionMap>
|
||
|
struct bipartition_check
|
||
|
{
|
||
|
typedef on_back_edge event_filter;
|
||
|
|
||
|
bipartition_check (PartitionMap partition_map) :
|
||
|
partition_map_ (partition_map)
|
||
|
{
|
||
|
|
||
|
}
|
||
|
|
||
|
template <typename Edge, typename Graph>
|
||
|
void operator() (Edge e, const Graph& g)
|
||
|
{
|
||
|
typedef typename graph_traits <Graph>::vertex_descriptor vertex_descriptor_t;
|
||
|
|
||
|
vertex_descriptor_t source_vertex = source (e, g);
|
||
|
vertex_descriptor_t target_vertex = target (e, g);
|
||
|
if (get (partition_map_, source_vertex) == get (partition_map_, target_vertex))
|
||
|
throw bipartite_visitor_error <vertex_descriptor_t> (source_vertex, target_vertex);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
PartitionMap partition_map_;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Creates a bipartition_check functor which raises an error if a
|
||
|
* monochromatic edge is found.
|
||
|
*
|
||
|
* @param partition_map The map for a bipartition.
|
||
|
* @return The functor.
|
||
|
*/
|
||
|
|
||
|
template <typename PartitionMap>
|
||
|
inline bipartition_check <PartitionMap> check_bipartition (PartitionMap partition_map)
|
||
|
{
|
||
|
return bipartition_check <PartitionMap> (partition_map);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Find the beginning of a common suffix of two sequences
|
||
|
*
|
||
|
* @param sequence1 Pair of bidirectional iterators defining the first sequence.
|
||
|
* @param sequence2 Pair of bidirectional iterators defining the second sequence.
|
||
|
* @return Pair of iterators pointing to the beginning of the common suffix.
|
||
|
*/
|
||
|
|
||
|
template <typename BiDirectionalIterator1, typename BiDirectionalIterator2>
|
||
|
inline std::pair <BiDirectionalIterator1, BiDirectionalIterator2> reverse_mismatch (std::pair <
|
||
|
BiDirectionalIterator1, BiDirectionalIterator1> sequence1, std::pair <BiDirectionalIterator2,
|
||
|
BiDirectionalIterator2> sequence2)
|
||
|
{
|
||
|
if (sequence1.first == sequence1.second || sequence2.first == sequence2.second)
|
||
|
return std::make_pair (sequence1.first, sequence2.first);
|
||
|
|
||
|
BiDirectionalIterator1 iter1 = sequence1.second;
|
||
|
BiDirectionalIterator2 iter2 = sequence2.second;
|
||
|
|
||
|
while (true)
|
||
|
{
|
||
|
--iter1;
|
||
|
--iter2;
|
||
|
if (*iter1 != *iter2)
|
||
|
{
|
||
|
++iter1;
|
||
|
++iter2;
|
||
|
break;
|
||
|
}
|
||
|
if (iter1 == sequence1.first)
|
||
|
break;
|
||
|
if (iter2 == sequence2.first)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return std::make_pair (iter1, iter2);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks a given graph for bipartiteness and fills the given color map with
|
||
|
* white and black according to the bipartition. If the graph is not
|
||
|
* bipartite, the contents of the color map are undefined. Runs in linear
|
||
|
* time in the size of the graph, if access to the property maps is in
|
||
|
* constant time.
|
||
|
*
|
||
|
* @param graph The given graph.
|
||
|
* @param index_map An index map associating vertices with an index.
|
||
|
* @param partition_map A color map to fill with the bipartition.
|
||
|
* @return true if and only if the given graph is bipartite.
|
||
|
*/
|
||
|
|
||
|
template <typename Graph, typename IndexMap, typename PartitionMap>
|
||
|
bool is_bipartite (const Graph& graph, const IndexMap index_map, PartitionMap partition_map)
|
||
|
{
|
||
|
/// General types and variables
|
||
|
typedef typename property_traits <PartitionMap>::value_type partition_color_t;
|
||
|
typedef typename graph_traits <Graph>::vertex_descriptor vertex_descriptor_t;
|
||
|
|
||
|
/// Declare dfs visitor
|
||
|
// detail::empty_recorder recorder;
|
||
|
// typedef detail::bipartite_visitor <PartitionMap, detail::empty_recorder> dfs_visitor_t;
|
||
|
// dfs_visitor_t dfs_visitor (partition_map, recorder);
|
||
|
|
||
|
|
||
|
/// Call dfs
|
||
|
try
|
||
|
{
|
||
|
depth_first_search (graph, vertex_index_map (index_map).visitor (make_dfs_visitor (std::make_pair (
|
||
|
detail::colorize_bipartition (partition_map), std::make_pair (detail::check_bipartition (partition_map),
|
||
|
put_property (partition_map, color_traits <partition_color_t>::white (), on_start_vertex ()))))));
|
||
|
}
|
||
|
catch (detail::bipartite_visitor_error <vertex_descriptor_t> error)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks a given graph for bipartiteness.
|
||
|
*
|
||
|
* @param graph The given graph.
|
||
|
* @param index_map An index map associating vertices with an index.
|
||
|
* @return true if and only if the given graph is bipartite.
|
||
|
*/
|
||
|
|
||
|
template <typename Graph, typename IndexMap>
|
||
|
bool is_bipartite (const Graph& graph, const IndexMap index_map)
|
||
|
{
|
||
|
typedef one_bit_color_map <IndexMap> partition_map_t;
|
||
|
partition_map_t partition_map (num_vertices (graph), index_map);
|
||
|
|
||
|
return is_bipartite (graph, index_map, partition_map);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks a given graph for bipartiteness. The graph must
|
||
|
* have an internal vertex_index property. Runs in linear time in the
|
||
|
* size of the graph, if access to the property maps is in constant time.
|
||
|
*
|
||
|
* @param graph The given graph.
|
||
|
* @return true if and only if the given graph is bipartite.
|
||
|
*/
|
||
|
|
||
|
template <typename Graph>
|
||
|
bool is_bipartite (const Graph& graph)
|
||
|
{
|
||
|
return is_bipartite (graph, get (vertex_index, graph));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks a given graph for bipartiteness and fills a given color map with
|
||
|
* white and black according to the bipartition. If the graph is not
|
||
|
* bipartite, a sequence of vertices, producing an odd-cycle, is written to
|
||
|
* the output iterator. The final iterator value is returned. Runs in linear
|
||
|
* time in the size of the graph, if access to the property maps is in
|
||
|
* constant time.
|
||
|
*
|
||
|
* @param graph The given graph.
|
||
|
* @param index_map An index map associating vertices with an index.
|
||
|
* @param partition_map A color map to fill with the bipartition.
|
||
|
* @param result An iterator to write the odd-cycle vertices to.
|
||
|
* @return The final iterator value after writing.
|
||
|
*/
|
||
|
|
||
|
template <typename Graph, typename IndexMap, typename PartitionMap, typename OutputIterator>
|
||
|
OutputIterator find_odd_cycle (const Graph& graph, const IndexMap index_map, PartitionMap partition_map,
|
||
|
OutputIterator result)
|
||
|
{
|
||
|
/// General types and variables
|
||
|
typedef typename property_traits <PartitionMap>::value_type partition_color_t;
|
||
|
typedef typename graph_traits <Graph>::vertex_descriptor vertex_descriptor_t;
|
||
|
typedef typename graph_traits <Graph>::vertex_iterator vertex_iterator_t;
|
||
|
vertex_iterator_t vertex_iter, vertex_end;
|
||
|
|
||
|
/// Declare predecessor map
|
||
|
typedef std::vector <vertex_descriptor_t> predecessors_t;
|
||
|
typedef iterator_property_map <typename predecessors_t::iterator, IndexMap, vertex_descriptor_t,
|
||
|
vertex_descriptor_t&> predecessor_map_t;
|
||
|
|
||
|
predecessors_t predecessors (num_vertices (graph), graph_traits <Graph>::null_vertex ());
|
||
|
predecessor_map_t predecessor_map (predecessors.begin (), index_map);
|
||
|
|
||
|
/// Initialize predecessor map
|
||
|
for (boost::tie (vertex_iter, vertex_end) = vertices (graph); vertex_iter != vertex_end; ++vertex_iter)
|
||
|
{
|
||
|
put (predecessor_map, *vertex_iter, *vertex_iter);
|
||
|
}
|
||
|
|
||
|
/// Call dfs
|
||
|
try
|
||
|
{
|
||
|
depth_first_search (graph, vertex_index_map (index_map).visitor (make_dfs_visitor (std::make_pair (
|
||
|
detail::colorize_bipartition (partition_map), std::make_pair (detail::check_bipartition (partition_map),
|
||
|
std::make_pair (put_property (partition_map, color_traits <partition_color_t>::white (),
|
||
|
on_start_vertex ()), record_predecessors (predecessor_map, on_tree_edge ())))))));
|
||
|
}
|
||
|
catch (detail::bipartite_visitor_error <vertex_descriptor_t> error)
|
||
|
{
|
||
|
typedef std::vector <vertex_descriptor_t> path_t;
|
||
|
|
||
|
path_t path1, path2;
|
||
|
vertex_descriptor_t next, current;
|
||
|
|
||
|
/// First path
|
||
|
next = error.witnesses.first;
|
||
|
do
|
||
|
{
|
||
|
current = next;
|
||
|
path1.push_back (current);
|
||
|
next = predecessor_map[current];
|
||
|
}
|
||
|
while (current != next);
|
||
|
|
||
|
/// Second path
|
||
|
next = error.witnesses.second;
|
||
|
do
|
||
|
{
|
||
|
current = next;
|
||
|
path2.push_back (current);
|
||
|
next = predecessor_map[current];
|
||
|
}
|
||
|
while (current != next);
|
||
|
|
||
|
/// Find beginning of common suffix
|
||
|
std::pair <typename path_t::iterator, typename path_t::iterator> mismatch = detail::reverse_mismatch (
|
||
|
std::make_pair (path1.begin (), path1.end ()), std::make_pair (path2.begin (), path2.end ()));
|
||
|
|
||
|
/// Copy the odd-length cycle
|
||
|
result = std::copy (path1.begin (), mismatch.first + 1, result);
|
||
|
return std::reverse_copy (path2.begin (), mismatch.second, result);
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks a given graph for bipartiteness. If the graph is not bipartite, a
|
||
|
* sequence of vertices, producing an odd-cycle, is written to the output
|
||
|
* iterator. The final iterator value is returned. Runs in linear time in the
|
||
|
* size of the graph, if access to the property maps is in constant time.
|
||
|
*
|
||
|
* @param graph The given graph.
|
||
|
* @param index_map An index map associating vertices with an index.
|
||
|
* @param result An iterator to write the odd-cycle vertices to.
|
||
|
* @return The final iterator value after writing.
|
||
|
*/
|
||
|
|
||
|
template <typename Graph, typename IndexMap, typename OutputIterator>
|
||
|
OutputIterator find_odd_cycle (const Graph& graph, const IndexMap index_map, OutputIterator result)
|
||
|
{
|
||
|
typedef one_bit_color_map <IndexMap> partition_map_t;
|
||
|
partition_map_t partition_map (num_vertices (graph), index_map);
|
||
|
|
||
|
return find_odd_cycle (graph, index_map, partition_map, result);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Checks a given graph for bipartiteness. If the graph is not bipartite, a
|
||
|
* sequence of vertices, producing an odd-cycle, is written to the output
|
||
|
* iterator. The final iterator value is returned. The graph must have an
|
||
|
* internal vertex_index property. Runs in linear time in the size of the
|
||
|
* graph, if access to the property maps is in constant time.
|
||
|
*
|
||
|
* @param graph The given graph.
|
||
|
* @param result An iterator to write the odd-cycle vertices to.
|
||
|
* @return The final iterator value after writing.
|
||
|
*/
|
||
|
|
||
|
template <typename Graph, typename OutputIterator>
|
||
|
OutputIterator find_odd_cycle (const Graph& graph, OutputIterator result)
|
||
|
{
|
||
|
return find_odd_cycle (graph, get (vertex_index, graph), result);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /// BOOST_GRAPH_BIPARTITE_HPP
|