ecency-mobile/ios/Pods/Folly/folly/Traits.h

718 lines
23 KiB
C
Raw Normal View History

/*
* Copyright 2016 Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// @author: Andrei Alexandrescu
#pragma once
#include <memory>
#include <limits>
#include <type_traits>
#include <functional>
#include <folly/Portability.h>
// libc++ doesn't provide this header, nor does msvc
#ifdef FOLLY_HAVE_BITS_CXXCONFIG_H
// This file appears in two locations: inside fbcode and in the
// libstdc++ source code (when embedding fbstring as std::string).
// To aid in this schizophrenic use, two macros are defined in
// c++config.h:
// _LIBSTDCXX_FBSTRING - Set inside libstdc++. This is useful to
// gate use inside fbcode v. libstdc++
#include <bits/c++config.h>
#endif
#include <boost/type_traits.hpp>
#include <boost/mpl/has_xxx.hpp>
namespace folly {
/**
* IsRelocatable<T>::value describes the ability of moving around
* memory a value of type T by using memcpy (as opposed to the
* conservative approach of calling the copy constructor and then
* destroying the old temporary. Essentially for a relocatable type,
* the following two sequences of code should be semantically
* equivalent:
*
* void move1(T * from, T * to) {
* new(to) T(from);
* (*from).~T();
* }
*
* void move2(T * from, T * to) {
* memcpy(to, from, sizeof(T));
* }
*
* Most C++ types are relocatable; the ones that aren't would include
* internal pointers or (very rarely) would need to update remote
* pointers to pointers tracking them. All C++ primitive types and
* type constructors are relocatable.
*
* This property can be used in a variety of optimizations. Currently
* fbvector uses this property intensively.
*
* The default conservatively assumes the type is not
* relocatable. Several specializations are defined for known
* types. You may want to add your own specializations. Do so in
* namespace folly and make sure you keep the specialization of
* IsRelocatable<SomeStruct> in the same header as SomeStruct.
*
* You may also declare a type to be relocatable by including
* `typedef std::true_type IsRelocatable;`
* in the class header.
*
* It may be unset in a base class by overriding the typedef to false_type.
*/
/*
* IsTriviallyCopyable describes the value semantics property. C++11 contains
* the type trait is_trivially_copyable; however, it is not yet implemented
* in gcc (as of 4.7.1), and the user may wish to specify otherwise.
*/
/*
* IsZeroInitializable describes the property that default construction is the
* same as memset(dst, 0, sizeof(T)).
*/
namespace traits_detail {
#define FOLLY_HAS_TRUE_XXX(name) \
BOOST_MPL_HAS_XXX_TRAIT_DEF(name) \
template <class T> \
struct name##_is_true : std::is_same<typename T::name, std::true_type> {}; \
template <class T> \
struct has_true_##name : std::conditional< \
has_##name<T>::value, \
name##_is_true<T>, \
std::false_type>::type {};
FOLLY_HAS_TRUE_XXX(IsRelocatable)
FOLLY_HAS_TRUE_XXX(IsZeroInitializable)
FOLLY_HAS_TRUE_XXX(IsTriviallyCopyable)
#undef FOLLY_HAS_TRUE_XXX
// Older versions of libstdc++ do not provide std::is_trivially_copyable
#if defined(__clang__) && !defined(_LIBCPP_VERSION)
template <class T>
struct is_trivially_copyable
: std::integral_constant<bool, __is_trivially_copyable(T)> {};
#elif defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5
template <class T>
struct is_trivially_copyable : std::is_trivial<T> {};
#else
template <class T>
using is_trivially_copyable = std::is_trivially_copyable<T>;
#endif
}
struct Ignore {
template <class T>
/* implicit */ Ignore(const T&) {}
template <class T>
const Ignore& operator=(T const&) const { return *this; }
};
template <class...>
using Ignored = Ignore;
namespace traits_detail_IsEqualityComparable {
Ignore operator==(Ignore, Ignore);
template <class T, class U = T>
struct IsEqualityComparable
: std::is_convertible<
decltype(std::declval<T>() == std::declval<U>()),
bool
> {};
}
/* using override */ using traits_detail_IsEqualityComparable::
IsEqualityComparable;
namespace traits_detail_IsLessThanComparable {
Ignore operator<(Ignore, Ignore);
template <class T, class U = T>
struct IsLessThanComparable
: std::is_convertible<
decltype(std::declval<T>() < std::declval<U>()),
bool
> {};
}
/* using override */ using traits_detail_IsLessThanComparable::
IsLessThanComparable;
namespace traits_detail_IsNothrowSwappable {
#if defined(_MSC_VER) || defined(__cpp_lib_is_swappable)
// MSVC already implements the C++17 P0185R1 proposal which
// adds std::is_nothrow_swappable, so use it instead.
template <typename T>
using IsNothrowSwappable = std::is_nothrow_swappable<T>;
#else
/* using override */ using std::swap;
template <class T>
struct IsNothrowSwappable
: std::integral_constant<bool,
std::is_nothrow_move_constructible<T>::value &&
noexcept(swap(std::declval<T&>(), std::declval<T&>()))
> {};
#endif
}
/* using override */ using traits_detail_IsNothrowSwappable::IsNothrowSwappable;
template <class T> struct IsTriviallyCopyable
: std::conditional<
traits_detail::has_IsTriviallyCopyable<T>::value,
traits_detail::has_true_IsTriviallyCopyable<T>,
traits_detail::is_trivially_copyable<T>
>::type {};
template <class T> struct IsRelocatable
: std::conditional<
traits_detail::has_IsRelocatable<T>::value,
traits_detail::has_true_IsRelocatable<T>,
// TODO add this line (and some tests for it) when we upgrade to gcc 4.7
//std::is_trivially_move_constructible<T>::value ||
IsTriviallyCopyable<T>
>::type {};
template <class T> struct IsZeroInitializable
: std::conditional<
traits_detail::has_IsZeroInitializable<T>::value,
traits_detail::has_true_IsZeroInitializable<T>,
std::integral_constant<bool, !std::is_class<T>::value>
>::type {};
template <typename...>
struct Conjunction : std::true_type {};
template <typename T>
struct Conjunction<T> : T {};
template <typename T, typename... TList>
struct Conjunction<T, TList...>
: std::conditional<T::value, Conjunction<TList...>, T>::type {};
template <typename...>
struct Disjunction : std::false_type {};
template <typename T>
struct Disjunction<T> : T {};
template <typename T, typename... TList>
struct Disjunction<T, TList...>
: std::conditional<T::value, T, Disjunction<TList...>>::type {};
template <typename T>
struct Negation : std::integral_constant<bool, !T::value> {};
template <bool... Bs>
struct Bools {
using valid_type = bool;
static constexpr std::size_t size() {
return sizeof...(Bs);
}
};
// Lighter-weight than Conjunction, but evaluates all sub-conditions eagerly.
template <class... Ts>
using StrictConjunction =
std::is_same<Bools<Ts::value..., true>, Bools<true, Ts::value...>>;
} // namespace folly
/**
* Use this macro ONLY inside namespace folly. When using it with a
* regular type, use it like this:
*
* // Make sure you're at namespace ::folly scope
* template<> FOLLY_ASSUME_RELOCATABLE(MyType)
*
* When using it with a template type, use it like this:
*
* // Make sure you're at namespace ::folly scope
* template<class T1, class T2>
* FOLLY_ASSUME_RELOCATABLE(MyType<T1, T2>)
*/
#define FOLLY_ASSUME_RELOCATABLE(...) \
struct IsRelocatable< __VA_ARGS__ > : std::true_type {};
/**
* Use this macro ONLY inside namespace boost. When using it with a
* regular type, use it like this:
*
* // Make sure you're at namespace ::boost scope
* template<> FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(MyType)
*
* When using it with a template type, use it like this:
*
* // Make sure you're at namespace ::boost scope
* template<class T1, class T2>
* FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(MyType<T1, T2>)
*/
#define FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(...) \
struct has_nothrow_constructor< __VA_ARGS__ > : ::boost::true_type {};
/**
* The FOLLY_ASSUME_FBVECTOR_COMPATIBLE* macros below encode two
* assumptions: first, that the type is relocatable per IsRelocatable
* above, and that it has a nothrow constructor. Most types can be
* assumed to satisfy both conditions, but it is the responsibility of
* the user to state that assumption. User-defined classes will not
* work with fbvector (see FBVector.h) unless they state this
* combination of properties.
*
* Use FOLLY_ASSUME_FBVECTOR_COMPATIBLE with regular types like this:
*
* FOLLY_ASSUME_FBVECTOR_COMPATIBLE(MyType)
*
* The versions FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1, _2, _3, and _4
* allow using the macro for describing templatized classes with 1, 2,
* 3, and 4 template parameters respectively. For template classes
* just use the macro with the appropriate number and pass the name of
* the template to it. Example:
*
* template <class T1, class T2> class MyType { ... };
* ...
* // Make sure you're at global scope
* FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(MyType)
*/
// Use this macro ONLY at global level (no namespace)
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE(...) \
namespace folly { template<> FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__) } \
namespace boost { \
template<> FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__) }
// Use this macro ONLY at global level (no namespace)
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(...) \
namespace folly { \
template <class T1> FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1>) } \
namespace boost { \
template <class T1> FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__<T1>) }
// Use this macro ONLY at global level (no namespace)
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(...) \
namespace folly { \
template <class T1, class T2> \
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2>) } \
namespace boost { \
template <class T1, class T2> \
FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__<T1, T2>) }
// Use this macro ONLY at global level (no namespace)
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_3(...) \
namespace folly { \
template <class T1, class T2, class T3> \
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2, T3>) } \
namespace boost { \
template <class T1, class T2, class T3> \
FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__<T1, T2, T3>) }
// Use this macro ONLY at global level (no namespace)
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_4(...) \
namespace folly { \
template <class T1, class T2, class T3, class T4> \
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2, T3, T4>) } \
namespace boost { \
template <class T1, class T2, class T3, class T4> \
FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__<T1, T2, T3, T4>) }
/**
* Instantiate FOLLY_ASSUME_FBVECTOR_COMPATIBLE for a few types. It is
* safe to assume that pair is compatible if both of its components
* are. Furthermore, all STL containers can be assumed to comply,
* although that is not guaranteed by the standard.
*/
FOLLY_NAMESPACE_STD_BEGIN
template <class T, class U>
struct pair;
#ifndef _GLIBCXX_USE_FB
FOLLY_GLIBCXX_NAMESPACE_CXX11_BEGIN
template <class T, class R, class A>
class basic_string;
FOLLY_GLIBCXX_NAMESPACE_CXX11_END
#else
template <class T, class R, class A, class S>
class basic_string;
#endif
template <class T, class A>
class vector;
template <class T, class A>
class deque;
FOLLY_GLIBCXX_NAMESPACE_CXX11_BEGIN
template <class T, class A>
class list;
FOLLY_GLIBCXX_NAMESPACE_CXX11_END
template <class T, class C, class A>
class set;
template <class K, class V, class C, class A>
class map;
template <class T>
class shared_ptr;
FOLLY_NAMESPACE_STD_END
namespace boost {
template <class T> class shared_ptr;
template <class T, class U>
struct has_nothrow_constructor< std::pair<T, U> >
: std::integral_constant<bool,
has_nothrow_constructor<T>::value &&
has_nothrow_constructor<U>::value> {};
} // namespace boost
namespace folly {
// STL commonly-used types
template <class T, class U>
struct IsRelocatable< std::pair<T, U> >
: std::integral_constant<bool,
IsRelocatable<T>::value &&
IsRelocatable<U>::value> {};
// Is T one of T1, T2, ..., Tn?
template <class T, class... Ts>
struct IsOneOf {
enum { value = false };
};
template <class T, class T1, class... Ts>
struct IsOneOf<T, T1, Ts...> {
enum { value = std::is_same<T, T1>::value || IsOneOf<T, Ts...>::value };
};
/*
* Complementary type traits for integral comparisons.
*
* For instance, `if(x < 0)` yields an error in clang for unsigned types
* when -Werror is used due to -Wtautological-compare
*
*
* @author: Marcelo Juchem <marcelo@fb.com>
*/
namespace detail {
template <typename T, bool>
struct is_negative_impl {
constexpr static bool check(T x) { return x < 0; }
};
template <typename T>
struct is_negative_impl<T, false> {
constexpr static bool check(T) { return false; }
};
// folly::to integral specializations can end up generating code
// inside what are really static ifs (not executed because of the templated
// types) that violate -Wsign-compare and/or -Wbool-compare so suppress them
// in order to not prevent all calling code from using it.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-compare"
#if __GNUC_PREREQ(5, 0)
#pragma GCC diagnostic ignored "-Wbool-compare"
#endif
template <typename RHS, RHS rhs, typename LHS>
bool less_than_impl(LHS const lhs) {
return
rhs > std::numeric_limits<LHS>::max() ? true :
rhs <= std::numeric_limits<LHS>::min() ? false :
lhs < rhs;
}
template <typename RHS, RHS rhs, typename LHS>
bool greater_than_impl(LHS const lhs) {
return
rhs > std::numeric_limits<LHS>::max() ? false :
rhs < std::numeric_limits<LHS>::min() ? true :
lhs > rhs;
}
#pragma GCC diagnostic pop
} // namespace detail {
// same as `x < 0`
template <typename T>
constexpr bool is_negative(T x) {
return folly::detail::is_negative_impl<T, std::is_signed<T>::value>::check(x);
}
// same as `x <= 0`
template <typename T>
constexpr bool is_non_positive(T x) { return !x || folly::is_negative(x); }
// same as `x > 0`
template <typename T>
constexpr bool is_positive(T x) { return !is_non_positive(x); }
// same as `x >= 0`
template <typename T>
constexpr bool is_non_negative(T x) {
return !x || is_positive(x);
}
template <typename RHS, RHS rhs, typename LHS>
bool less_than(LHS const lhs) {
return detail::less_than_impl<
RHS, rhs, typename std::remove_reference<LHS>::type
>(lhs);
}
template <typename RHS, RHS rhs, typename LHS>
bool greater_than(LHS const lhs) {
return detail::greater_than_impl<
RHS, rhs, typename std::remove_reference<LHS>::type
>(lhs);
}
namespace traits_detail {
struct InPlaceTag {};
template <class>
struct InPlaceTypeTag {};
template <std::size_t>
struct InPlaceIndexTag {};
}
/**
* Like std::piecewise_construct, a tag type & instance used for in-place
* construction of non-movable contained types, e.g. by Synchronized.
* Follows the naming and design of std::in_place suggested in
* http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0032r2.pdf
*/
using in_place_t = traits_detail::InPlaceTag (&)(traits_detail::InPlaceTag);
template <class T>
using in_place_type_t =
traits_detail::InPlaceTypeTag<T> (&)(traits_detail::InPlaceTypeTag<T>);
template <std::size_t I>
using in_place_index_t =
traits_detail::InPlaceIndexTag<I> (&)(traits_detail::InPlaceIndexTag<I>);
inline traits_detail::InPlaceTag in_place(traits_detail::InPlaceTag = {}) {
return {};
}
template <class T>
inline traits_detail::InPlaceTypeTag<T> in_place(
traits_detail::InPlaceTypeTag<T> = {}) {
return {};
}
template <std::size_t I>
inline traits_detail::InPlaceIndexTag<I> in_place(
traits_detail::InPlaceIndexTag<I> = {}) {
return {};
}
// For backwards compatibility:
using construct_in_place_t = in_place_t;
inline traits_detail::InPlaceTag construct_in_place(
traits_detail::InPlaceTag = {}) {
return {};
}
/**
* Initializer lists are a powerful compile time syntax introduced in C++11
* but due to their often conflicting syntax they are not used by APIs for
* construction.
*
* Further standard conforming compilers *strongly* favor an
* std::initalizer_list overload for construction if one exists. The
* following is a simple tag used to disambiguate construction with
* initializer lists and regular uniform initialization.
*
* For example consider the following case
*
* class Something {
* public:
* explicit Something(int);
* Something(std::intiializer_list<int>);
*
* operator int();
* };
*
* ...
* Something something{1}; // SURPRISE!!
*
* The last call to instantiate the Something object will go to the
* initializer_list overload. Which may be surprising to users.
*
* If however this tag was used to disambiguate such construction it would be
* easy for users to see which construction overload their code was referring
* to. For example
*
* class Something {
* public:
* explicit Something(int);
* Something(folly::initlist_construct_t, std::initializer_list<int>);
*
* operator int();
* };
*
* ...
* Something something_one{1}; // not the initializer_list overload
* Something something_two{folly::initlist_construct, {1}}; // correct
*/
struct initlist_construct_t {};
constexpr initlist_construct_t initlist_construct{};
} // namespace folly
// gcc-5.0 changed string's implementation in libgcc to be non-relocatable
#if __GNUC__ < 5
FOLLY_ASSUME_FBVECTOR_COMPATIBLE_3(std::basic_string)
#endif
FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::vector)
FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::list)
FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::deque)
FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::unique_ptr)
FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(std::shared_ptr)
FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(std::function)
// Boost
FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(boost::shared_ptr)
#define FOLLY_CREATE_HAS_MEMBER_TYPE_TRAITS(classname, type_name) \
template <typename T> \
struct classname { \
template <typename C> \
constexpr static bool test(typename C::type_name*) { return true; } \
template <typename> \
constexpr static bool test(...) { return false; } \
constexpr static bool value = test<T>(nullptr); \
}
#define FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL(classname, func_name, cv_qual) \
template <typename TTheClass_, typename RTheReturn_, typename... TTheArgs_> \
class classname<TTheClass_, RTheReturn_(TTheArgs_...) cv_qual> { \
template < \
typename UTheClass_, RTheReturn_ (UTheClass_::*)(TTheArgs_...) cv_qual \
> struct sfinae {}; \
template <typename UTheClass_> \
constexpr static bool test(sfinae<UTheClass_, &UTheClass_::func_name>*) \
{ return true; } \
template <typename> \
constexpr static bool test(...) { return false; } \
public: \
constexpr static bool value = test<TTheClass_>(nullptr); \
}
/*
* The FOLLY_CREATE_HAS_MEMBER_FN_TRAITS is used to create traits
* classes that check for the existence of a member function with
* a given name and signature. It currently does not support
* checking for inherited members.
*
* Such classes receive two template parameters: the class to be checked
* and the signature of the member function. A static boolean field
* named `value` (which is also constexpr) tells whether such member
* function exists.
*
* Each traits class created is bound only to the member name, not to
* its signature nor to the type of the class containing it.
*
* Say you need to know if a given class has a member function named
* `test` with the following signature:
*
* int test() const;
*
* You'd need this macro to create a traits class to check for a member
* named `test`, and then use this traits class to check for the signature:
*
* namespace {
*
* FOLLY_CREATE_HAS_MEMBER_FN_TRAITS(has_test_traits, test);
*
* } // unnamed-namespace
*
* void some_func() {
* cout << "Does class Foo have a member int test() const? "
* << boolalpha << has_test_traits<Foo, int() const>::value;
* }
*
* You can use the same traits class to test for a completely different
* signature, on a completely different class, as long as the member name
* is the same:
*
* void some_func() {
* cout << "Does class Foo have a member int test()? "
* << boolalpha << has_test_traits<Foo, int()>::value;
* cout << "Does class Foo have a member int test() const? "
* << boolalpha << has_test_traits<Foo, int() const>::value;
* cout << "Does class Bar have a member double test(const string&, long)? "
* << boolalpha << has_test_traits<Bar, double(const string&, long)>::value;
* }
*
* @author: Marcelo Juchem <marcelo@fb.com>
*/
#define FOLLY_CREATE_HAS_MEMBER_FN_TRAITS(classname, func_name) \
template <typename, typename> class classname; \
FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL(classname, func_name, ); \
FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL(classname, func_name, const); \
FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL( \
classname, func_name, /* nolint */ volatile); \
FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL( \
classname, func_name, /* nolint */ volatile const)
/* Some combinations of compilers and C++ libraries make __int128 and
* unsigned __int128 available but do not correctly define their standard type
* traits.
*
* If FOLLY_SUPPLY_MISSING_INT128_TRAITS is defined, we define these traits
* here.
*
* @author: Phil Willoughby <philwill@fb.com>
*/
#if FOLLY_SUPPLY_MISSING_INT128_TRAITS
FOLLY_NAMESPACE_STD_BEGIN
template <>
struct is_arithmetic<__int128> : ::std::true_type {};
template <>
struct is_arithmetic<unsigned __int128> : ::std::true_type {};
template <>
struct is_integral<__int128> : ::std::true_type {};
template <>
struct is_integral<unsigned __int128> : ::std::true_type {};
template <>
struct make_unsigned<__int128> {
typedef unsigned __int128 type;
};
template <>
struct make_signed<__int128> {
typedef __int128 type;
};
template <>
struct make_unsigned<unsigned __int128> {
typedef unsigned __int128 type;
};
template <>
struct make_signed<unsigned __int128> {
typedef __int128 type;
};
template <>
struct is_signed<__int128> : ::std::true_type {};
template <>
struct is_unsigned<unsigned __int128> : ::std::true_type {};
FOLLY_NAMESPACE_STD_END
#endif // FOLLY_SUPPLY_MISSING_INT128_TRAITS