ecency-mobile/ios/Pods/Folly/folly/Replaceable.h

649 lines
23 KiB
C
Raw Normal View History

2019-05-29 14:32:35 +03:00
/*
* Copyright 2017-present Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <initializer_list>
#include <new>
#include <type_traits>
#include <utility>
#include <folly/Portability.h>
#include <folly/Traits.h>
#include <folly/Utility.h>
#include <folly/lang/Launder.h>
/**
* An instance of `Replaceable<T>` wraps an instance of `T`.
*
* You access the inner `T` instance with `operator*` and `operator->` (as if
* it were a smart pointer).
*
* `Replaceable<T>` adds no indirection cost and performs no allocations.
*
* `Replaceable<T>` has the same size and alignment as `T`.
*
* You can replace the `T` within a `Replaceable<T>` using the `emplace` method
* (presuming that it is constructible and destructible without throwing
* exceptions). If the destructor or constructor you're using could throw an
* exception you should use `Optional<T>` instead, as it's not a logic error
* for that to be empty.
*
* Frequently Asked Questions
* ==========================
*
* Why does this need to be so complicated?
* ----------------------------------------
*
* If a `T` instance contains `const`-qualified member variables or reference
* member variables we can't safely replace a `T` instance by destructing it
* manually and using placement new. This is because compilers are permitted to
* assume that the `const` or reference members of a named, referenced, or
* pointed-to object do not change.
*
* For pointed-to objects in allocated storage you can use the pointer returned
* by placement new or use the `launder` function to get a pointer to the new
* object. Note that `launder` doesn't affect its argument, it's still
* undefined behaviour to use the original pointer. And none of this helps if
* the object is a local or a member variable because the destructor call will
* not have been laundered. In summary, this is the only way to use placement
* new that is both simple and safe:
*
* T* pT = new T(...);
* pT->~T();
* pT = ::new (pT) T(...);
* delete pT;
*
* What are the other safe solutions to this problem?
* --------------------------------------------------
*
* * Ask the designer of `T` to de-`const` and -`reference` the members of `T`.
* - Makes `T` harder to reason about
* - Can reduce the performance of `T` methods
* - They can refuse to make the change
* * Put the `T` on the heap and use a raw/unique/shared pointer.
* - Adds a level of indirection, costing performance.
* - Harder to reason about your code as you need to check for nullptr.
* * Put the `T` in an `Optional`.
* - Harder to reason about your code as you need to check for None.
* * Pass the problem on, making the new code also not-replaceable
* - Contagion is not really a solution
*
* Are there downsides to this?
* ----------------------------
*
* There is a potential performance penalty after converting `T` to
* `Replaceable<T>` if you have non-`T`-member-function code which repeatedly
* examines the value of a `const` or `reference` data member of `T`, because
* the compiler now has to look at the value each time whereas previously it
* was permitted to load it once up-front and presume that it could never
* change.
*
* Usage notes
* ===========
*
* Don't store a reference to the `T` within a `Replaceable<T>` unless you can
* show that its lifetime does not cross an `emplace` call. For safety a
* reasonable rule is to always use `operator*()` to get a fresh temporary each
* time you need a `T&.
*
* If you store a pointer to the `T` within a `Replaceable<T>` you **must**
* launder it after each call to `emplace` before using it. Again you can
* reasonably choose to always use `operator->()` to get a fresh temporary each
* time you need a `T*.
*
* Thus far I haven't thought of a good reason to use `Replaceable<T>` or
* `Replaceable<T> const&` as a function parameter type.
*
* `Replaceable<T>&` can make sense to pass to a function that conditionally
* replaces the `T`, where `T` has `const` or reference member variables.
*
* The main use of `Replaceable<T>` is as a class member type or a local type
* in long-running functions.
*
* It's probably time to rethink your design choices if you end up with
* `Replaceable<Replaceable<T>>`, `Optional<Replaceable<T>>`,
* `Replaceable<Optional<T>>`, `unique_ptr<Replaceable<T>>` etc. except as a
* result of template expansion.
*/
namespace folly {
template <class T>
class Replaceable;
namespace replaceable_detail {
/* Mixin templates to give `replaceable<T>` the following properties:
*
* 1. Trivial destructor if `T` has a trivial destructor; user-provided
* otherwise
* 2. Move constructor if `T` has a move constructor; deleted otherwise
* 3. Move assignment operator if `T` has a move constructor; deleted
* otherwise
* 4. Copy constructor if `T` has a copy constructor; deleted otherwise
* 5. Copy assignment operator if `T` has a copy constructor; deleted
* otherwise
*
* Has to be done in this way because we can't `enable_if` them away
*/
template <
class T,
bool = std::is_destructible<T>::value,
bool = std::is_trivially_destructible<T>::value>
struct dtor_mixin;
/* Destructible and trivially destructible */
template <class T>
struct dtor_mixin<T, true, true> {};
/* Destructible and not trivially destructible */
template <class T>
struct dtor_mixin<T, true, false> {
dtor_mixin() = default;
dtor_mixin(dtor_mixin&&) = default;
dtor_mixin(dtor_mixin const&) = default;
dtor_mixin& operator=(dtor_mixin&&) = default;
dtor_mixin& operator=(dtor_mixin const&) = default;
~dtor_mixin() noexcept(std::is_nothrow_destructible<T>::value) {
T* destruct_ptr = launder(reinterpret_cast<T*>(
reinterpret_cast<Replaceable<T>*>(this)->storage_));
destruct_ptr->~T();
}
};
/* Not destructible */
template <class T, bool A>
struct dtor_mixin<T, false, A> {
dtor_mixin() = default;
dtor_mixin(dtor_mixin&&) = default;
dtor_mixin(dtor_mixin const&) = default;
dtor_mixin& operator=(dtor_mixin&&) = default;
dtor_mixin& operator=(dtor_mixin const&) = default;
~dtor_mixin() = delete;
};
template <
class T,
bool = std::is_default_constructible<T>::value,
bool = std::is_move_constructible<T>::value>
struct default_and_move_ctor_mixin;
/* Not default-constructible and not move-constructible */
template <class T>
struct default_and_move_ctor_mixin<T, false, false> {
default_and_move_ctor_mixin() = delete;
default_and_move_ctor_mixin(default_and_move_ctor_mixin&&) = delete;
default_and_move_ctor_mixin(default_and_move_ctor_mixin const&) = default;
default_and_move_ctor_mixin& operator=(default_and_move_ctor_mixin&&) =
default;
default_and_move_ctor_mixin& operator=(default_and_move_ctor_mixin const&) =
default;
protected:
inline explicit default_and_move_ctor_mixin(int) {}
};
/* Default-constructible and move-constructible */
template <class T>
struct default_and_move_ctor_mixin<T, true, true> {
inline default_and_move_ctor_mixin() noexcept(
std::is_nothrow_constructible<T>::value) {
::new (reinterpret_cast<Replaceable<T>*>(this)->storage_) T();
}
inline default_and_move_ctor_mixin(
default_and_move_ctor_mixin&&
other) noexcept(std::is_nothrow_constructible<T, T&&>::value) {
::new (reinterpret_cast<Replaceable<T>*>(this)->storage_)
T(*std::move(reinterpret_cast<Replaceable<T>&>(other)));
}
default_and_move_ctor_mixin(default_and_move_ctor_mixin const&) = default;
default_and_move_ctor_mixin& operator=(default_and_move_ctor_mixin&&) =
default;
inline default_and_move_ctor_mixin& operator=(
default_and_move_ctor_mixin const&) = default;
protected:
inline explicit default_and_move_ctor_mixin(int) {}
};
/* Default-constructible and not move-constructible */
template <class T>
struct default_and_move_ctor_mixin<T, true, false> {
inline default_and_move_ctor_mixin() noexcept(
std::is_nothrow_constructible<T>::value) {
::new (reinterpret_cast<Replaceable<T>*>(this)->storage_) T();
}
default_and_move_ctor_mixin(default_and_move_ctor_mixin&&) = delete;
default_and_move_ctor_mixin(default_and_move_ctor_mixin const&) = default;
default_and_move_ctor_mixin& operator=(default_and_move_ctor_mixin&&) =
default;
default_and_move_ctor_mixin& operator=(default_and_move_ctor_mixin const&) =
default;
protected:
inline explicit default_and_move_ctor_mixin(int) {}
};
/* Not default-constructible but is move-constructible */
template <class T>
struct default_and_move_ctor_mixin<T, false, true> {
default_and_move_ctor_mixin() = delete;
inline default_and_move_ctor_mixin(
default_and_move_ctor_mixin&&
other) noexcept(std::is_nothrow_constructible<T, T&&>::value) {
::new (reinterpret_cast<Replaceable<T>*>(this)->storage_)
T(*std::move(reinterpret_cast<Replaceable<T>&>(other)));
}
default_and_move_ctor_mixin(default_and_move_ctor_mixin const&) = default;
default_and_move_ctor_mixin& operator=(default_and_move_ctor_mixin&&) =
default;
default_and_move_ctor_mixin& operator=(default_and_move_ctor_mixin const&) =
default;
protected:
inline explicit default_and_move_ctor_mixin(int) {}
};
template <
class T,
bool = (std::is_destructible<T>::value) &&
(std::is_move_constructible<T>::value)>
struct move_assignment_mixin;
/* Not (destructible and move-constructible) */
template <class T>
struct move_assignment_mixin<T, false> {
move_assignment_mixin() = default;
move_assignment_mixin(move_assignment_mixin&&) = default;
move_assignment_mixin(move_assignment_mixin const&) = default;
move_assignment_mixin& operator=(move_assignment_mixin&&) = delete;
move_assignment_mixin& operator=(move_assignment_mixin const&) = default;
};
/* Both destructible and move-constructible */
template <class T>
struct move_assignment_mixin<T, true> {
move_assignment_mixin() = default;
move_assignment_mixin(move_assignment_mixin&&) = default;
move_assignment_mixin(move_assignment_mixin const&) = default;
inline move_assignment_mixin&
operator=(move_assignment_mixin&& other) noexcept(
std::is_nothrow_destructible<T>::value&&
std::is_nothrow_move_constructible<T>::value) {
T* destruct_ptr = launder(reinterpret_cast<T*>(
reinterpret_cast<Replaceable<T>*>(this)->storage_));
destruct_ptr->~T();
::new (reinterpret_cast<Replaceable<T>*>(this)->storage_)
T(*std::move(reinterpret_cast<Replaceable<T>&>(other)));
return *this;
}
move_assignment_mixin& operator=(move_assignment_mixin const&) = default;
};
template <class T, bool = std::is_copy_constructible<T>::value>
struct copy_ctor_mixin;
/* Not copy-constructible */
template <class T>
struct copy_ctor_mixin<T, false> {
copy_ctor_mixin() = default;
copy_ctor_mixin(copy_ctor_mixin&&) = default;
copy_ctor_mixin(copy_ctor_mixin const&) = delete;
copy_ctor_mixin& operator=(copy_ctor_mixin&&) = default;
copy_ctor_mixin& operator=(copy_ctor_mixin const&) = delete;
};
/* Copy-constructible */
template <class T>
struct copy_ctor_mixin<T, true> {
copy_ctor_mixin() = default;
inline copy_ctor_mixin(copy_ctor_mixin const& other) noexcept(
std::is_nothrow_constructible<T, T const&>::value) {
::new (reinterpret_cast<Replaceable<T>*>(this)->storage_)
T(*reinterpret_cast<Replaceable<T> const&>(other));
}
copy_ctor_mixin(copy_ctor_mixin&&) = default;
copy_ctor_mixin& operator=(copy_ctor_mixin&&) = default;
copy_ctor_mixin& operator=(copy_ctor_mixin const&) = default;
};
template <
class T,
bool = (std::is_destructible<T>::value) &&
(std::is_copy_constructible<T>::value)>
struct copy_assignment_mixin;
/* Not (destructible and copy-constructible) */
template <class T>
struct copy_assignment_mixin<T, false> {
copy_assignment_mixin() = default;
copy_assignment_mixin(copy_assignment_mixin&&) = default;
copy_assignment_mixin(copy_assignment_mixin const&) = default;
copy_assignment_mixin& operator=(copy_assignment_mixin&&) = default;
copy_assignment_mixin& operator=(copy_assignment_mixin const&) = delete;
};
/* Both destructible and copy-constructible */
template <class T>
struct copy_assignment_mixin<T, true> {
copy_assignment_mixin() = default;
copy_assignment_mixin(copy_assignment_mixin&&) = default;
copy_assignment_mixin(copy_assignment_mixin const&) = default;
copy_assignment_mixin& operator=(copy_assignment_mixin&&) = default;
inline copy_assignment_mixin&
operator=(copy_assignment_mixin const& other) noexcept(
std::is_nothrow_destructible<T>::value&&
std::is_nothrow_copy_constructible<T>::value) {
T* destruct_ptr = launder(reinterpret_cast<T*>(
reinterpret_cast<Replaceable<T>*>(this)->storage_));
destruct_ptr->~T();
::new (reinterpret_cast<Replaceable<T>*>(this)->storage_)
T(*reinterpret_cast<Replaceable<T> const&>(other));
return *this;
}
};
template <typename T>
struct is_constructible_from_replaceable
: bool_constant<
std::is_constructible<T, Replaceable<T>&>::value ||
std::is_constructible<T, Replaceable<T>&&>::value ||
std::is_constructible<T, const Replaceable<T>&>::value ||
std::is_constructible<T, const Replaceable<T>&&>::value> {};
template <typename T>
struct is_convertible_from_replaceable
: bool_constant<
std::is_convertible<Replaceable<T>&, T>::value ||
std::is_convertible<Replaceable<T>&&, T>::value ||
std::is_convertible<const Replaceable<T>&, T>::value ||
std::is_convertible<const Replaceable<T>&&, T>::value> {};
} // namespace replaceable_detail
// Type trait template to statically test whether a type is a specialization of
// Replaceable
template <class T>
struct is_replaceable : std::false_type {};
template <class T>
struct is_replaceable<Replaceable<T>> : std::true_type {};
// Function to make a Replaceable with a type deduced from its input
template <class T>
constexpr Replaceable<std::decay_t<T>> make_replaceable(T&& t) {
return Replaceable<std::decay_t<T>>(std::forward<T>(t));
}
template <class T, class... Args>
constexpr Replaceable<T> make_replaceable(Args&&... args) {
return Replaceable<T>(in_place, std::forward<Args>(args)...);
}
template <class T, class U, class... Args>
constexpr Replaceable<T> make_replaceable(
std::initializer_list<U> il,
Args&&... args) {
return Replaceable<T>(in_place, il, std::forward<Args>(args)...);
}
template <class T>
class alignas(T) Replaceable
: public replaceable_detail::dtor_mixin<T>,
public replaceable_detail::default_and_move_ctor_mixin<T>,
public replaceable_detail::copy_ctor_mixin<T>,
public replaceable_detail::move_assignment_mixin<T>,
public replaceable_detail::copy_assignment_mixin<T> {
using ctor_base = replaceable_detail::default_and_move_ctor_mixin<T>;
public:
using value_type = T;
/* Rule-of-zero default- copy- and move- constructors. The ugly code to make
* these work are above, in namespace folly::replaceable_detail.
*/
constexpr Replaceable() = default;
constexpr Replaceable(const Replaceable&) = default;
constexpr Replaceable(Replaceable&&) = default;
/* Rule-of-zero copy- and move- assignment operators. The ugly code to make
* these work are above, in namespace folly::replaceable_detail.
*
* Note - these destruct the `T` and then in-place construct a new one based
* on what is in the other replaceable; they do not invoke the assignment
* operator of `T`.
*/
Replaceable& operator=(const Replaceable&) = default;
Replaceable& operator=(Replaceable&&) = default;
/* Rule-of-zero destructor. The ugly code to make this work is above, in
* namespace folly::replaceable_detail.
*/
~Replaceable() = default;
/**
* Constructors; these are modeled very closely on the definition of
* `std::optional` in C++17.
*/
template <
class... Args,
std::enable_if_t<std::is_constructible<T, Args&&...>::value, int> = 0>
FOLLY_CPP14_CONSTEXPR explicit Replaceable(in_place_t, Args&&... args)
// clang-format off
noexcept(std::is_nothrow_constructible<T, Args&&...>::value)
// clang-format on
: ctor_base(0) {
::new (storage_) T(std::forward<Args>(args)...);
}
template <
class U,
class... Args,
std::enable_if_t<
std::is_constructible<T, std::initializer_list<U>, Args&&...>::value,
int> = 0>
FOLLY_CPP14_CONSTEXPR explicit Replaceable(
in_place_t,
std::initializer_list<U> il,
Args&&... args)
// clang-format off
noexcept(std::is_nothrow_constructible<
T,
std::initializer_list<U>,
Args&&...>::value)
// clang-format on
: ctor_base(0) {
::new (storage_) T(il, std::forward<Args>(args)...);
}
template <
class U = T,
std::enable_if_t<
std::is_constructible<T, U&&>::value &&
!std::is_same<std::decay_t<U>, in_place_t>::value &&
!std::is_same<Replaceable<T>, std::decay_t<U>>::value &&
std::is_convertible<U&&, T>::value,
int> = 0>
FOLLY_CPP14_CONSTEXPR /* implicit */ Replaceable(U&& other)
// clang-format off
noexcept(std::is_nothrow_constructible<T, U&&>::value)
// clang-format on
: ctor_base(0) {
::new (storage_) T(std::forward<U>(other));
}
template <
class U = T,
std::enable_if_t<
std::is_constructible<T, U&&>::value &&
!std::is_same<std::decay_t<U>, in_place_t>::value &&
!std::is_same<Replaceable<T>, std::decay_t<U>>::value &&
!std::is_convertible<U&&, T>::value,
int> = 0>
FOLLY_CPP14_CONSTEXPR explicit Replaceable(U&& other)
// clang-format off
noexcept(std::is_nothrow_constructible<T, U&&>::value)
// clang-format on
: ctor_base(0) {
::new (storage_) T(std::forward<U>(other));
}
template <
class U,
std::enable_if_t<
std::is_constructible<T, const U&>::value &&
!replaceable_detail::is_constructible_from_replaceable<
T>::value &&
!replaceable_detail::is_convertible_from_replaceable<T>::value &&
std::is_convertible<const U&, T>::value,
int> = 0>
/* implicit */ Replaceable(const Replaceable<U>& other)
// clang-format off
noexcept(std::is_nothrow_constructible<T, U const&>::value)
// clang-format on
: ctor_base(0) {
::new (storage_) T(*other);
}
template <
class U,
std::enable_if_t<
std::is_constructible<T, const U&>::value &&
!replaceable_detail::is_constructible_from_replaceable<
T>::value &&
!replaceable_detail::is_convertible_from_replaceable<T>::value &&
!std::is_convertible<const U&, T>::value,
int> = 0>
explicit Replaceable(const Replaceable<U>& other)
// clang-format off
noexcept(std::is_nothrow_constructible<T, U const&>::value)
// clang-format on
: ctor_base(0) {
::new (storage_) T(*other);
}
template <
class U,
std::enable_if_t<
std::is_constructible<T, U&&>::value &&
!replaceable_detail::is_constructible_from_replaceable<
T>::value &&
!replaceable_detail::is_convertible_from_replaceable<T>::value &&
std::is_convertible<U&&, T>::value,
int> = 0>
/* implicit */ Replaceable(Replaceable<U>&& other)
// clang-format off
noexcept(std::is_nothrow_constructible<T, U&&>::value)
// clang-format on
: ctor_base(0) {
::new (storage_) T(std::move(*other));
}
template <
class U,
std::enable_if_t<
std::is_constructible<T, U&&>::value &&
!replaceable_detail::is_constructible_from_replaceable<
T>::value &&
!replaceable_detail::is_convertible_from_replaceable<T>::value &&
!std::is_convertible<U&&, T>::value,
int> = 0>
explicit Replaceable(Replaceable<U>&& other)
// clang-format off
noexcept(std::is_nothrow_constructible<T, U&&>::value)
// clang-format on
: ctor_base(0) {
::new (storage_) T(std::move(*other));
}
/**
* `emplace` destructs the contained object and in-place constructs the
* replacement.
*
* The destructor must not throw (as usual). The constructor must not throw
* because that would violate the invariant that a `Replaceable<T>` always
* contains a T instance.
*
* As these methods are `noexcept` the program will be terminated if an
* exception is thrown. If you are encountering this issue you should look at
* using `Optional` instead.
*/
template <class... Args>
T& emplace(Args&&... args) noexcept {
T* destruct_ptr = launder(reinterpret_cast<T*>(storage_));
destruct_ptr->~T();
return *::new (storage_) T(std::forward<Args>(args)...);
}
template <class U, class... Args>
T& emplace(std::initializer_list<U> il, Args&&... args) noexcept {
T* destruct_ptr = launder(reinterpret_cast<T*>(storage_));
destruct_ptr->~T();
return *::new (storage_) T(il, std::forward<Args>(args)...);
}
/**
* `swap` just calls `swap(T&, T&)`.
*
* Should be `noexcept(std::is_nothrow_swappable<T>::value)` but we don't
* depend on C++17 features.
*/
void swap(Replaceable& other) {
using std::swap;
swap(*(*this), *other);
}
/**
* Methods to access the contained object. Intended to be very unsurprising.
*/
constexpr const T* operator->() const {
return launder(reinterpret_cast<T const*>(storage_));
}
FOLLY_CPP14_CONSTEXPR T* operator->() {
return launder(reinterpret_cast<T*>(storage_));
}
constexpr const T& operator*() const& {
return *launder(reinterpret_cast<T const*>(storage_));
}
FOLLY_CPP14_CONSTEXPR T& operator*() & {
return *launder(reinterpret_cast<T*>(storage_));
}
FOLLY_CPP14_CONSTEXPR T&& operator*() && {
return std::move(*launder(reinterpret_cast<T*>(storage_)));
}
constexpr const T&& operator*() const&& {
return std::move(*launder(reinterpret_cast<T const*>(storage_)));
}
private:
friend struct replaceable_detail::dtor_mixin<T>;
friend struct replaceable_detail::default_and_move_ctor_mixin<T>;
friend struct replaceable_detail::copy_ctor_mixin<T>;
friend struct replaceable_detail::move_assignment_mixin<T>;
friend struct replaceable_detail::copy_assignment_mixin<T>;
std::aligned_storage_t<sizeof(T), alignof(T)> storage_[1];
};
#if __cplusplus > 201402L
// C++17 allows us to define a deduction guide:
template <class T>
Replaceable(T)->Replaceable<T>;
#endif
} // namespace folly