/* * Copyright 2016 Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include namespace folly { namespace detail { /** * Representation of a polynomial of degree DEG over GF(2) (that is, * with binary coefficients). * * Probably of no use outside of Fingerprint code; used by * GenerateFingerprintTables and the unittest. */ template class FingerprintPolynomial { public: FingerprintPolynomial() { for (int i = 0; i < size(); i++) { val_[i] = 0; } } explicit FingerprintPolynomial(const uint64_t* vals) { for (int i = 0; i < size(); i++) { val_[i] = vals[i]; } } void write(uint64_t* out) const { for (int i = 0; i < size(); i++) { out[i] = val_[i]; } } void add(const FingerprintPolynomial& other) { for (int i = 0; i < size(); i++) { val_[i] ^= other.val_[i]; } } // Multiply by X. The actual degree must be < DEG. void mulX() { CHECK_EQ(0, val_[0] & (1ULL<<63)); uint64_t b = 0; for (int i = size()-1; i >= 0; i--) { uint64_t nb = val_[i] >> 63; val_[i] = (val_[i] << 1) | b; b = nb; } } // Compute (this * X) mod P(X), where P(X) is a monic polynomial of degree // DEG+1 (represented as a FingerprintPolynomial object, with the // implicit coefficient of X^(DEG+1)==1) // // This is a bit tricky. If k=DEG+1: // Let P(X) = X^k + p_(k-1) * X^(k-1) + ... + p_1 * X + p_0 // Let this = A(X) = a_(k-1) * X^(k-1) + ... + a_1 * X + a_0 // Then: // A(X) * X // = a_(k-1) * X^k + (a_(k-2) * X^(k-1) + ... + a_1 * X^2 + a_0 * X) // = a_(k-1) * X^k + (the binary representation of A, left shift by 1) // // if a_(k-1) = 0, we can ignore the first term. // if a_(k-1) = 1, then: // X^k mod P(X) // = X^k - P(X) // = P(X) - X^k // = p_(k-1) * X^(k-1) + ... + p_1 * X + p_0 // = exactly the binary representation passed in as an argument to this // function! // // So A(X) * X mod P(X) is: // the binary representation of A, left shift by 1, // XOR p if a_(k-1) == 1 void mulXmod(const FingerprintPolynomial& p) { bool needXOR = (val_[0] & (1ULL<<63)); val_[0] &= ~(1ULL<<63); mulX(); if (needXOR) { add(p); } } // Compute (this * X^k) mod P(X) by repeatedly multiplying by X (see above) void mulXkmod(int k, const FingerprintPolynomial& p) { for (int i = 0; i < k; i++) { mulXmod(p); } } // add X^k, where k <= DEG void addXk(int k) { DCHECK_GE(k, 0); DCHECK_LE(k, DEG); int word_offset = (DEG - k) / 64; int bit_offset = 63 - (DEG - k) % 64; val_[word_offset] ^= (1ULL << bit_offset); } // Set the highest 8 bits to val. // If val is interpreted as polynomial of degree 7, then this sets *this // to val * X^(DEG-7) void setHigh8Bits(uint8_t val) { val_[0] = ((uint64_t)val) << (64-8); for (int i = 1; i < size(); i++) { val_[i] = 0; } } static int size() { return 1 + DEG/64; } private: // Internal representation: big endian // val_[0] contains the highest order coefficients, with bit 63 as the // highest order coefficient // // If DEG+1 is not a multiple of 64, val_[size()-1] only uses the highest // order (DEG+1)%64 bits (the others are always 0) uint64_t val_[1 + DEG/64]; }; } // namespace detail } // namespace folly