/* * Copyright 2016 Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include #include #include #include #include ////////////////////////////////////////////////////////////////////// namespace std { template<> struct hash< ::folly::dynamic> { size_t operator()(::folly::dynamic const& d) const { return d.hash(); } }; } ////////////////////////////////////////////////////////////////////// // This is a higher-order preprocessor macro to aid going from runtime // types to the compile time type system. #define FB_DYNAMIC_APPLY(type, apply) \ do { \ switch ((type)) { \ case NULLT: \ apply(void*); \ break; \ case ARRAY: \ apply(Array); \ break; \ case BOOL: \ apply(bool); \ break; \ case DOUBLE: \ apply(double); \ break; \ case INT64: \ apply(int64_t); \ break; \ case OBJECT: \ apply(ObjectImpl); \ break; \ case STRING: \ apply(std::string); \ break; \ default: \ CHECK(0); \ abort(); \ } \ } while (0) ////////////////////////////////////////////////////////////////////// namespace folly { struct TypeError : std::runtime_error { explicit TypeError(const std::string& expected, dynamic::Type actual); explicit TypeError(const std::string& expected, dynamic::Type actual1, dynamic::Type actual2); ~TypeError(); }; ////////////////////////////////////////////////////////////////////// namespace detail { // This helper is used in destroy() to be able to run destructors on // types like "int64_t" without a compiler error. struct Destroy { template static void destroy(T* t) { t->~T(); } }; /* * Helper for implementing numeric conversions in operators on * numbers. Just promotes to double when one of the arguments is * double, or throws if either is not a numeric type. */ template class Op> dynamic numericOp(dynamic const& a, dynamic const& b) { if (!a.isNumber() || !b.isNumber()) { throw TypeError("numeric", a.type(), b.type()); } if (a.type() != b.type()) { auto& integ = a.isInt() ? a : b; auto& nonint = a.isInt() ? b : a; return Op()(to(integ.asInt()), nonint.asDouble()); } if (a.isDouble()) { return Op()(a.asDouble(), b.asDouble()); } return Op()(a.asInt(), b.asInt()); } } ////////////////////////////////////////////////////////////////////// /* * We're doing this instead of a simple member typedef to avoid the * undefined behavior of parameterizing std::unordered_map<> with an * incomplete type. * * Note: Later we may add separate order tracking here (a multi-index * type of thing.) */ struct dynamic::ObjectImpl : std::unordered_map {}; ////////////////////////////////////////////////////////////////////// // Helper object for creating objects conveniently. See object and // the dynamic::dynamic(ObjectMaker&&) ctor. struct dynamic::ObjectMaker { friend struct dynamic; explicit ObjectMaker() : val_(dynamic::object) {} explicit ObjectMaker(dynamic key, dynamic val) : val_(dynamic::object) { val_.insert(std::move(key), std::move(val)); } // Make sure no one tries to save one of these into an lvalue with // auto or anything like that. ObjectMaker(ObjectMaker&&) = default; ObjectMaker(ObjectMaker const&) = delete; ObjectMaker& operator=(ObjectMaker const&) = delete; ObjectMaker& operator=(ObjectMaker&&) = delete; // This returns an rvalue-reference instead of an lvalue-reference // to allow constructs like this to moved instead of copied: // dynamic a = dynamic::object("a", "b")("c", "d") ObjectMaker&& operator()(dynamic key, dynamic val) { val_.insert(std::move(key), std::move(val)); return std::move(*this); } private: dynamic val_; }; inline void dynamic::array(EmptyArrayTag) {} template inline dynamic dynamic::array(Args&& ...args) { return dynamic(Array{std::forward(args)...}); } inline dynamic::ObjectMaker dynamic::object() { return ObjectMaker(); } inline dynamic::ObjectMaker dynamic::object(dynamic a, dynamic b) { return ObjectMaker(std::move(a), std::move(b)); } ////////////////////////////////////////////////////////////////////// struct dynamic::const_item_iterator : boost::iterator_adaptor { /* implicit */ const_item_iterator(base_type b) : iterator_adaptor_(b) { } private: friend class boost::iterator_core_access; }; struct dynamic::const_key_iterator : boost::iterator_adaptor { /* implicit */ const_key_iterator(base_type b) : iterator_adaptor_(b) { } private: dynamic const& dereference() const { return base_reference()->first; } friend class boost::iterator_core_access; }; struct dynamic::const_value_iterator : boost::iterator_adaptor { /* implicit */ const_value_iterator(base_type b) : iterator_adaptor_(b) { } private: dynamic const& dereference() const { return base_reference()->second; } friend class boost::iterator_core_access; }; ////////////////////////////////////////////////////////////////////// inline dynamic::dynamic() : dynamic(nullptr) {} inline dynamic::dynamic(std::nullptr_t) : type_(NULLT) {} inline dynamic::dynamic(void (*)(EmptyArrayTag)) : type_(ARRAY) { new (&u_.array) Array(); } inline dynamic::dynamic(ObjectMaker (*)()) : type_(OBJECT) { new (getAddress()) ObjectImpl(); } inline dynamic::dynamic(StringPiece s) : type_(STRING) { new (&u_.string) std::string(s.data(), s.size()); } inline dynamic::dynamic(char const* s) : type_(STRING) { new (&u_.string) std::string(s); } inline dynamic::dynamic(std::string s) : type_(STRING) { new (&u_.string) std::string(std::move(s)); } inline dynamic::dynamic(ObjectMaker&& maker) : type_(OBJECT) { new (getAddress()) ObjectImpl(std::move(*maker.val_.getAddress())); } inline dynamic::dynamic(dynamic const& o) : type_(NULLT) { *this = o; } inline dynamic::dynamic(dynamic&& o) noexcept : type_(NULLT) { *this = std::move(o); } inline dynamic::~dynamic() noexcept { destroy(); } // Integral types except bool convert to int64_t, float types to double. template struct dynamic::NumericTypeHelper< T, typename std::enable_if::value>::type> { using type = int64_t; }; template <> struct dynamic::NumericTypeHelper { using type = bool; }; template <> struct dynamic::NumericTypeHelper { using type = double; }; template <> struct dynamic::NumericTypeHelper { using type = double; }; template::type */> dynamic::dynamic(T t) { type_ = TypeInfo::type; new (getAddress()) NumericType(t); } template dynamic::dynamic(Iterator first, Iterator last) : type_(ARRAY) { new (&u_.array) Array(first, last); } ////////////////////////////////////////////////////////////////////// inline dynamic::const_iterator dynamic::begin() const { return get().begin(); } inline dynamic::const_iterator dynamic::end() const { return get().end(); } template struct dynamic::IterableProxy { typedef It const_iterator; typedef typename It::value_type value_type; /* implicit */ IterableProxy(const dynamic::ObjectImpl* o) : o_(o) { } It begin() const { return o_->begin(); } It end() const { return o_->end(); } private: const dynamic::ObjectImpl* o_; }; inline dynamic::IterableProxy dynamic::keys() const { return &(get()); } inline dynamic::IterableProxy dynamic::values() const { return &(get()); } inline dynamic::IterableProxy dynamic::items() const { return &(get()); } inline bool dynamic::isString() const { return get_nothrow(); } inline bool dynamic::isObject() const { return get_nothrow(); } inline bool dynamic::isBool() const { return get_nothrow(); } inline bool dynamic::isArray() const { return get_nothrow(); } inline bool dynamic::isDouble() const { return get_nothrow(); } inline bool dynamic::isInt() const { return get_nothrow(); } inline bool dynamic::isNull() const { return get_nothrow(); } inline bool dynamic::isNumber() const { return isInt() || isDouble(); } inline dynamic::Type dynamic::type() const { return type_; } inline std::string dynamic::asString() const { return asImpl(); } inline double dynamic::asDouble() const { return asImpl(); } inline int64_t dynamic::asInt() const { return asImpl(); } inline bool dynamic::asBool() const { return asImpl(); } inline const std::string& dynamic::getString() const& { return get(); } inline double dynamic::getDouble() const& { return get(); } inline int64_t dynamic::getInt() const& { return get(); } inline bool dynamic::getBool() const& { return get(); } inline std::string& dynamic::getString()& { return get(); } inline double& dynamic::getDouble() & { return get(); } inline int64_t& dynamic::getInt() & { return get(); } inline bool& dynamic::getBool() & { return get(); } inline std::string&& dynamic::getString()&& { return std::move(get()); } inline double dynamic::getDouble() && { return get(); } inline int64_t dynamic::getInt() && { return get(); } inline bool dynamic::getBool() && { return get(); } inline const char* dynamic::data() const& { return get().data(); } inline const char* dynamic::c_str() const& { return get().c_str(); } inline StringPiece dynamic::stringPiece() const { return get(); } template struct dynamic::CompareOp { static bool comp(T const& a, T const& b) { return a < b; } }; template<> struct dynamic::CompareOp { static bool comp(ObjectImpl const&, ObjectImpl const&) { // This code never executes; it is just here for the compiler. return false; } }; inline dynamic& dynamic::operator+=(dynamic const& o) { if (type() == STRING && o.type() == STRING) { *getAddress() += *o.getAddress(); return *this; } *this = detail::numericOp(*this, o); return *this; } inline dynamic& dynamic::operator-=(dynamic const& o) { *this = detail::numericOp(*this, o); return *this; } inline dynamic& dynamic::operator*=(dynamic const& o) { *this = detail::numericOp(*this, o); return *this; } inline dynamic& dynamic::operator/=(dynamic const& o) { *this = detail::numericOp(*this, o); return *this; } #define FB_DYNAMIC_INTEGER_OP(op) \ inline dynamic& dynamic::operator op(dynamic const& o) { \ if (!isInt() || !o.isInt()) { \ throw TypeError("int64", type(), o.type()); \ } \ *getAddress() op o.asInt(); \ return *this; \ } FB_DYNAMIC_INTEGER_OP(%=) FB_DYNAMIC_INTEGER_OP(|=) FB_DYNAMIC_INTEGER_OP(&=) FB_DYNAMIC_INTEGER_OP(^=) #undef FB_DYNAMIC_INTEGER_OP inline dynamic& dynamic::operator++() { ++get(); return *this; } inline dynamic& dynamic::operator--() { --get(); return *this; } inline dynamic const& dynamic::operator[](dynamic const& idx) const& { return at(idx); } inline dynamic&& dynamic::operator[](dynamic const& idx) && { return std::move((*this)[idx]); } template inline dynamic& dynamic::setDefault(K&& k, V&& v) { auto& obj = get(); return obj.insert(std::make_pair(std::forward(k), std::forward(v))).first->second; } template inline dynamic& dynamic::setDefault(K&& k, dynamic&& v) { auto& obj = get(); return obj.insert(std::make_pair(std::forward(k), std::move(v))).first->second; } template inline dynamic& dynamic::setDefault(K&& k, const dynamic& v) { auto& obj = get(); return obj.insert(std::make_pair(std::forward(k), v)).first->second; } inline dynamic* dynamic::get_ptr(dynamic const& idx) & { return const_cast(const_cast(this)->get_ptr(idx)); } inline dynamic& dynamic::at(dynamic const& idx) & { return const_cast(const_cast(this)->at(idx)); } inline dynamic&& dynamic::at(dynamic const& idx) && { return std::move(at(idx)); } inline bool dynamic::empty() const { if (isNull()) { return true; } return !size(); } inline std::size_t dynamic::count(dynamic const& key) const { return find(key) != items().end(); } inline dynamic::const_item_iterator dynamic::find(dynamic const& key) const { return get().find(key); } template inline void dynamic::insert(K&& key, V&& val) { auto& obj = get(); auto rv = obj.insert({ std::forward(key), nullptr }); rv.first->second = std::forward(val); } inline void dynamic::update(const dynamic& mergeObj) { if (!isObject() || !mergeObj.isObject()) { throw TypeError("object", type(), mergeObj.type()); } for (const auto& pair : mergeObj.items()) { (*this)[pair.first] = pair.second; } } inline void dynamic::update_missing(const dynamic& mergeObj1) { if (!isObject() || !mergeObj1.isObject()) { throw TypeError("object", type(), mergeObj1.type()); } // Only add if not already there for (const auto& pair : mergeObj1.items()) { if ((*this).find(pair.first) == (*this).items().end()) { (*this)[pair.first] = pair.second; } } } inline dynamic dynamic::merge( const dynamic& mergeObj1, const dynamic& mergeObj2) { // No checks on type needed here because they are done in update_missing // Note that we do update_missing here instead of update() because // it will prevent the extra writes that would occur with update() auto ret = mergeObj2; ret.update_missing(mergeObj1); return ret; } inline std::size_t dynamic::erase(dynamic const& key) { auto& obj = get(); return obj.erase(key); } inline dynamic::const_iterator dynamic::erase(const_iterator it) { auto& arr = get(); // std::vector doesn't have an erase method that works on const iterators, // even though the standard says it should, so this hack converts to a // non-const iterator before calling erase. return get().erase(arr.begin() + (it - arr.begin())); } inline dynamic::const_key_iterator dynamic::erase(const_key_iterator it) { return const_key_iterator(get().erase(it.base())); } inline dynamic::const_key_iterator dynamic::erase(const_key_iterator first, const_key_iterator last) { return const_key_iterator(get().erase(first.base(), last.base())); } inline dynamic::const_value_iterator dynamic::erase(const_value_iterator it) { return const_value_iterator(get().erase(it.base())); } inline dynamic::const_value_iterator dynamic::erase(const_value_iterator first, const_value_iterator last) { return const_value_iterator(get().erase(first.base(), last.base())); } inline dynamic::const_item_iterator dynamic::erase(const_item_iterator it) { return const_item_iterator(get().erase(it.base())); } inline dynamic::const_item_iterator dynamic::erase(const_item_iterator first, const_item_iterator last) { return const_item_iterator(get().erase(first.base(), last.base())); } inline void dynamic::resize(std::size_t sz, dynamic const& c) { auto& arr = get(); arr.resize(sz, c); } inline void dynamic::push_back(dynamic const& v) { auto& arr = get(); arr.push_back(v); } inline void dynamic::push_back(dynamic&& v) { auto& arr = get(); arr.push_back(std::move(v)); } inline void dynamic::pop_back() { auto& arr = get(); arr.pop_back(); } ////////////////////////////////////////////////////////////////////// inline dynamic::dynamic(Array&& r) : type_(ARRAY) { new (&u_.array) Array(std::move(r)); } #define FOLLY_DYNAMIC_DEC_TYPEINFO(T, str, val) \ template <> struct dynamic::TypeInfo { \ static constexpr const char* name = str; \ static constexpr dynamic::Type type = val; \ }; \ // FOLLY_DYNAMIC_DEC_TYPEINFO(void*, "null", dynamic::NULLT) FOLLY_DYNAMIC_DEC_TYPEINFO(bool, "boolean", dynamic::BOOL) FOLLY_DYNAMIC_DEC_TYPEINFO(std::string, "string", dynamic::STRING) FOLLY_DYNAMIC_DEC_TYPEINFO(dynamic::Array, "array", dynamic::ARRAY) FOLLY_DYNAMIC_DEC_TYPEINFO(double, "double", dynamic::DOUBLE) FOLLY_DYNAMIC_DEC_TYPEINFO(int64_t, "int64", dynamic::INT64) FOLLY_DYNAMIC_DEC_TYPEINFO(dynamic::ObjectImpl, "object", dynamic::OBJECT) #undef FOLLY_DYNAMIC_DEC_TYPEINFO template T dynamic::asImpl() const { switch (type()) { case INT64: return to(*get_nothrow()); case DOUBLE: return to(*get_nothrow()); case BOOL: return to(*get_nothrow()); case STRING: return to(*get_nothrow()); default: throw TypeError("int/double/bool/string", type()); } } // Return a T* to our type, or null if we're not that type. template T* dynamic::get_nothrow() & noexcept { if (type_ != TypeInfo::type) { return nullptr; } return getAddress(); } template T const* dynamic::get_nothrow() const& noexcept { return const_cast(this)->get_nothrow(); } // Return T* for where we can put a T, without type checking. (Memory // might be uninitialized, even.) template T* dynamic::getAddress() noexcept { return GetAddrImpl::get(u_); } template T const* dynamic::getAddress() const noexcept { return const_cast(this)->getAddress(); } template struct dynamic::GetAddrImpl {}; template<> struct dynamic::GetAddrImpl { static void** get(Data& d) noexcept { return &d.nul; } }; template<> struct dynamic::GetAddrImpl { static Array* get(Data& d) noexcept { return &d.array; } }; template<> struct dynamic::GetAddrImpl { static bool* get(Data& d) noexcept { return &d.boolean; } }; template<> struct dynamic::GetAddrImpl { static int64_t* get(Data& d) noexcept { return &d.integer; } }; template<> struct dynamic::GetAddrImpl { static double* get(Data& d) noexcept { return &d.doubl; } }; template <> struct dynamic::GetAddrImpl { static std::string* get(Data& d) noexcept { return &d.string; } }; template<> struct dynamic::GetAddrImpl { static_assert(sizeof(ObjectImpl) <= sizeof(Data::objectBuffer), "In your implementation, std::unordered_map<> apparently takes different" " amount of space depending on its template parameters. This is " "weird. Make objectBuffer bigger if you want to compile dynamic."); static ObjectImpl* get(Data& d) noexcept { void* data = &d.objectBuffer; return static_cast(data); } }; template T& dynamic::get() { if (auto* p = get_nothrow()) { return *p; } throw TypeError(TypeInfo::name, type()); } template T const& dynamic::get() const { return const_cast(this)->get(); } ////////////////////////////////////////////////////////////////////// /* * Helper for implementing operator<<. Throws if the type shouldn't * support it. */ template struct dynamic::PrintImpl { static void print(dynamic const&, std::ostream& out, T const& t) { out << t; } }; // Otherwise, null, being (void*)0, would print as 0. template <> struct dynamic::PrintImpl { static void print(dynamic const& /* d */, std::ostream& out, void* const& nul) { DCHECK_EQ((void*)0, nul); out << "null"; } }; template<> struct dynamic::PrintImpl { static void print(dynamic const& d, std::ostream& out, dynamic::ObjectImpl const&) { d.print_as_pseudo_json(out); } }; template<> struct dynamic::PrintImpl { static void print(dynamic const& d, std::ostream& out, dynamic::Array const&) { d.print_as_pseudo_json(out); } }; inline void dynamic::print(std::ostream& out) const { #define FB_X(T) PrintImpl::print(*this, out, *getAddress()) FB_DYNAMIC_APPLY(type_, FB_X); #undef FB_X } inline std::ostream& operator<<(std::ostream& out, dynamic const& d) { d.print(out); return out; } ////////////////////////////////////////////////////////////////////// // Secialization of FormatValue so dynamic objects can be formatted template <> class FormatValue { public: explicit FormatValue(const dynamic& val) : val_(val) { } template void format(FormatArg& arg, FormatCallback& cb) const { switch (val_.type()) { case dynamic::NULLT: FormatValue(nullptr).format(arg, cb); break; case dynamic::BOOL: FormatValue(val_.asBool()).format(arg, cb); break; case dynamic::INT64: FormatValue(val_.asInt()).format(arg, cb); break; case dynamic::STRING: FormatValue(val_.asString()).format(arg, cb); break; case dynamic::DOUBLE: FormatValue(val_.asDouble()).format(arg, cb); break; case dynamic::ARRAY: FormatValue(val_.at(arg.splitIntKey())).format(arg, cb); break; case dynamic::OBJECT: FormatValue(val_.at(arg.splitKey().toString())).format(arg, cb); break; } } private: const dynamic& val_; }; template class FormatValue> { public: explicit FormatValue( const detail::DefaultValueWrapper& val) : val_(val) { } template void format(FormatArg& arg, FormatCallback& cb) const { auto& c = val_.container; switch (c.type()) { case dynamic::NULLT: case dynamic::BOOL: case dynamic::INT64: case dynamic::STRING: case dynamic::DOUBLE: FormatValue(c).format(arg, cb); break; case dynamic::ARRAY: { int key = arg.splitIntKey(); if (key >= 0 && size_t(key) < c.size()) { FormatValue(c.at(key)).format(arg, cb); } else{ FormatValue(val_.defaultValue).format(arg, cb); } } break; case dynamic::OBJECT: { auto pos = c.find(arg.splitKey()); if (pos != c.items().end()) { FormatValue(pos->second).format(arg, cb); } else { FormatValue(val_.defaultValue).format(arg, cb); } } break; } } private: const detail::DefaultValueWrapper& val_; }; } // namespaces #undef FB_DYNAMIC_APPLY