/* * Copyright 2016 Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * Compute 64-, 96-, and 128-bit Rabin fingerprints, as described in * Michael O. Rabin (1981) * Fingerprinting by Random Polynomials * Center for Research in Computing Technology, Harvard University * Tech Report TR-CSE-03-01 * * The implementation follows the optimization described in * Andrei Z. Broder (1993) * Some applications of Rabin's fingerprinting method * * extended for fingerprints larger than 64 bits, and modified to use * 64-bit instead of 32-bit integers for computation. * * The precomputed tables are in FingerprintTable.cpp, which is automatically * generated by ComputeFingerprintTable.cpp. * * Benchmarked on 10/13/2009 on a 2.5GHz quad-core Xeon L5420, * - Fingerprint<64>::update64() takes about 12ns * - Fingerprint<96>::update64() takes about 30ns * - Fingerprint<128>::update128() takes about 30ns * (unsurprisingly, Fingerprint<96> and Fingerprint<128> take the * same amount of time, as they both use 128-bit operations; the least * significant 32 bits of Fingerprint<96> will always be 0) * * @author Tudor Bosman (tudorb@facebook.com) */ #pragma once #include #include namespace folly { namespace detail { template struct FingerprintTable { static const uint64_t poly[1 + (BITS - 1) / 64]; static const uint64_t table[8][256][1 + (BITS - 1) / 64]; }; template const uint64_t FingerprintTable::poly[1 + (BITS - 1) / 64] = {}; template const uint64_t FingerprintTable::table[8][256][1 + (BITS - 1) / 64] = {}; #define FOLLY_DECLARE_FINGERPRINT_TABLES(BITS) \ template <> \ const uint64_t FingerprintTable::poly[1 + (BITS - 1) / 64]; \ template <> \ const uint64_t FingerprintTable::table[8][256][1 + (BITS - 1) / 64] FOLLY_DECLARE_FINGERPRINT_TABLES(64); FOLLY_DECLARE_FINGERPRINT_TABLES(96); FOLLY_DECLARE_FINGERPRINT_TABLES(128); #undef FOLLY_DECLARE_FINGERPRINT_TABLES } // namespace detail /** * Compute the Rabin fingerprint. * * TODO(tudorb): Extend this to allow removing values from the computed * fingerprint (so we can fingerprint a sliding window, as in the Rabin-Karp * string matching algorithm) * * update* methods return *this, so you can chain them together: * Fingerprint<96>().update8(x).update(str).update64(val).write(output); */ template class Fingerprint { public: Fingerprint() { // Use a non-zero starting value. We'll use (1 << (BITS-1)) fp_[0] = 1ULL << 63; for (int i = 1; i < size(); i++) fp_[i] = 0; } Fingerprint& update8(uint8_t v) { uint8_t out = shlor8(v); xortab(detail::FingerprintTable::table[0][out]); return *this; } // update32 and update64 are convenience functions to update the fingerprint // with 4 and 8 bytes at a time. They are faster than calling update8 // in a loop. They process the bytes in big-endian order. Fingerprint& update32(uint32_t v) { uint32_t out = shlor32(v); for (int i = 0; i < 4; i++) { xortab(detail::FingerprintTable::table[i][out&0xff]); out >>= 8; } return *this; } Fingerprint& update64(uint64_t v) { uint64_t out = shlor64(v); for (int i = 0; i < 8; i++) { xortab(detail::FingerprintTable::table[i][out&0xff]); out >>= 8; } return *this; } Fingerprint& update(StringPiece str) { // TODO(tudorb): We could be smart and do update64 or update32 if aligned for (auto c : str) { update8(uint8_t(c)); } return *this; } /** * Return the number of uint64s needed to hold the fingerprint value. */ static int size() { return 1 + (BITS-1)/64; } /** * Write the computed fingeprint to an array of size() uint64_t's. * For Fingerprint<64>, size()==1; we write 64 bits in out[0] * For Fingerprint<96>, size()==2; we write 64 bits in out[0] and * the most significant 32 bits of out[1] * For Fingerprint<128>, size()==2; we write 64 bits in out[0] and * 64 bits in out[1]. */ void write(uint64_t* out) const { for (int i = 0; i < size(); i++) { out[i] = fp_[i]; } } private: // XOR the fingerprint with a value from one of the tables. void xortab(const uint64_t* tab) { for (int i = 0; i < size(); i++) { fp_[i] ^= tab[i]; } } // Helper functions: shift the fingerprint value left by 8/32/64 bits, // return the "out" value (the bits that were shifted out), and add "v" // in the bits on the right. uint8_t shlor8(uint8_t v); uint32_t shlor32(uint32_t v); uint64_t shlor64(uint64_t v); uint64_t fp_[1 + (BITS-1)/64]; }; // Convenience functions /** * Return the 64-bit Rabin fingerprint of a string. */ inline uint64_t fingerprint64(StringPiece str) { uint64_t fp; Fingerprint<64>().update(str).write(&fp); return fp; } /** * Compute the 96-bit Rabin fingerprint of a string. * Return the 64 most significant bits in *msb, and the 32 least significant * bits in *lsb. */ inline void fingerprint96(StringPiece str, uint64_t* msb, uint32_t* lsb) { uint64_t fp[2]; Fingerprint<96>().update(str).write(fp); *msb = fp[0]; *lsb = (uint32_t)(fp[1] >> 32); } /** * Compute the 128-bit Rabin fingerprint of a string. * Return the 64 most significant bits in *msb, and the 64 least significant * bits in *lsb. */ inline void fingerprint128(StringPiece str, uint64_t* msb, uint64_t* lsb) { uint64_t fp[2]; Fingerprint<128>().update(str).write(fp); *msb = fp[0]; *lsb = fp[1]; } template <> inline uint8_t Fingerprint<64>::shlor8(uint8_t v) { uint8_t out = (uint8_t)(fp_[0] >> 56); fp_[0] = (fp_[0] << 8) | ((uint64_t)v); return out; } template <> inline uint32_t Fingerprint<64>::shlor32(uint32_t v) { uint32_t out = (uint32_t)(fp_[0] >> 32); fp_[0] = (fp_[0] << 32) | ((uint64_t)v); return out; } template <> inline uint64_t Fingerprint<64>::shlor64(uint64_t v) { uint64_t out = fp_[0]; fp_[0] = v; return out; } template <> inline uint8_t Fingerprint<96>::shlor8(uint8_t v) { uint8_t out = (uint8_t)(fp_[0] >> 56); fp_[0] = (fp_[0] << 8) | (fp_[1] >> 56); fp_[1] = (fp_[1] << 8) | ((uint64_t)v << 32); return out; } template <> inline uint32_t Fingerprint<96>::shlor32(uint32_t v) { uint32_t out = (uint32_t)(fp_[0] >> 32); fp_[0] = (fp_[0] << 32) | (fp_[1] >> 32); fp_[1] = ((uint64_t)v << 32); return out; } template <> inline uint64_t Fingerprint<96>::shlor64(uint64_t v) { uint64_t out = fp_[0]; fp_[0] = fp_[1] | (v >> 32); fp_[1] = v << 32; return out; } template <> inline uint8_t Fingerprint<128>::shlor8(uint8_t v) { uint8_t out = (uint8_t)(fp_[0] >> 56); fp_[0] = (fp_[0] << 8) | (fp_[1] >> 56); fp_[1] = (fp_[1] << 8) | ((uint64_t)v); return out; } template <> inline uint32_t Fingerprint<128>::shlor32(uint32_t v) { uint32_t out = (uint32_t)(fp_[0] >> 32); fp_[0] = (fp_[0] << 32) | (fp_[1] >> 32); fp_[1] = (fp_[1] << 32) | ((uint64_t)v); return out; } template <> inline uint64_t Fingerprint<128>::shlor64(uint64_t v) { uint64_t out = fp_[0]; fp_[0] = fp_[1]; fp_[1] = v; return out; } } // namespace folly