/* * Copyright 2016 Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // @author: Andrei Alexandrescu #pragma once #include #include #include #include #include // libc++ doesn't provide this header, nor does msvc #ifdef FOLLY_HAVE_BITS_CXXCONFIG_H // This file appears in two locations: inside fbcode and in the // libstdc++ source code (when embedding fbstring as std::string). // To aid in this schizophrenic use, two macros are defined in // c++config.h: // _LIBSTDCXX_FBSTRING - Set inside libstdc++. This is useful to // gate use inside fbcode v. libstdc++ #include #endif #include #include namespace folly { /** * IsRelocatable::value describes the ability of moving around * memory a value of type T by using memcpy (as opposed to the * conservative approach of calling the copy constructor and then * destroying the old temporary. Essentially for a relocatable type, * the following two sequences of code should be semantically * equivalent: * * void move1(T * from, T * to) { * new(to) T(from); * (*from).~T(); * } * * void move2(T * from, T * to) { * memcpy(to, from, sizeof(T)); * } * * Most C++ types are relocatable; the ones that aren't would include * internal pointers or (very rarely) would need to update remote * pointers to pointers tracking them. All C++ primitive types and * type constructors are relocatable. * * This property can be used in a variety of optimizations. Currently * fbvector uses this property intensively. * * The default conservatively assumes the type is not * relocatable. Several specializations are defined for known * types. You may want to add your own specializations. Do so in * namespace folly and make sure you keep the specialization of * IsRelocatable in the same header as SomeStruct. * * You may also declare a type to be relocatable by including * `typedef std::true_type IsRelocatable;` * in the class header. * * It may be unset in a base class by overriding the typedef to false_type. */ /* * IsTriviallyCopyable describes the value semantics property. C++11 contains * the type trait is_trivially_copyable; however, it is not yet implemented * in gcc (as of 4.7.1), and the user may wish to specify otherwise. */ /* * IsZeroInitializable describes the property that default construction is the * same as memset(dst, 0, sizeof(T)). */ namespace traits_detail { #define FOLLY_HAS_TRUE_XXX(name) \ BOOST_MPL_HAS_XXX_TRAIT_DEF(name) \ template \ struct name##_is_true : std::is_same {}; \ template \ struct has_true_##name : std::conditional< \ has_##name::value, \ name##_is_true, \ std::false_type>::type {}; FOLLY_HAS_TRUE_XXX(IsRelocatable) FOLLY_HAS_TRUE_XXX(IsZeroInitializable) FOLLY_HAS_TRUE_XXX(IsTriviallyCopyable) #undef FOLLY_HAS_TRUE_XXX // Older versions of libstdc++ do not provide std::is_trivially_copyable #if defined(__clang__) && !defined(_LIBCPP_VERSION) template struct is_trivially_copyable : std::integral_constant {}; #elif defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5 template struct is_trivially_copyable : std::is_trivial {}; #else template using is_trivially_copyable = std::is_trivially_copyable; #endif } struct Ignore { template /* implicit */ Ignore(const T&) {} template const Ignore& operator=(T const&) const { return *this; } }; template using Ignored = Ignore; namespace traits_detail_IsEqualityComparable { Ignore operator==(Ignore, Ignore); template struct IsEqualityComparable : std::is_convertible< decltype(std::declval() == std::declval()), bool > {}; } /* using override */ using traits_detail_IsEqualityComparable:: IsEqualityComparable; namespace traits_detail_IsLessThanComparable { Ignore operator<(Ignore, Ignore); template struct IsLessThanComparable : std::is_convertible< decltype(std::declval() < std::declval()), bool > {}; } /* using override */ using traits_detail_IsLessThanComparable:: IsLessThanComparable; namespace traits_detail_IsNothrowSwappable { #if defined(_MSC_VER) || defined(__cpp_lib_is_swappable) // MSVC already implements the C++17 P0185R1 proposal which // adds std::is_nothrow_swappable, so use it instead. template using IsNothrowSwappable = std::is_nothrow_swappable; #else /* using override */ using std::swap; template struct IsNothrowSwappable : std::integral_constant::value && noexcept(swap(std::declval(), std::declval())) > {}; #endif } /* using override */ using traits_detail_IsNothrowSwappable::IsNothrowSwappable; template struct IsTriviallyCopyable : std::conditional< traits_detail::has_IsTriviallyCopyable::value, traits_detail::has_true_IsTriviallyCopyable, traits_detail::is_trivially_copyable >::type {}; template struct IsRelocatable : std::conditional< traits_detail::has_IsRelocatable::value, traits_detail::has_true_IsRelocatable, // TODO add this line (and some tests for it) when we upgrade to gcc 4.7 //std::is_trivially_move_constructible::value || IsTriviallyCopyable >::type {}; template struct IsZeroInitializable : std::conditional< traits_detail::has_IsZeroInitializable::value, traits_detail::has_true_IsZeroInitializable, std::integral_constant::value> >::type {}; template struct Conjunction : std::true_type {}; template struct Conjunction : T {}; template struct Conjunction : std::conditional, T>::type {}; template struct Disjunction : std::false_type {}; template struct Disjunction : T {}; template struct Disjunction : std::conditional>::type {}; template struct Negation : std::integral_constant {}; template struct Bools { using valid_type = bool; static constexpr std::size_t size() { return sizeof...(Bs); } }; // Lighter-weight than Conjunction, but evaluates all sub-conditions eagerly. template using StrictConjunction = std::is_same, Bools>; } // namespace folly /** * Use this macro ONLY inside namespace folly. When using it with a * regular type, use it like this: * * // Make sure you're at namespace ::folly scope * template<> FOLLY_ASSUME_RELOCATABLE(MyType) * * When using it with a template type, use it like this: * * // Make sure you're at namespace ::folly scope * template * FOLLY_ASSUME_RELOCATABLE(MyType) */ #define FOLLY_ASSUME_RELOCATABLE(...) \ struct IsRelocatable< __VA_ARGS__ > : std::true_type {}; /** * Use this macro ONLY inside namespace boost. When using it with a * regular type, use it like this: * * // Make sure you're at namespace ::boost scope * template<> FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(MyType) * * When using it with a template type, use it like this: * * // Make sure you're at namespace ::boost scope * template * FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(MyType) */ #define FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(...) \ struct has_nothrow_constructor< __VA_ARGS__ > : ::boost::true_type {}; /** * The FOLLY_ASSUME_FBVECTOR_COMPATIBLE* macros below encode two * assumptions: first, that the type is relocatable per IsRelocatable * above, and that it has a nothrow constructor. Most types can be * assumed to satisfy both conditions, but it is the responsibility of * the user to state that assumption. User-defined classes will not * work with fbvector (see FBVector.h) unless they state this * combination of properties. * * Use FOLLY_ASSUME_FBVECTOR_COMPATIBLE with regular types like this: * * FOLLY_ASSUME_FBVECTOR_COMPATIBLE(MyType) * * The versions FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1, _2, _3, and _4 * allow using the macro for describing templatized classes with 1, 2, * 3, and 4 template parameters respectively. For template classes * just use the macro with the appropriate number and pass the name of * the template to it. Example: * * template class MyType { ... }; * ... * // Make sure you're at global scope * FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(MyType) */ // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE(...) \ namespace folly { template<> FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__) } \ namespace boost { \ template<> FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__) } // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(...) \ namespace folly { \ template FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__) } \ namespace boost { \ template FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__) } // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(...) \ namespace folly { \ template \ FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__) } \ namespace boost { \ template \ FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__) } // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_3(...) \ namespace folly { \ template \ FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__) } \ namespace boost { \ template \ FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__) } // Use this macro ONLY at global level (no namespace) #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_4(...) \ namespace folly { \ template \ FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__) } \ namespace boost { \ template \ FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__) } /** * Instantiate FOLLY_ASSUME_FBVECTOR_COMPATIBLE for a few types. It is * safe to assume that pair is compatible if both of its components * are. Furthermore, all STL containers can be assumed to comply, * although that is not guaranteed by the standard. */ FOLLY_NAMESPACE_STD_BEGIN template struct pair; #ifndef _GLIBCXX_USE_FB FOLLY_GLIBCXX_NAMESPACE_CXX11_BEGIN template class basic_string; FOLLY_GLIBCXX_NAMESPACE_CXX11_END #else template class basic_string; #endif template class vector; template class deque; FOLLY_GLIBCXX_NAMESPACE_CXX11_BEGIN template class list; FOLLY_GLIBCXX_NAMESPACE_CXX11_END template class set; template class map; template class shared_ptr; FOLLY_NAMESPACE_STD_END namespace boost { template class shared_ptr; template struct has_nothrow_constructor< std::pair > : std::integral_constant::value && has_nothrow_constructor::value> {}; } // namespace boost namespace folly { // STL commonly-used types template struct IsRelocatable< std::pair > : std::integral_constant::value && IsRelocatable::value> {}; // Is T one of T1, T2, ..., Tn? template struct IsOneOf { enum { value = false }; }; template struct IsOneOf { enum { value = std::is_same::value || IsOneOf::value }; }; /* * Complementary type traits for integral comparisons. * * For instance, `if(x < 0)` yields an error in clang for unsigned types * when -Werror is used due to -Wtautological-compare * * * @author: Marcelo Juchem */ namespace detail { template struct is_negative_impl { constexpr static bool check(T x) { return x < 0; } }; template struct is_negative_impl { constexpr static bool check(T) { return false; } }; // folly::to integral specializations can end up generating code // inside what are really static ifs (not executed because of the templated // types) that violate -Wsign-compare and/or -Wbool-compare so suppress them // in order to not prevent all calling code from using it. #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wsign-compare" #if __GNUC_PREREQ(5, 0) #pragma GCC diagnostic ignored "-Wbool-compare" #endif template bool less_than_impl(LHS const lhs) { return rhs > std::numeric_limits::max() ? true : rhs <= std::numeric_limits::min() ? false : lhs < rhs; } template bool greater_than_impl(LHS const lhs) { return rhs > std::numeric_limits::max() ? false : rhs < std::numeric_limits::min() ? true : lhs > rhs; } #pragma GCC diagnostic pop } // namespace detail { // same as `x < 0` template constexpr bool is_negative(T x) { return folly::detail::is_negative_impl::value>::check(x); } // same as `x <= 0` template constexpr bool is_non_positive(T x) { return !x || folly::is_negative(x); } // same as `x > 0` template constexpr bool is_positive(T x) { return !is_non_positive(x); } // same as `x >= 0` template constexpr bool is_non_negative(T x) { return !x || is_positive(x); } template bool less_than(LHS const lhs) { return detail::less_than_impl< RHS, rhs, typename std::remove_reference::type >(lhs); } template bool greater_than(LHS const lhs) { return detail::greater_than_impl< RHS, rhs, typename std::remove_reference::type >(lhs); } namespace traits_detail { struct InPlaceTag {}; template struct InPlaceTypeTag {}; template struct InPlaceIndexTag {}; } /** * Like std::piecewise_construct, a tag type & instance used for in-place * construction of non-movable contained types, e.g. by Synchronized. * Follows the naming and design of std::in_place suggested in * http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0032r2.pdf */ using in_place_t = traits_detail::InPlaceTag (&)(traits_detail::InPlaceTag); template using in_place_type_t = traits_detail::InPlaceTypeTag (&)(traits_detail::InPlaceTypeTag); template using in_place_index_t = traits_detail::InPlaceIndexTag (&)(traits_detail::InPlaceIndexTag); inline traits_detail::InPlaceTag in_place(traits_detail::InPlaceTag = {}) { return {}; } template inline traits_detail::InPlaceTypeTag in_place( traits_detail::InPlaceTypeTag = {}) { return {}; } template inline traits_detail::InPlaceIndexTag in_place( traits_detail::InPlaceIndexTag = {}) { return {}; } // For backwards compatibility: using construct_in_place_t = in_place_t; inline traits_detail::InPlaceTag construct_in_place( traits_detail::InPlaceTag = {}) { return {}; } /** * Initializer lists are a powerful compile time syntax introduced in C++11 * but due to their often conflicting syntax they are not used by APIs for * construction. * * Further standard conforming compilers *strongly* favor an * std::initalizer_list overload for construction if one exists. The * following is a simple tag used to disambiguate construction with * initializer lists and regular uniform initialization. * * For example consider the following case * * class Something { * public: * explicit Something(int); * Something(std::intiializer_list); * * operator int(); * }; * * ... * Something something{1}; // SURPRISE!! * * The last call to instantiate the Something object will go to the * initializer_list overload. Which may be surprising to users. * * If however this tag was used to disambiguate such construction it would be * easy for users to see which construction overload their code was referring * to. For example * * class Something { * public: * explicit Something(int); * Something(folly::initlist_construct_t, std::initializer_list); * * operator int(); * }; * * ... * Something something_one{1}; // not the initializer_list overload * Something something_two{folly::initlist_construct, {1}}; // correct */ struct initlist_construct_t {}; constexpr initlist_construct_t initlist_construct{}; } // namespace folly // gcc-5.0 changed string's implementation in libgcc to be non-relocatable #if __GNUC__ < 5 FOLLY_ASSUME_FBVECTOR_COMPATIBLE_3(std::basic_string) #endif FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::vector) FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::list) FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::deque) FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::unique_ptr) FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(std::shared_ptr) FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(std::function) // Boost FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(boost::shared_ptr) #define FOLLY_CREATE_HAS_MEMBER_TYPE_TRAITS(classname, type_name) \ template \ struct classname { \ template \ constexpr static bool test(typename C::type_name*) { return true; } \ template \ constexpr static bool test(...) { return false; } \ constexpr static bool value = test(nullptr); \ } #define FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL(classname, func_name, cv_qual) \ template \ class classname { \ template < \ typename UTheClass_, RTheReturn_ (UTheClass_::*)(TTheArgs_...) cv_qual \ > struct sfinae {}; \ template \ constexpr static bool test(sfinae*) \ { return true; } \ template \ constexpr static bool test(...) { return false; } \ public: \ constexpr static bool value = test(nullptr); \ } /* * The FOLLY_CREATE_HAS_MEMBER_FN_TRAITS is used to create traits * classes that check for the existence of a member function with * a given name and signature. It currently does not support * checking for inherited members. * * Such classes receive two template parameters: the class to be checked * and the signature of the member function. A static boolean field * named `value` (which is also constexpr) tells whether such member * function exists. * * Each traits class created is bound only to the member name, not to * its signature nor to the type of the class containing it. * * Say you need to know if a given class has a member function named * `test` with the following signature: * * int test() const; * * You'd need this macro to create a traits class to check for a member * named `test`, and then use this traits class to check for the signature: * * namespace { * * FOLLY_CREATE_HAS_MEMBER_FN_TRAITS(has_test_traits, test); * * } // unnamed-namespace * * void some_func() { * cout << "Does class Foo have a member int test() const? " * << boolalpha << has_test_traits::value; * } * * You can use the same traits class to test for a completely different * signature, on a completely different class, as long as the member name * is the same: * * void some_func() { * cout << "Does class Foo have a member int test()? " * << boolalpha << has_test_traits::value; * cout << "Does class Foo have a member int test() const? " * << boolalpha << has_test_traits::value; * cout << "Does class Bar have a member double test(const string&, long)? " * << boolalpha << has_test_traits::value; * } * * @author: Marcelo Juchem */ #define FOLLY_CREATE_HAS_MEMBER_FN_TRAITS(classname, func_name) \ template class classname; \ FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL(classname, func_name, ); \ FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL(classname, func_name, const); \ FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL( \ classname, func_name, /* nolint */ volatile); \ FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL( \ classname, func_name, /* nolint */ volatile const) /* Some combinations of compilers and C++ libraries make __int128 and * unsigned __int128 available but do not correctly define their standard type * traits. * * If FOLLY_SUPPLY_MISSING_INT128_TRAITS is defined, we define these traits * here. * * @author: Phil Willoughby */ #if FOLLY_SUPPLY_MISSING_INT128_TRAITS FOLLY_NAMESPACE_STD_BEGIN template <> struct is_arithmetic<__int128> : ::std::true_type {}; template <> struct is_arithmetic : ::std::true_type {}; template <> struct is_integral<__int128> : ::std::true_type {}; template <> struct is_integral : ::std::true_type {}; template <> struct make_unsigned<__int128> { typedef unsigned __int128 type; }; template <> struct make_signed<__int128> { typedef __int128 type; }; template <> struct make_unsigned { typedef unsigned __int128 type; }; template <> struct make_signed { typedef __int128 type; }; template <> struct is_signed<__int128> : ::std::true_type {}; template <> struct is_unsigned : ::std::true_type {}; FOLLY_NAMESPACE_STD_END #endif // FOLLY_SUPPLY_MISSING_INT128_TRAITS