/* * Copyright 2016 Facebook, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include #include #include #include #include #include #include #include #include /* * Various hashing functions. */ namespace folly { namespace hash { // This is a general-purpose way to create a single hash from multiple // hashable objects. hash_combine_generic takes a class Hasher implementing // hash; hash_combine uses a default hasher StdHasher that uses std::hash. // hash_combine_generic hashes each argument and combines those hashes in // an order-dependent way to yield a new hash. // This is the Hash128to64 function from Google's cityhash (available // under the MIT License). We use it to reduce multiple 64 bit hashes // into a single hash. inline uint64_t hash_128_to_64(const uint64_t upper, const uint64_t lower) { // Murmur-inspired hashing. const uint64_t kMul = 0x9ddfea08eb382d69ULL; uint64_t a = (lower ^ upper) * kMul; a ^= (a >> 47); uint64_t b = (upper ^ a) * kMul; b ^= (b >> 47); b *= kMul; return b; } // Never used, but gcc demands it. template inline size_t hash_combine_generic() { return 0; } template < class Iter, class Hash = std::hash::value_type>> uint64_t hash_range(Iter begin, Iter end, uint64_t hash = 0, Hash hasher = Hash()) { for (; begin != end; ++begin) { hash = hash_128_to_64(hash, hasher(*begin)); } return hash; } inline uint32_t twang_32from64(uint64_t key); template size_t hash_combine_generic(const T& t, const Ts&... ts) { size_t seed = Hasher::hash(t); if (sizeof...(ts) == 0) { return seed; } size_t remainder = hash_combine_generic(ts...); /* static */ if (sizeof(size_t) == sizeof(uint32_t)) { return twang_32from64((uint64_t(seed) << 32) | remainder); } else { return static_cast(hash_128_to_64(seed, remainder)); } } // Simply uses std::hash to hash. Note that std::hash is not guaranteed // to be a very good hash function; provided std::hash doesn't collide on // the individual inputs, you are fine, but that won't be true for, say, // strings or pairs class StdHasher { public: template static size_t hash(const T& t) { return std::hash()(t); } }; template size_t hash_combine(const T& t, const Ts&... ts) { return hash_combine_generic(t, ts...); } ////////////////////////////////////////////////////////////////////// /* * Thomas Wang 64 bit mix hash function */ inline uint64_t twang_mix64(uint64_t key) { key = (~key) + (key << 21); // key *= (1 << 21) - 1; key -= 1; key = key ^ (key >> 24); key = key + (key << 3) + (key << 8); // key *= 1 + (1 << 3) + (1 << 8) key = key ^ (key >> 14); key = key + (key << 2) + (key << 4); // key *= 1 + (1 << 2) + (1 << 4) key = key ^ (key >> 28); key = key + (key << 31); // key *= 1 + (1 << 31) return key; } /* * Inverse of twang_mix64 * * Note that twang_unmix64 is significantly slower than twang_mix64. */ inline uint64_t twang_unmix64(uint64_t key) { // See the comments in jenkins_rev_unmix32 for an explanation as to how this // was generated key *= 4611686016279904257U; key ^= (key >> 28) ^ (key >> 56); key *= 14933078535860113213U; key ^= (key >> 14) ^ (key >> 28) ^ (key >> 42) ^ (key >> 56); key *= 15244667743933553977U; key ^= (key >> 24) ^ (key >> 48); key = (key + 1) * 9223367638806167551U; return key; } /* * Thomas Wang downscaling hash function */ inline uint32_t twang_32from64(uint64_t key) { key = (~key) + (key << 18); key = key ^ (key >> 31); key = key * 21; key = key ^ (key >> 11); key = key + (key << 6); key = key ^ (key >> 22); return (uint32_t) key; } /* * Robert Jenkins' reversible 32 bit mix hash function */ inline uint32_t jenkins_rev_mix32(uint32_t key) { key += (key << 12); // key *= (1 + (1 << 12)) key ^= (key >> 22); key += (key << 4); // key *= (1 + (1 << 4)) key ^= (key >> 9); key += (key << 10); // key *= (1 + (1 << 10)) key ^= (key >> 2); // key *= (1 + (1 << 7)) * (1 + (1 << 12)) key += (key << 7); key += (key << 12); return key; } /* * Inverse of jenkins_rev_mix32 * * Note that jenkinks_rev_unmix32 is significantly slower than * jenkins_rev_mix32. */ inline uint32_t jenkins_rev_unmix32(uint32_t key) { // These are the modular multiplicative inverses (in Z_2^32) of the // multiplication factors in jenkins_rev_mix32, in reverse order. They were // computed using the Extended Euclidean algorithm, see // http://en.wikipedia.org/wiki/Modular_multiplicative_inverse key *= 2364026753U; // The inverse of a ^= (a >> n) is // b = a // for (int i = n; i < 32; i += n) { // b ^= (a >> i); // } key ^= (key >> 2) ^ (key >> 4) ^ (key >> 6) ^ (key >> 8) ^ (key >> 10) ^ (key >> 12) ^ (key >> 14) ^ (key >> 16) ^ (key >> 18) ^ (key >> 20) ^ (key >> 22) ^ (key >> 24) ^ (key >> 26) ^ (key >> 28) ^ (key >> 30); key *= 3222273025U; key ^= (key >> 9) ^ (key >> 18) ^ (key >> 27); key *= 4042322161U; key ^= (key >> 22); key *= 16773121U; return key; } /* * Fowler / Noll / Vo (FNV) Hash * http://www.isthe.com/chongo/tech/comp/fnv/ */ const uint32_t FNV_32_HASH_START = 2166136261UL; const uint64_t FNV_64_HASH_START = 14695981039346656037ULL; inline uint32_t fnv32(const char* s, uint32_t hash = FNV_32_HASH_START) { for (; *s; ++s) { hash += (hash << 1) + (hash << 4) + (hash << 7) + (hash << 8) + (hash << 24); hash ^= *s; } return hash; } inline uint32_t fnv32_buf(const void* buf, size_t n, uint32_t hash = FNV_32_HASH_START) { // forcing signed char, since other platforms can use unsigned const signed char* char_buf = reinterpret_cast(buf); for (size_t i = 0; i < n; ++i) { hash += (hash << 1) + (hash << 4) + (hash << 7) + (hash << 8) + (hash << 24); hash ^= char_buf[i]; } return hash; } inline uint32_t fnv32(const std::string& str, uint32_t hash = FNV_32_HASH_START) { return fnv32_buf(str.data(), str.size(), hash); } inline uint64_t fnv64(const char* s, uint64_t hash = FNV_64_HASH_START) { for (; *s; ++s) { hash += (hash << 1) + (hash << 4) + (hash << 5) + (hash << 7) + (hash << 8) + (hash << 40); hash ^= *s; } return hash; } inline uint64_t fnv64_buf(const void* buf, size_t n, uint64_t hash = FNV_64_HASH_START) { // forcing signed char, since other platforms can use unsigned const signed char* char_buf = reinterpret_cast(buf); for (size_t i = 0; i < n; ++i) { hash += (hash << 1) + (hash << 4) + (hash << 5) + (hash << 7) + (hash << 8) + (hash << 40); hash ^= char_buf[i]; } return hash; } inline uint64_t fnv64(const std::string& str, uint64_t hash = FNV_64_HASH_START) { return fnv64_buf(str.data(), str.size(), hash); } /* * Paul Hsieh: http://www.azillionmonkeys.com/qed/hash.html */ #define get16bits(d) folly::loadUnaligned(d) inline uint32_t hsieh_hash32_buf(const void* buf, size_t len) { // forcing signed char, since other platforms can use unsigned const unsigned char* s = reinterpret_cast(buf); uint32_t hash = static_cast(len); uint32_t tmp; size_t rem; if (len <= 0 || buf == 0) { return 0; } rem = len & 3; len >>= 2; /* Main loop */ for (;len > 0; len--) { hash += get16bits (s); tmp = (get16bits (s+2) << 11) ^ hash; hash = (hash << 16) ^ tmp; s += 2*sizeof (uint16_t); hash += hash >> 11; } /* Handle end cases */ switch (rem) { case 3: hash += get16bits(s); hash ^= hash << 16; hash ^= s[sizeof (uint16_t)] << 18; hash += hash >> 11; break; case 2: hash += get16bits(s); hash ^= hash << 11; hash += hash >> 17; break; case 1: hash += *s; hash ^= hash << 10; hash += hash >> 1; } /* Force "avalanching" of final 127 bits */ hash ^= hash << 3; hash += hash >> 5; hash ^= hash << 4; hash += hash >> 17; hash ^= hash << 25; hash += hash >> 6; return hash; }; #undef get16bits inline uint32_t hsieh_hash32(const char* s) { return hsieh_hash32_buf(s, std::strlen(s)); } inline uint32_t hsieh_hash32_str(const std::string& str) { return hsieh_hash32_buf(str.data(), str.size()); } ////////////////////////////////////////////////////////////////////// } // namespace hash template struct hasher; struct Hash { template size_t operator()(const T& v) const { return hasher()(v); } template size_t operator()(const T& t, const Ts&... ts) const { return hash::hash_128_to_64((*this)(t), (*this)(ts...)); } }; template<> struct hasher { size_t operator()(int32_t key) const { return hash::jenkins_rev_mix32(uint32_t(key)); } }; template<> struct hasher { size_t operator()(uint32_t key) const { return hash::jenkins_rev_mix32(key); } }; template<> struct hasher { size_t operator()(int64_t key) const { return static_cast(hash::twang_mix64(uint64_t(key))); } }; template<> struct hasher { size_t operator()(uint64_t key) const { return static_cast(hash::twang_mix64(key)); } }; template<> struct hasher { size_t operator()(const std::string& key) const { return static_cast( hash::SpookyHashV2::Hash64(key.data(), key.size(), 0)); } }; template struct hasher::value, void>::type> { size_t operator()(T key) const { return Hash()(static_cast::type>(key)); } }; template struct hasher> { size_t operator()(const std::pair& key) const { return Hash()(key.first, key.second); } }; template struct hasher> { size_t operator() (const std::tuple& key) const { return applyTuple(Hash(), key); } }; // recursion template struct TupleHasher { size_t operator()(std::tuple const& key) const { return hash::hash_combine( TupleHasher()(key), std::get(key)); } }; // base template struct TupleHasher<0, Ts...> { size_t operator()(std::tuple const& key) const { // we could do std::hash here directly, but hash_combine hides all the // ugly templating implicitly return hash::hash_combine(std::get<0>(key)); } }; } // namespace folly // Custom hash functions. namespace std { // Hash function for pairs. Requires default hash functions for both // items in the pair. template struct hash > { public: size_t operator()(const std::pair& x) const { return folly::hash::hash_combine(x.first, x.second); } }; // Hash function for tuples. Requires default hash functions for all types. template struct hash> { size_t operator()(std::tuple const& key) const { folly::TupleHasher< std::tuple_size>::value - 1, // start index Ts...> hasher; return hasher(key); } }; } // namespace std