ecency-mobile/ios/Pods/boost-for-react-native/boost/graph/edge_connectivity.hpp

184 lines
6.7 KiB
C++

//=======================================================================
// Copyright 2000 University of Notre Dame.
// Authors: Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_EDGE_CONNECTIVITY
#define BOOST_EDGE_CONNECTIVITY
// WARNING: not-yet fully tested!
#include <boost/config.hpp>
#include <vector>
#include <set>
#include <algorithm>
#include <boost/graph/edmonds_karp_max_flow.hpp>
namespace boost {
namespace detail {
template <class Graph>
inline
std::pair<typename graph_traits<Graph>::vertex_descriptor,
typename graph_traits<Graph>::degree_size_type>
min_degree_vertex(Graph& g)
{
typedef graph_traits<Graph> Traits;
typename Traits::vertex_descriptor p;
typedef typename Traits::degree_size_type size_type;
size_type delta = (std::numeric_limits<size_type>::max)();
typename Traits::vertex_iterator i, iend;
for (boost::tie(i, iend) = vertices(g); i != iend; ++i)
if (degree(*i, g) < delta) {
delta = degree(*i, g);
p = *i;
}
return std::make_pair(p, delta);
}
template <class Graph, class OutputIterator>
void neighbors(const Graph& g,
typename graph_traits<Graph>::vertex_descriptor u,
OutputIterator result)
{
typename graph_traits<Graph>::adjacency_iterator ai, aend;
for (boost::tie(ai, aend) = adjacent_vertices(u, g); ai != aend; ++ai)
*result++ = *ai;
}
template <class Graph, class VertexIterator, class OutputIterator>
void neighbors(const Graph& g,
VertexIterator first, VertexIterator last,
OutputIterator result)
{
for (; first != last; ++first)
neighbors(g, *first, result);
}
} // namespace detail
// O(m n)
template <class VertexListGraph, class OutputIterator>
typename graph_traits<VertexListGraph>::degree_size_type
edge_connectivity(VertexListGraph& g, OutputIterator disconnecting_set)
{
//-------------------------------------------------------------------------
// Type Definitions
typedef graph_traits<VertexListGraph> Traits;
typedef typename Traits::vertex_iterator vertex_iterator;
typedef typename Traits::edge_iterator edge_iterator;
typedef typename Traits::out_edge_iterator out_edge_iterator;
typedef typename Traits::vertex_descriptor vertex_descriptor;
typedef typename Traits::degree_size_type degree_size_type;
typedef color_traits<default_color_type> Color;
typedef adjacency_list_traits<vecS, vecS, directedS> Tr;
typedef typename Tr::edge_descriptor Tr_edge_desc;
typedef adjacency_list<vecS, vecS, directedS, no_property,
property<edge_capacity_t, degree_size_type,
property<edge_residual_capacity_t, degree_size_type,
property<edge_reverse_t, Tr_edge_desc> > > >
FlowGraph;
typedef typename graph_traits<FlowGraph>::edge_descriptor edge_descriptor;
//-------------------------------------------------------------------------
// Variable Declarations
vertex_descriptor u, v, p, k;
edge_descriptor e1, e2;
bool inserted;
vertex_iterator vi, vi_end;
edge_iterator ei, ei_end;
degree_size_type delta, alpha_star, alpha_S_k;
std::set<vertex_descriptor> S, neighbor_S;
std::vector<vertex_descriptor> S_star, non_neighbor_S;
std::vector<default_color_type> color(num_vertices(g));
std::vector<edge_descriptor> pred(num_vertices(g));
//-------------------------------------------------------------------------
// Create a network flow graph out of the undirected graph
FlowGraph flow_g(num_vertices(g));
typename property_map<FlowGraph, edge_capacity_t>::type
cap = get(edge_capacity, flow_g);
typename property_map<FlowGraph, edge_residual_capacity_t>::type
res_cap = get(edge_residual_capacity, flow_g);
typename property_map<FlowGraph, edge_reverse_t>::type
rev_edge = get(edge_reverse, flow_g);
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
u = source(*ei, g), v = target(*ei, g);
boost::tie(e1, inserted) = add_edge(u, v, flow_g);
cap[e1] = 1;
boost::tie(e2, inserted) = add_edge(v, u, flow_g);
cap[e2] = 1; // not sure about this
rev_edge[e1] = e2;
rev_edge[e2] = e1;
}
//-------------------------------------------------------------------------
// The Algorithm
boost::tie(p, delta) = detail::min_degree_vertex(g);
S_star.push_back(p);
alpha_star = delta;
S.insert(p);
neighbor_S.insert(p);
detail::neighbors(g, S.begin(), S.end(),
std::inserter(neighbor_S, neighbor_S.begin()));
boost::tie(vi, vi_end) = vertices(g);
std::set_difference(vi, vi_end,
neighbor_S.begin(), neighbor_S.end(),
std::back_inserter(non_neighbor_S));
while (!non_neighbor_S.empty()) { // at most n - 1 times
k = non_neighbor_S.front();
alpha_S_k = edmonds_karp_max_flow
(flow_g, p, k, cap, res_cap, rev_edge, &color[0], &pred[0]);
if (alpha_S_k < alpha_star) {
alpha_star = alpha_S_k;
S_star.clear();
for (boost::tie(vi, vi_end) = vertices(flow_g); vi != vi_end; ++vi)
if (color[*vi] != Color::white())
S_star.push_back(*vi);
}
S.insert(k);
neighbor_S.insert(k);
detail::neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin()));
non_neighbor_S.clear();
boost::tie(vi, vi_end) = vertices(g);
std::set_difference(vi, vi_end,
neighbor_S.begin(), neighbor_S.end(),
std::back_inserter(non_neighbor_S));
}
//-------------------------------------------------------------------------
// Compute edges of the cut [S*, ~S*]
std::vector<bool> in_S_star(num_vertices(g), false);
typename std::vector<vertex_descriptor>::iterator si;
for (si = S_star.begin(); si != S_star.end(); ++si)
in_S_star[*si] = true;
degree_size_type c = 0;
for (si = S_star.begin(); si != S_star.end(); ++si) {
out_edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = out_edges(*si, g); ei != ei_end; ++ei)
if (!in_S_star[target(*ei, g)]) {
*disconnecting_set++ = *ei;
++c;
}
}
return c;
}
} // namespace boost
#endif // BOOST_EDGE_CONNECTIVITY