mirror of
https://github.com/ecency/ecency-mobile.git
synced 2024-12-22 04:41:43 +03:00
275 lines
9.8 KiB
C++
275 lines
9.8 KiB
C++
/*=============================================================================
|
|
Adaptable closures
|
|
|
|
Phoenix V0.9
|
|
Copyright (c) 2001-2002 Joel de Guzman
|
|
|
|
Distributed under the Boost Software License, Version 1.0. (See
|
|
accompanying file LICENSE_1_0.txt or copy at
|
|
http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
URL: http://spirit.sourceforge.net/
|
|
|
|
==============================================================================*/
|
|
#ifndef PHOENIX_CLOSURES_HPP
|
|
#define PHOENIX_CLOSURES_HPP
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
#include "boost/lambda/core.hpp"
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
namespace boost {
|
|
namespace lambda {
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Adaptable closures
|
|
//
|
|
// The framework will not be complete without some form of closures
|
|
// support. Closures encapsulate a stack frame where local
|
|
// variables are created upon entering a function and destructed
|
|
// upon exiting. Closures provide an environment for local
|
|
// variables to reside. Closures can hold heterogeneous types.
|
|
//
|
|
// Phoenix closures are true hardware stack based closures. At the
|
|
// very least, closures enable true reentrancy in lambda functions.
|
|
// A closure provides access to a function stack frame where local
|
|
// variables reside. Modeled after Pascal nested stack frames,
|
|
// closures can be nested just like nested functions where code in
|
|
// inner closures may access local variables from in-scope outer
|
|
// closures (accessing inner scopes from outer scopes is an error
|
|
// and will cause a run-time assertion failure).
|
|
//
|
|
// There are three (3) interacting classes:
|
|
//
|
|
// 1) closure:
|
|
//
|
|
// At the point of declaration, a closure does not yet create a
|
|
// stack frame nor instantiate any variables. A closure declaration
|
|
// declares the types and names[note] of the local variables. The
|
|
// closure class is meant to be subclassed. It is the
|
|
// responsibility of a closure subclass to supply the names for
|
|
// each of the local variable in the closure. Example:
|
|
//
|
|
// struct my_closure : closure<int, string, double> {
|
|
//
|
|
// member1 num; // names the 1st (int) local variable
|
|
// member2 message; // names the 2nd (string) local variable
|
|
// member3 real; // names the 3rd (double) local variable
|
|
// };
|
|
//
|
|
// my_closure clos;
|
|
//
|
|
// Now that we have a closure 'clos', its local variables can be
|
|
// accessed lazily using the dot notation. Each qualified local
|
|
// variable can be used just like any primitive actor (see
|
|
// primitives.hpp). Examples:
|
|
//
|
|
// clos.num = 30
|
|
// clos.message = arg1
|
|
// clos.real = clos.num * 1e6
|
|
//
|
|
// The examples above are lazily evaluated. As usual, these
|
|
// expressions return composite actors that will be evaluated
|
|
// through a second function call invocation (see operators.hpp).
|
|
// Each of the members (clos.xxx) is an actor. As such, applying
|
|
// the operator() will reveal its identity:
|
|
//
|
|
// clos.num() // will return the current value of clos.num
|
|
//
|
|
// *** [note] Acknowledgement: Juan Carlos Arevalo-Baeza (JCAB)
|
|
// introduced and initilally implemented the closure member names
|
|
// that uses the dot notation.
|
|
//
|
|
// 2) closure_member
|
|
//
|
|
// The named local variables of closure 'clos' above are actually
|
|
// closure members. The closure_member class is an actor and
|
|
// conforms to its conceptual interface. member1..memberN are
|
|
// predefined typedefs that correspond to each of the listed types
|
|
// in the closure template parameters.
|
|
//
|
|
// 3) closure_frame
|
|
//
|
|
// When a closure member is finally evaluated, it should refer to
|
|
// an actual instance of the variable in the hardware stack.
|
|
// Without doing so, the process is not complete and the evaluated
|
|
// member will result to an assertion failure. Remember that the
|
|
// closure is just a declaration. The local variables that a
|
|
// closure refers to must still be instantiated.
|
|
//
|
|
// The closure_frame class does the actual instantiation of the
|
|
// local variables and links these variables with the closure and
|
|
// all its members. There can be multiple instances of
|
|
// closure_frames typically situated in the stack inside a
|
|
// function. Each closure_frame instance initiates a stack frame
|
|
// with a new set of closure local variables. Example:
|
|
//
|
|
// void foo()
|
|
// {
|
|
// closure_frame<my_closure> frame(clos);
|
|
// /* do something */
|
|
// }
|
|
//
|
|
// where 'clos' is an instance of our closure 'my_closure' above.
|
|
// Take note that the usage above precludes locally declared
|
|
// classes. If my_closure is a locally declared type, we can still
|
|
// use its self_type as a paramater to closure_frame:
|
|
//
|
|
// closure_frame<my_closure::self_type> frame(clos);
|
|
//
|
|
// Upon instantiation, the closure_frame links the local variables
|
|
// to the closure. The previous link to another closure_frame
|
|
// instance created before is saved. Upon destruction, the
|
|
// closure_frame unlinks itself from the closure and relinks the
|
|
// preceding closure_frame prior to this instance.
|
|
//
|
|
// The local variables in the closure 'clos' above is default
|
|
// constructed in the stack inside function 'foo'. Once 'foo' is
|
|
// exited, all of these local variables are destructed. In some
|
|
// cases, default construction is not desirable and we need to
|
|
// initialize the local closure variables with some values. This
|
|
// can be done by passing in the initializers in a compatible
|
|
// tuple. A compatible tuple is one with the same number of
|
|
// elements as the destination and where each element from the
|
|
// destination can be constructed from each corresponding element
|
|
// in the source. Example:
|
|
//
|
|
// tuple<int, char const*, int> init(123, "Hello", 1000);
|
|
// closure_frame<my_closure> frame(clos, init);
|
|
//
|
|
// Here now, our closure_frame's variables are initialized with
|
|
// int: 123, char const*: "Hello" and int: 1000.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// closure_frame class
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
template <typename ClosureT>
|
|
class closure_frame : public ClosureT::tuple_t {
|
|
|
|
public:
|
|
|
|
closure_frame(ClosureT& clos)
|
|
: ClosureT::tuple_t(), save(clos.frame), frame(clos.frame)
|
|
{ clos.frame = this; }
|
|
|
|
template <typename TupleT>
|
|
closure_frame(ClosureT& clos, TupleT const& init)
|
|
: ClosureT::tuple_t(init), save(clos.frame), frame(clos.frame)
|
|
{ clos.frame = this; }
|
|
|
|
~closure_frame()
|
|
{ frame = save; }
|
|
|
|
private:
|
|
|
|
closure_frame(closure_frame const&); // no copy
|
|
closure_frame& operator=(closure_frame const&); // no assign
|
|
|
|
closure_frame* save;
|
|
closure_frame*& frame;
|
|
};
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// closure_member class
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
template <int N, typename ClosureT>
|
|
class closure_member {
|
|
|
|
public:
|
|
|
|
typedef typename ClosureT::tuple_t tuple_t;
|
|
|
|
closure_member()
|
|
: frame(ClosureT::closure_frame_ref()) {}
|
|
|
|
template <typename TupleT>
|
|
struct sig {
|
|
|
|
typedef typename detail::tuple_element_as_reference<
|
|
N, typename ClosureT::tuple_t
|
|
>::type type;
|
|
};
|
|
|
|
template <class Ret, class A, class B, class C>
|
|
// typename detail::tuple_element_as_reference
|
|
// <N, typename ClosureT::tuple_t>::type
|
|
Ret
|
|
call(A&, B&, C&) const
|
|
{
|
|
assert(frame);
|
|
return boost::tuples::get<N>(*frame);
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
typename ClosureT::closure_frame_t*& frame;
|
|
};
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// closure class
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
template <
|
|
typename T0 = null_type,
|
|
typename T1 = null_type,
|
|
typename T2 = null_type,
|
|
typename T3 = null_type,
|
|
typename T4 = null_type
|
|
>
|
|
class closure {
|
|
|
|
public:
|
|
|
|
typedef tuple<T0, T1, T2, T3, T4> tuple_t;
|
|
typedef closure<T0, T1, T2, T3, T4> self_t;
|
|
typedef closure_frame<self_t> closure_frame_t;
|
|
|
|
closure()
|
|
: frame(0) { closure_frame_ref(&frame); }
|
|
closure_frame_t& context() { assert(frame); return frame; }
|
|
closure_frame_t const& context() const { assert(frame); return frame; }
|
|
|
|
typedef lambda_functor<closure_member<0, self_t> > member1;
|
|
typedef lambda_functor<closure_member<1, self_t> > member2;
|
|
typedef lambda_functor<closure_member<2, self_t> > member3;
|
|
typedef lambda_functor<closure_member<3, self_t> > member4;
|
|
typedef lambda_functor<closure_member<4, self_t> > member5;
|
|
|
|
private:
|
|
|
|
closure(closure const&); // no copy
|
|
closure& operator=(closure const&); // no assign
|
|
|
|
template <int N, typename ClosureT>
|
|
friend class closure_member;
|
|
|
|
template <typename ClosureT>
|
|
friend class closure_frame;
|
|
|
|
static closure_frame_t*&
|
|
closure_frame_ref(closure_frame_t** frame_ = 0)
|
|
{
|
|
static closure_frame_t** frame = 0;
|
|
if (frame_ != 0)
|
|
frame = frame_;
|
|
return *frame;
|
|
}
|
|
|
|
closure_frame_t* frame;
|
|
};
|
|
|
|
}}
|
|
// namespace
|
|
|
|
#endif
|