mirror of
https://github.com/ecency/ecency-mobile.git
synced 2024-12-30 00:52:42 +03:00
397 lines
11 KiB
C++
397 lines
11 KiB
C++
/*
|
|
* Copyright 2016 Facebook, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <limits.h>
|
|
#include <pthread.h>
|
|
|
|
#include <atomic>
|
|
#include <functional>
|
|
#include <mutex>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include <glog/logging.h>
|
|
|
|
#include <folly/Exception.h>
|
|
#include <folly/Foreach.h>
|
|
#include <folly/Function.h>
|
|
#include <folly/Malloc.h>
|
|
#include <folly/MicroSpinLock.h>
|
|
#include <folly/Portability.h>
|
|
#include <folly/ScopeGuard.h>
|
|
|
|
#include <folly/detail/StaticSingletonManager.h>
|
|
|
|
// In general, emutls cleanup is not guaranteed to play nice with the way
|
|
// StaticMeta mixes direct pthread calls and the use of __thread. This has
|
|
// caused problems on multiple platforms so don't use __thread there.
|
|
//
|
|
// XXX: Ideally we would instead determine if emutls is in use at runtime as it
|
|
// is possible to configure glibc on Linux to use emutls regardless.
|
|
#if !FOLLY_MOBILE && !defined(__APPLE__) && !defined(_MSC_VER)
|
|
#define FOLLY_TLD_USE_FOLLY_TLS 1
|
|
#else
|
|
#undef FOLLY_TLD_USE_FOLLY_TLS
|
|
#endif
|
|
|
|
namespace folly {
|
|
namespace threadlocal_detail {
|
|
|
|
/**
|
|
* POD wrapper around an element (a void*) and an associated deleter.
|
|
* This must be POD, as we memset() it to 0 and memcpy() it around.
|
|
*/
|
|
struct ElementWrapper {
|
|
using DeleterFunType = void(void*, TLPDestructionMode);
|
|
|
|
bool dispose(TLPDestructionMode mode) {
|
|
if (ptr == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
DCHECK(deleter1 != nullptr);
|
|
ownsDeleter ? (*deleter2)(ptr, mode) : (*deleter1)(ptr, mode);
|
|
cleanup();
|
|
return true;
|
|
}
|
|
|
|
void* release() {
|
|
auto retPtr = ptr;
|
|
|
|
if (ptr != nullptr) {
|
|
cleanup();
|
|
}
|
|
|
|
return retPtr;
|
|
}
|
|
|
|
template <class Ptr>
|
|
void set(Ptr p) {
|
|
auto guard = makeGuard([&] { delete p; });
|
|
DCHECK(ptr == nullptr);
|
|
DCHECK(deleter1 == nullptr);
|
|
|
|
if (p) {
|
|
ptr = p;
|
|
deleter1 = [](void* pt, TLPDestructionMode) {
|
|
delete static_cast<Ptr>(pt);
|
|
};
|
|
ownsDeleter = false;
|
|
guard.dismiss();
|
|
}
|
|
}
|
|
|
|
template <class Ptr, class Deleter>
|
|
void set(Ptr p, const Deleter& d) {
|
|
auto guard = makeGuard([&] {
|
|
if (p) {
|
|
d(p, TLPDestructionMode::THIS_THREAD);
|
|
}
|
|
});
|
|
DCHECK(ptr == nullptr);
|
|
DCHECK(deleter2 == nullptr);
|
|
if (p) {
|
|
ptr = p;
|
|
auto d2 = d; // gcc-4.8 doesn't decay types correctly in lambda captures
|
|
deleter2 = new std::function<DeleterFunType>(
|
|
[d2](void* pt, TLPDestructionMode mode) {
|
|
d2(static_cast<Ptr>(pt), mode);
|
|
});
|
|
ownsDeleter = true;
|
|
guard.dismiss();
|
|
}
|
|
}
|
|
|
|
void cleanup() {
|
|
if (ownsDeleter) {
|
|
delete deleter2;
|
|
}
|
|
ptr = nullptr;
|
|
deleter1 = nullptr;
|
|
ownsDeleter = false;
|
|
}
|
|
|
|
void* ptr;
|
|
union {
|
|
DeleterFunType* deleter1;
|
|
std::function<DeleterFunType>* deleter2;
|
|
};
|
|
bool ownsDeleter;
|
|
};
|
|
|
|
struct StaticMetaBase;
|
|
|
|
/**
|
|
* Per-thread entry. Each thread using a StaticMeta object has one.
|
|
* This is written from the owning thread only (under the lock), read
|
|
* from the owning thread (no lock necessary), and read from other threads
|
|
* (under the lock).
|
|
*/
|
|
struct ThreadEntry {
|
|
ElementWrapper* elements{nullptr};
|
|
size_t elementsCapacity{0};
|
|
ThreadEntry* next{nullptr};
|
|
ThreadEntry* prev{nullptr};
|
|
StaticMetaBase* meta{nullptr};
|
|
};
|
|
|
|
constexpr uint32_t kEntryIDInvalid = std::numeric_limits<uint32_t>::max();
|
|
|
|
struct PthreadKeyUnregisterTester;
|
|
|
|
/**
|
|
* We want to disable onThreadExit call at the end of shutdown, we don't care
|
|
* about leaking memory at that point.
|
|
*
|
|
* Otherwise if ThreadLocal is used in a shared library, onThreadExit may be
|
|
* called after dlclose().
|
|
*
|
|
* This class has one single static instance; however since it's so widely used,
|
|
* directly or indirectly, by so many classes, we need to take care to avoid
|
|
* problems stemming from the Static Initialization/Destruction Order Fiascos.
|
|
* Therefore this class needs to be constexpr-constructible, so as to avoid
|
|
* the need for this to participate in init/destruction order.
|
|
*/
|
|
class PthreadKeyUnregister {
|
|
public:
|
|
static constexpr size_t kMaxKeys = 1UL << 16;
|
|
|
|
~PthreadKeyUnregister() {
|
|
// If static constructor priorities are not supported then
|
|
// ~PthreadKeyUnregister logic is not safe.
|
|
#if !defined(__APPLE__) && !defined(_MSC_VER)
|
|
MSLGuard lg(lock_);
|
|
while (size_) {
|
|
pthread_key_delete(keys_[--size_]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void registerKey(pthread_key_t key) {
|
|
instance_.registerKeyImpl(key);
|
|
}
|
|
|
|
private:
|
|
/**
|
|
* Only one global instance should exist, hence this is private.
|
|
* See also the important note at the top of this class about `constexpr`
|
|
* usage.
|
|
*/
|
|
constexpr PthreadKeyUnregister() : lock_(), size_(0), keys_() { }
|
|
friend struct folly::threadlocal_detail::PthreadKeyUnregisterTester;
|
|
|
|
void registerKeyImpl(pthread_key_t key) {
|
|
MSLGuard lg(lock_);
|
|
if (size_ == kMaxKeys) {
|
|
throw std::logic_error("pthread_key limit has already been reached");
|
|
}
|
|
keys_[size_++] = key;
|
|
}
|
|
|
|
MicroSpinLock lock_;
|
|
size_t size_;
|
|
pthread_key_t keys_[kMaxKeys];
|
|
|
|
static PthreadKeyUnregister instance_;
|
|
};
|
|
|
|
struct StaticMetaBase {
|
|
// Represents an ID of a thread local object. Initially set to the maximum
|
|
// uint. This representation allows us to avoid a branch in accessing TLS data
|
|
// (because if you test capacity > id if id = maxint then the test will always
|
|
// fail). It allows us to keep a constexpr constructor and avoid SIOF.
|
|
class EntryID {
|
|
public:
|
|
std::atomic<uint32_t> value;
|
|
|
|
constexpr EntryID() : value(kEntryIDInvalid) {
|
|
}
|
|
|
|
EntryID(EntryID&& other) noexcept : value(other.value.load()) {
|
|
other.value = kEntryIDInvalid;
|
|
}
|
|
|
|
EntryID& operator=(EntryID&& other) {
|
|
assert(this != &other);
|
|
value = other.value.load();
|
|
other.value = kEntryIDInvalid;
|
|
return *this;
|
|
}
|
|
|
|
EntryID(const EntryID& other) = delete;
|
|
EntryID& operator=(const EntryID& other) = delete;
|
|
|
|
uint32_t getOrInvalid() {
|
|
// It's OK for this to be relaxed, even though we're effectively doing
|
|
// double checked locking in using this value. We only care about the
|
|
// uniqueness of IDs, getOrAllocate does not modify any other memory
|
|
// this thread will use.
|
|
return value.load(std::memory_order_relaxed);
|
|
}
|
|
|
|
uint32_t getOrAllocate(StaticMetaBase& meta) {
|
|
uint32_t id = getOrInvalid();
|
|
if (id != kEntryIDInvalid) {
|
|
return id;
|
|
}
|
|
// The lock inside allocate ensures that a single value is allocated
|
|
return meta.allocate(this);
|
|
}
|
|
};
|
|
|
|
StaticMetaBase(ThreadEntry* (*threadEntry)(), bool strict);
|
|
|
|
~StaticMetaBase() {
|
|
LOG(FATAL) << "StaticMeta lives forever!";
|
|
}
|
|
|
|
void push_back(ThreadEntry* t) {
|
|
t->next = &head_;
|
|
t->prev = head_.prev;
|
|
head_.prev->next = t;
|
|
head_.prev = t;
|
|
}
|
|
|
|
void erase(ThreadEntry* t) {
|
|
t->next->prev = t->prev;
|
|
t->prev->next = t->next;
|
|
t->next = t->prev = t;
|
|
}
|
|
|
|
static void onThreadExit(void* ptr);
|
|
|
|
uint32_t allocate(EntryID* ent);
|
|
|
|
void destroy(EntryID* ent);
|
|
|
|
/**
|
|
* Reserve enough space in the ThreadEntry::elements for the item
|
|
* @id to fit in.
|
|
*/
|
|
void reserve(EntryID* id);
|
|
|
|
ElementWrapper& get(EntryID* ent);
|
|
|
|
static void initAtFork();
|
|
static void registerAtFork(
|
|
folly::Function<void()> prepare,
|
|
folly::Function<void()> parent,
|
|
folly::Function<void()> child);
|
|
|
|
uint32_t nextId_;
|
|
std::vector<uint32_t> freeIds_;
|
|
std::mutex lock_;
|
|
SharedMutex accessAllThreadsLock_;
|
|
pthread_key_t pthreadKey_;
|
|
ThreadEntry head_;
|
|
ThreadEntry* (*threadEntry_)();
|
|
bool strict_;
|
|
};
|
|
|
|
// Held in a singleton to track our global instances.
|
|
// We have one of these per "Tag", by default one for the whole system
|
|
// (Tag=void).
|
|
//
|
|
// Creating and destroying ThreadLocalPtr objects, as well as thread exit
|
|
// for threads that use ThreadLocalPtr objects collide on a lock inside
|
|
// StaticMeta; you can specify multiple Tag types to break that lock.
|
|
template <class Tag, class AccessMode>
|
|
struct StaticMeta : StaticMetaBase {
|
|
StaticMeta()
|
|
: StaticMetaBase(
|
|
&StaticMeta::getThreadEntrySlow,
|
|
std::is_same<AccessMode, AccessModeStrict>::value) {
|
|
registerAtFork(
|
|
/*prepare*/ &StaticMeta::preFork,
|
|
/*parent*/ &StaticMeta::onForkParent,
|
|
/*child*/ &StaticMeta::onForkChild);
|
|
}
|
|
|
|
static StaticMeta<Tag, AccessMode>& instance() {
|
|
// Leak it on exit, there's only one per process and we don't have to
|
|
// worry about synchronization with exiting threads.
|
|
/* library-local */ static auto instance =
|
|
detail::createGlobal<StaticMeta<Tag, AccessMode>, void>();
|
|
return *instance;
|
|
}
|
|
|
|
ElementWrapper& get(EntryID* ent) {
|
|
ThreadEntry* threadEntry = getThreadEntry();
|
|
uint32_t id = ent->getOrInvalid();
|
|
// if id is invalid, it is equal to uint32_t's max value.
|
|
// x <= max value is always true
|
|
if (UNLIKELY(threadEntry->elementsCapacity <= id)) {
|
|
reserve(ent);
|
|
id = ent->getOrInvalid();
|
|
assert(threadEntry->elementsCapacity > id);
|
|
}
|
|
return threadEntry->elements[id];
|
|
}
|
|
|
|
static ThreadEntry* getThreadEntrySlow() {
|
|
auto& meta = instance();
|
|
auto key = meta.pthreadKey_;
|
|
ThreadEntry* threadEntry =
|
|
static_cast<ThreadEntry*>(pthread_getspecific(key));
|
|
if (!threadEntry) {
|
|
#ifdef FOLLY_TLD_USE_FOLLY_TLS
|
|
static FOLLY_TLS ThreadEntry threadEntrySingleton;
|
|
threadEntry = &threadEntrySingleton;
|
|
#else
|
|
threadEntry = new ThreadEntry();
|
|
#endif
|
|
threadEntry->meta = &meta;
|
|
int ret = pthread_setspecific(key, threadEntry);
|
|
checkPosixError(ret, "pthread_setspecific failed");
|
|
}
|
|
return threadEntry;
|
|
}
|
|
|
|
inline static ThreadEntry* getThreadEntry() {
|
|
#ifdef FOLLY_TLD_USE_FOLLY_TLS
|
|
static FOLLY_TLS ThreadEntry* threadEntryCache{nullptr};
|
|
if (UNLIKELY(threadEntryCache == nullptr)) {
|
|
threadEntryCache = instance().threadEntry_();
|
|
}
|
|
return threadEntryCache;
|
|
#else
|
|
return instance().threadEntry_();
|
|
#endif
|
|
}
|
|
|
|
static void preFork(void) {
|
|
instance().lock_.lock(); // Make sure it's created
|
|
}
|
|
|
|
static void onForkParent(void) { instance().lock_.unlock(); }
|
|
|
|
static void onForkChild(void) {
|
|
// only the current thread survives
|
|
instance().head_.next = instance().head_.prev = &instance().head_;
|
|
ThreadEntry* threadEntry = getThreadEntry();
|
|
// If this thread was in the list before the fork, add it back.
|
|
if (threadEntry->elementsCapacity != 0) {
|
|
instance().push_back(threadEntry);
|
|
}
|
|
instance().lock_.unlock();
|
|
}
|
|
};
|
|
|
|
} // namespace threadlocal_detail
|
|
} // namespace folly
|