mirror of
https://github.com/ecency/ecency-mobile.git
synced 2025-01-04 20:15:51 +03:00
363 lines
12 KiB
C++
363 lines
12 KiB
C++
// Copyright John Maddock 2006, 2007.
|
|
// Copyright Paul A. Bristow 2007.
|
|
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_STATS_CAUCHY_HPP
|
|
#define BOOST_STATS_CAUCHY_HPP
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4127) // conditional expression is constant
|
|
#endif
|
|
|
|
#include <boost/math/distributions/fwd.hpp>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <boost/math/distributions/complement.hpp>
|
|
#include <boost/math/distributions/detail/common_error_handling.hpp>
|
|
#include <boost/config/no_tr1/cmath.hpp>
|
|
|
|
#include <utility>
|
|
|
|
namespace boost{ namespace math
|
|
{
|
|
|
|
template <class RealType, class Policy>
|
|
class cauchy_distribution;
|
|
|
|
namespace detail
|
|
{
|
|
|
|
template <class RealType, class Policy>
|
|
RealType cdf_imp(const cauchy_distribution<RealType, Policy>& dist, const RealType& x, bool complement)
|
|
{
|
|
//
|
|
// This calculates the cdf of the Cauchy distribution and/or its complement.
|
|
//
|
|
// The usual formula for the Cauchy cdf is:
|
|
//
|
|
// cdf = 0.5 + atan(x)/pi
|
|
//
|
|
// But that suffers from cancellation error as x -> -INF.
|
|
//
|
|
// Recall that for x < 0:
|
|
//
|
|
// atan(x) = -pi/2 - atan(1/x)
|
|
//
|
|
// Substituting into the above we get:
|
|
//
|
|
// CDF = -atan(1/x) ; x < 0
|
|
//
|
|
// So the proceedure is to calculate the cdf for -fabs(x)
|
|
// using the above formula, and then subtract from 1 when required
|
|
// to get the result.
|
|
//
|
|
BOOST_MATH_STD_USING // for ADL of std functions
|
|
static const char* function = "boost::math::cdf(cauchy<%1%>&, %1%)";
|
|
RealType result = 0;
|
|
RealType location = dist.location();
|
|
RealType scale = dist.scale();
|
|
if(false == detail::check_location(function, location, &result, Policy()))
|
|
{
|
|
return result;
|
|
}
|
|
if(false == detail::check_scale(function, scale, &result, Policy()))
|
|
{
|
|
return result;
|
|
}
|
|
if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
|
|
{ // cdf +infinity is unity.
|
|
return static_cast<RealType>((complement) ? 0 : 1);
|
|
}
|
|
if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
|
|
{ // cdf -infinity is zero.
|
|
return static_cast<RealType>((complement) ? 1 : 0);
|
|
}
|
|
if(false == detail::check_x(function, x, &result, Policy()))
|
|
{ // Catches x == NaN
|
|
return result;
|
|
}
|
|
RealType mx = -fabs((x - location) / scale); // scale is > 0
|
|
if(mx > -tools::epsilon<RealType>() / 8)
|
|
{ // special case first: x extremely close to location.
|
|
return 0.5;
|
|
}
|
|
result = -atan(1 / mx) / constants::pi<RealType>();
|
|
return (((x > location) != complement) ? 1 - result : result);
|
|
} // cdf
|
|
|
|
template <class RealType, class Policy>
|
|
RealType quantile_imp(
|
|
const cauchy_distribution<RealType, Policy>& dist,
|
|
const RealType& p,
|
|
bool complement)
|
|
{
|
|
// This routine implements the quantile for the Cauchy distribution,
|
|
// the value p may be the probability, or its complement if complement=true.
|
|
//
|
|
// The procedure first performs argument reduction on p to avoid error
|
|
// when calculating the tangent, then calulates the distance from the
|
|
// mid-point of the distribution. This is either added or subtracted
|
|
// from the location parameter depending on whether `complement` is true.
|
|
//
|
|
static const char* function = "boost::math::quantile(cauchy<%1%>&, %1%)";
|
|
BOOST_MATH_STD_USING // for ADL of std functions
|
|
|
|
RealType result = 0;
|
|
RealType location = dist.location();
|
|
RealType scale = dist.scale();
|
|
if(false == detail::check_location(function, location, &result, Policy()))
|
|
{
|
|
return result;
|
|
}
|
|
if(false == detail::check_scale(function, scale, &result, Policy()))
|
|
{
|
|
return result;
|
|
}
|
|
if(false == detail::check_probability(function, p, &result, Policy()))
|
|
{
|
|
return result;
|
|
}
|
|
// Special cases:
|
|
if(p == 1)
|
|
{
|
|
return (complement ? -1 : 1) * policies::raise_overflow_error<RealType>(function, 0, Policy());
|
|
}
|
|
if(p == 0)
|
|
{
|
|
return (complement ? 1 : -1) * policies::raise_overflow_error<RealType>(function, 0, Policy());
|
|
}
|
|
|
|
RealType P = p - floor(p); // argument reduction of p:
|
|
if(P > 0.5)
|
|
{
|
|
P = P - 1;
|
|
}
|
|
if(P == 0.5) // special case:
|
|
{
|
|
return location;
|
|
}
|
|
result = -scale / tan(constants::pi<RealType>() * P);
|
|
return complement ? RealType(location - result) : RealType(location + result);
|
|
} // quantile
|
|
|
|
} // namespace detail
|
|
|
|
template <class RealType = double, class Policy = policies::policy<> >
|
|
class cauchy_distribution
|
|
{
|
|
public:
|
|
typedef RealType value_type;
|
|
typedef Policy policy_type;
|
|
|
|
cauchy_distribution(RealType l_location = 0, RealType l_scale = 1)
|
|
: m_a(l_location), m_hg(l_scale)
|
|
{
|
|
static const char* function = "boost::math::cauchy_distribution<%1%>::cauchy_distribution";
|
|
RealType result;
|
|
detail::check_location(function, l_location, &result, Policy());
|
|
detail::check_scale(function, l_scale, &result, Policy());
|
|
} // cauchy_distribution
|
|
|
|
RealType location()const
|
|
{
|
|
return m_a;
|
|
}
|
|
RealType scale()const
|
|
{
|
|
return m_hg;
|
|
}
|
|
|
|
private:
|
|
RealType m_a; // The location, this is the median of the distribution.
|
|
RealType m_hg; // The scale )or shape), this is the half width at half height.
|
|
};
|
|
|
|
typedef cauchy_distribution<double> cauchy;
|
|
|
|
template <class RealType, class Policy>
|
|
inline const std::pair<RealType, RealType> range(const cauchy_distribution<RealType, Policy>&)
|
|
{ // Range of permissible values for random variable x.
|
|
if (std::numeric_limits<RealType>::has_infinity)
|
|
{
|
|
return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
|
|
}
|
|
else
|
|
{ // Can only use max_value.
|
|
using boost::math::tools::max_value;
|
|
return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max.
|
|
}
|
|
}
|
|
|
|
template <class RealType, class Policy>
|
|
inline const std::pair<RealType, RealType> support(const cauchy_distribution<RealType, Policy>& )
|
|
{ // Range of supported values for random variable x.
|
|
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
|
|
if (std::numeric_limits<RealType>::has_infinity)
|
|
{
|
|
return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
|
|
}
|
|
else
|
|
{ // Can only use max_value.
|
|
using boost::math::tools::max_value;
|
|
return std::pair<RealType, RealType>(-tools::max_value<RealType>(), max_value<RealType>()); // - to + max.
|
|
}
|
|
}
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType pdf(const cauchy_distribution<RealType, Policy>& dist, const RealType& x)
|
|
{
|
|
BOOST_MATH_STD_USING // for ADL of std functions
|
|
|
|
static const char* function = "boost::math::pdf(cauchy<%1%>&, %1%)";
|
|
RealType result = 0;
|
|
RealType location = dist.location();
|
|
RealType scale = dist.scale();
|
|
if(false == detail::check_scale("boost::math::pdf(cauchy<%1%>&, %1%)", scale, &result, Policy()))
|
|
{
|
|
return result;
|
|
}
|
|
if(false == detail::check_location("boost::math::pdf(cauchy<%1%>&, %1%)", location, &result, Policy()))
|
|
{
|
|
return result;
|
|
}
|
|
if((boost::math::isinf)(x))
|
|
{
|
|
return 0; // pdf + and - infinity is zero.
|
|
}
|
|
// These produce MSVC 4127 warnings, so the above used instead.
|
|
//if(std::numeric_limits<RealType>::has_infinity && abs(x) == std::numeric_limits<RealType>::infinity())
|
|
//{ // pdf + and - infinity is zero.
|
|
// return 0;
|
|
//}
|
|
|
|
if(false == detail::check_x(function, x, &result, Policy()))
|
|
{ // Catches x = NaN
|
|
return result;
|
|
}
|
|
|
|
RealType xs = (x - location) / scale;
|
|
result = 1 / (constants::pi<RealType>() * scale * (1 + xs * xs));
|
|
return result;
|
|
} // pdf
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType cdf(const cauchy_distribution<RealType, Policy>& dist, const RealType& x)
|
|
{
|
|
return detail::cdf_imp(dist, x, false);
|
|
} // cdf
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType quantile(const cauchy_distribution<RealType, Policy>& dist, const RealType& p)
|
|
{
|
|
return detail::quantile_imp(dist, p, false);
|
|
} // quantile
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType cdf(const complemented2_type<cauchy_distribution<RealType, Policy>, RealType>& c)
|
|
{
|
|
return detail::cdf_imp(c.dist, c.param, true);
|
|
} // cdf complement
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType quantile(const complemented2_type<cauchy_distribution<RealType, Policy>, RealType>& c)
|
|
{
|
|
return detail::quantile_imp(c.dist, c.param, true);
|
|
} // quantile complement
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType mean(const cauchy_distribution<RealType, Policy>&)
|
|
{ // There is no mean:
|
|
typedef typename Policy::assert_undefined_type assert_type;
|
|
BOOST_STATIC_ASSERT(assert_type::value == 0);
|
|
|
|
return policies::raise_domain_error<RealType>(
|
|
"boost::math::mean(cauchy<%1%>&)",
|
|
"The Cauchy distribution does not have a mean: "
|
|
"the only possible return value is %1%.",
|
|
std::numeric_limits<RealType>::quiet_NaN(), Policy());
|
|
}
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType variance(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
|
{
|
|
// There is no variance:
|
|
typedef typename Policy::assert_undefined_type assert_type;
|
|
BOOST_STATIC_ASSERT(assert_type::value == 0);
|
|
|
|
return policies::raise_domain_error<RealType>(
|
|
"boost::math::variance(cauchy<%1%>&)",
|
|
"The Cauchy distribution does not have a variance: "
|
|
"the only possible return value is %1%.",
|
|
std::numeric_limits<RealType>::quiet_NaN(), Policy());
|
|
}
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType mode(const cauchy_distribution<RealType, Policy>& dist)
|
|
{
|
|
return dist.location();
|
|
}
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType median(const cauchy_distribution<RealType, Policy>& dist)
|
|
{
|
|
return dist.location();
|
|
}
|
|
template <class RealType, class Policy>
|
|
inline RealType skewness(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
|
{
|
|
// There is no skewness:
|
|
typedef typename Policy::assert_undefined_type assert_type;
|
|
BOOST_STATIC_ASSERT(assert_type::value == 0);
|
|
|
|
return policies::raise_domain_error<RealType>(
|
|
"boost::math::skewness(cauchy<%1%>&)",
|
|
"The Cauchy distribution does not have a skewness: "
|
|
"the only possible return value is %1%.",
|
|
std::numeric_limits<RealType>::quiet_NaN(), Policy()); // infinity?
|
|
}
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType kurtosis(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
|
{
|
|
// There is no kurtosis:
|
|
typedef typename Policy::assert_undefined_type assert_type;
|
|
BOOST_STATIC_ASSERT(assert_type::value == 0);
|
|
|
|
return policies::raise_domain_error<RealType>(
|
|
"boost::math::kurtosis(cauchy<%1%>&)",
|
|
"The Cauchy distribution does not have a kurtosis: "
|
|
"the only possible return value is %1%.",
|
|
std::numeric_limits<RealType>::quiet_NaN(), Policy());
|
|
}
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType kurtosis_excess(const cauchy_distribution<RealType, Policy>& /*dist*/)
|
|
{
|
|
// There is no kurtosis excess:
|
|
typedef typename Policy::assert_undefined_type assert_type;
|
|
BOOST_STATIC_ASSERT(assert_type::value == 0);
|
|
|
|
return policies::raise_domain_error<RealType>(
|
|
"boost::math::kurtosis_excess(cauchy<%1%>&)",
|
|
"The Cauchy distribution does not have a kurtosis: "
|
|
"the only possible return value is %1%.",
|
|
std::numeric_limits<RealType>::quiet_NaN(), Policy());
|
|
}
|
|
|
|
} // namespace math
|
|
} // namespace boost
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
// This include must be at the end, *after* the accessors
|
|
// for this distribution have been defined, in order to
|
|
// keep compilers that support two-phase lookup happy.
|
|
#include <boost/math/distributions/detail/derived_accessors.hpp>
|
|
|
|
#endif // BOOST_STATS_CAUCHY_HPP
|