ecency-mobile/ios/Pods/boost-for-react-native/boost/polygon/detail/polygon_simplify.hpp

117 lines
4.0 KiB
C++

// Copyright 2011, Andrew Ross
//
// Use, modification and distribution are subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt).
#ifndef BOOST_POLYGON_DETAIL_SIMPLIFY_HPP
#define BOOST_POLYGON_DETAIL_SIMPLIFY_HPP
#include <vector>
namespace boost { namespace polygon { namespace detail { namespace simplify_detail {
// Does a simplification/optimization pass on the polygon. If a given
// vertex lies within "len" of the line segment joining its neighbor
// vertices, it is removed.
template <typename T> //T is a model of point concept
std::size_t simplify(std::vector<T>& dst, const std::vector<T>& src,
typename coordinate_traits<
typename point_traits<T>::coordinate_type
>::coordinate_distance len)
{
using namespace boost::polygon;
typedef typename point_traits<T>::coordinate_type coordinate_type;
typedef typename coordinate_traits<coordinate_type>::area_type ftype;
typedef typename std::vector<T>::const_iterator iter;
std::vector<T> out;
out.reserve(src.size());
dst = src;
std::size_t final_result = 0;
std::size_t orig_size = src.size();
//I can't use == if T doesn't provide it, so use generic point concept compare
bool closed = equivalence(src.front(), src.back());
//we need to keep smoothing until we don't find points to remove
//because removing points in the first iteration through the
//polygon may leave it in a state where more removal is possible
bool not_done = true;
while(not_done) {
if(dst.size() < 3) {
dst.clear();
return orig_size;
}
// Start with the second, test for the last point
// explicitly, and exit after looping back around to the first.
ftype len2 = ftype(len) * ftype(len);
for(iter prev=dst.begin(), i=prev+1, next; /**/; i = next) {
next = i+1;
if(next == dst.end())
next = dst.begin();
// points A, B, C
ftype ax = x(*prev), ay = y(*prev);
ftype bx = x(*i), by = y(*i);
ftype cx = x(*next), cy = y(*next);
// vectors AB, BC and AC:
ftype abx = bx-ax, aby = by-ay;
ftype bcx = cx-bx, bcy = cy-by;
ftype acx = cx-ax, acy = cy-ay;
// dot products
ftype ab_ab = abx*abx + aby*aby;
ftype bc_bc = bcx*bcx + bcy*bcy;
ftype ac_ac = acx*acx + acy*acy;
ftype ab_ac = abx*acx + aby*acy;
// projection of AB along AC
ftype projf = ab_ac / ac_ac;
ftype projx = acx * projf, projy = acy * projf;
// perpendicular vector from the line AC to point B (i.e. AB - proj)
ftype perpx = abx - projx, perpy = aby - projy;
// Squared fractional distance of projection. FIXME: can
// remove this division, the decisions below can be made with
// just the sign of the quotient and a check to see if
// abs(numerator) is greater than abs(divisor).
ftype f2 = (projx*acx + projy*acx) / ac_ac;
// Square of the relevant distance from point B:
ftype dist2;
if (f2 < 0) dist2 = ab_ab;
else if(f2 > 1) dist2 = bc_bc;
else dist2 = perpx*perpx + perpy*perpy;
if(dist2 > len2) {
prev = i; // bump prev, we didn't remove the segment
out.push_back(*i);
}
if(i == dst.begin())
break;
}
std::size_t result = dst.size() - out.size();
if(result == 0) {
not_done = false;
} else {
final_result += result;
dst = out;
out.clear();
}
} //end of while loop
if(closed) {
//if the input was closed we want the output to be closed
--final_result;
dst.push_back(dst.front());
}
return final_result;
}
}}}}
#endif