mirror of
https://github.com/ecency/ecency-mobile.git
synced 2024-12-22 04:41:43 +03:00
117 lines
4.0 KiB
C++
117 lines
4.0 KiB
C++
// Copyright 2011, Andrew Ross
|
|
//
|
|
// Use, modification and distribution are subject to the Boost Software License,
|
|
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt).
|
|
#ifndef BOOST_POLYGON_DETAIL_SIMPLIFY_HPP
|
|
#define BOOST_POLYGON_DETAIL_SIMPLIFY_HPP
|
|
#include <vector>
|
|
|
|
namespace boost { namespace polygon { namespace detail { namespace simplify_detail {
|
|
|
|
// Does a simplification/optimization pass on the polygon. If a given
|
|
// vertex lies within "len" of the line segment joining its neighbor
|
|
// vertices, it is removed.
|
|
template <typename T> //T is a model of point concept
|
|
std::size_t simplify(std::vector<T>& dst, const std::vector<T>& src,
|
|
typename coordinate_traits<
|
|
typename point_traits<T>::coordinate_type
|
|
>::coordinate_distance len)
|
|
{
|
|
using namespace boost::polygon;
|
|
typedef typename point_traits<T>::coordinate_type coordinate_type;
|
|
typedef typename coordinate_traits<coordinate_type>::area_type ftype;
|
|
typedef typename std::vector<T>::const_iterator iter;
|
|
|
|
std::vector<T> out;
|
|
out.reserve(src.size());
|
|
dst = src;
|
|
std::size_t final_result = 0;
|
|
std::size_t orig_size = src.size();
|
|
|
|
//I can't use == if T doesn't provide it, so use generic point concept compare
|
|
bool closed = equivalence(src.front(), src.back());
|
|
|
|
//we need to keep smoothing until we don't find points to remove
|
|
//because removing points in the first iteration through the
|
|
//polygon may leave it in a state where more removal is possible
|
|
bool not_done = true;
|
|
while(not_done) {
|
|
if(dst.size() < 3) {
|
|
dst.clear();
|
|
return orig_size;
|
|
}
|
|
|
|
// Start with the second, test for the last point
|
|
// explicitly, and exit after looping back around to the first.
|
|
ftype len2 = ftype(len) * ftype(len);
|
|
for(iter prev=dst.begin(), i=prev+1, next; /**/; i = next) {
|
|
next = i+1;
|
|
if(next == dst.end())
|
|
next = dst.begin();
|
|
|
|
// points A, B, C
|
|
ftype ax = x(*prev), ay = y(*prev);
|
|
ftype bx = x(*i), by = y(*i);
|
|
ftype cx = x(*next), cy = y(*next);
|
|
|
|
// vectors AB, BC and AC:
|
|
ftype abx = bx-ax, aby = by-ay;
|
|
ftype bcx = cx-bx, bcy = cy-by;
|
|
ftype acx = cx-ax, acy = cy-ay;
|
|
|
|
// dot products
|
|
ftype ab_ab = abx*abx + aby*aby;
|
|
ftype bc_bc = bcx*bcx + bcy*bcy;
|
|
ftype ac_ac = acx*acx + acy*acy;
|
|
ftype ab_ac = abx*acx + aby*acy;
|
|
|
|
// projection of AB along AC
|
|
ftype projf = ab_ac / ac_ac;
|
|
ftype projx = acx * projf, projy = acy * projf;
|
|
|
|
// perpendicular vector from the line AC to point B (i.e. AB - proj)
|
|
ftype perpx = abx - projx, perpy = aby - projy;
|
|
|
|
// Squared fractional distance of projection. FIXME: can
|
|
// remove this division, the decisions below can be made with
|
|
// just the sign of the quotient and a check to see if
|
|
// abs(numerator) is greater than abs(divisor).
|
|
ftype f2 = (projx*acx + projy*acx) / ac_ac;
|
|
|
|
// Square of the relevant distance from point B:
|
|
ftype dist2;
|
|
if (f2 < 0) dist2 = ab_ab;
|
|
else if(f2 > 1) dist2 = bc_bc;
|
|
else dist2 = perpx*perpx + perpy*perpy;
|
|
|
|
if(dist2 > len2) {
|
|
prev = i; // bump prev, we didn't remove the segment
|
|
out.push_back(*i);
|
|
}
|
|
|
|
if(i == dst.begin())
|
|
break;
|
|
}
|
|
std::size_t result = dst.size() - out.size();
|
|
if(result == 0) {
|
|
not_done = false;
|
|
} else {
|
|
final_result += result;
|
|
dst = out;
|
|
out.clear();
|
|
}
|
|
} //end of while loop
|
|
if(closed) {
|
|
//if the input was closed we want the output to be closed
|
|
--final_result;
|
|
dst.push_back(dst.front());
|
|
}
|
|
return final_result;
|
|
}
|
|
|
|
|
|
}}}}
|
|
|
|
#endif
|