mirror of
https://github.com/ecency/ecency-mobile.git
synced 2024-12-22 21:01:31 +03:00
165 lines
5.9 KiB
C++
165 lines
5.9 KiB
C++
// Copyright 2004 The Trustees of Indiana University.
|
|
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// Authors: Douglas Gregor
|
|
// Andrew Lumsdaine
|
|
#ifndef BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP
|
|
#define BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP
|
|
|
|
#include <boost/graph/betweenness_centrality.hpp>
|
|
#include <boost/graph/graph_traits.hpp>
|
|
#include <boost/graph/graph_utility.hpp>
|
|
#include <boost/pending/indirect_cmp.hpp>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include <boost/property_map/property_map.hpp>
|
|
|
|
namespace boost {
|
|
|
|
/** Threshold termination function for the betweenness centrality
|
|
* clustering algorithm.
|
|
*/
|
|
template<typename T>
|
|
struct bc_clustering_threshold
|
|
{
|
|
typedef T centrality_type;
|
|
|
|
/// Terminate clustering when maximum absolute edge centrality is
|
|
/// below the given threshold.
|
|
explicit bc_clustering_threshold(T threshold)
|
|
: threshold(threshold), dividend(1.0) {}
|
|
|
|
/**
|
|
* Terminate clustering when the maximum edge centrality is below
|
|
* the given threshold.
|
|
*
|
|
* @param threshold the threshold value
|
|
*
|
|
* @param g the graph on which the threshold will be calculated
|
|
*
|
|
* @param normalize when true, the threshold is compared against the
|
|
* normalized edge centrality based on the input graph; otherwise,
|
|
* the threshold is compared against the absolute edge centrality.
|
|
*/
|
|
template<typename Graph>
|
|
bc_clustering_threshold(T threshold, const Graph& g, bool normalize = true)
|
|
: threshold(threshold), dividend(1.0)
|
|
{
|
|
if (normalize) {
|
|
typename graph_traits<Graph>::vertices_size_type n = num_vertices(g);
|
|
dividend = T((n - 1) * (n - 2)) / T(2);
|
|
}
|
|
}
|
|
|
|
/** Returns true when the given maximum edge centrality (potentially
|
|
* normalized) falls below the threshold.
|
|
*/
|
|
template<typename Graph, typename Edge>
|
|
bool operator()(T max_centrality, Edge, const Graph&)
|
|
{
|
|
return (max_centrality / dividend) < threshold;
|
|
}
|
|
|
|
protected:
|
|
T threshold;
|
|
T dividend;
|
|
};
|
|
|
|
/** Graph clustering based on edge betweenness centrality.
|
|
*
|
|
* This algorithm implements graph clustering based on edge
|
|
* betweenness centrality. It is an iterative algorithm, where in each
|
|
* step it compute the edge betweenness centrality (via @ref
|
|
* brandes_betweenness_centrality) and removes the edge with the
|
|
* maximum betweenness centrality. The @p done function object
|
|
* determines when the algorithm terminates (the edge found when the
|
|
* algorithm terminates will not be removed).
|
|
*
|
|
* @param g The graph on which clustering will be performed. The type
|
|
* of this parameter (@c MutableGraph) must be a model of the
|
|
* VertexListGraph, IncidenceGraph, EdgeListGraph, and Mutable Graph
|
|
* concepts.
|
|
*
|
|
* @param done The function object that indicates termination of the
|
|
* algorithm. It must be a ternary function object thats accepts the
|
|
* maximum centrality, the descriptor of the edge that will be
|
|
* removed, and the graph @p g.
|
|
*
|
|
* @param edge_centrality (UTIL/OUT) The property map that will store
|
|
* the betweenness centrality for each edge. When the algorithm
|
|
* terminates, it will contain the edge centralities for the
|
|
* graph. The type of this property map must model the
|
|
* ReadWritePropertyMap concept. Defaults to an @c
|
|
* iterator_property_map whose value type is
|
|
* @c Done::centrality_type and using @c get(edge_index, g) for the
|
|
* index map.
|
|
*
|
|
* @param vertex_index (IN) The property map that maps vertices to
|
|
* indices in the range @c [0, num_vertices(g)). This type of this
|
|
* property map must model the ReadablePropertyMap concept and its
|
|
* value type must be an integral type. Defaults to
|
|
* @c get(vertex_index, g).
|
|
*/
|
|
template<typename MutableGraph, typename Done, typename EdgeCentralityMap,
|
|
typename VertexIndexMap>
|
|
void
|
|
betweenness_centrality_clustering(MutableGraph& g, Done done,
|
|
EdgeCentralityMap edge_centrality,
|
|
VertexIndexMap vertex_index)
|
|
{
|
|
typedef typename property_traits<EdgeCentralityMap>::value_type
|
|
centrality_type;
|
|
typedef typename graph_traits<MutableGraph>::edge_iterator edge_iterator;
|
|
typedef typename graph_traits<MutableGraph>::edge_descriptor edge_descriptor;
|
|
|
|
if (has_no_edges(g)) return;
|
|
|
|
// Function object that compares the centrality of edges
|
|
indirect_cmp<EdgeCentralityMap, std::less<centrality_type> >
|
|
cmp(edge_centrality);
|
|
|
|
bool is_done;
|
|
do {
|
|
brandes_betweenness_centrality(g,
|
|
edge_centrality_map(edge_centrality)
|
|
.vertex_index_map(vertex_index));
|
|
std::pair<edge_iterator, edge_iterator> edges_iters = edges(g);
|
|
edge_descriptor e = *max_element(edges_iters.first, edges_iters.second, cmp);
|
|
is_done = done(get(edge_centrality, e), e, g);
|
|
if (!is_done) remove_edge(e, g);
|
|
} while (!is_done && !has_no_edges(g));
|
|
}
|
|
|
|
/**
|
|
* \overload
|
|
*/
|
|
template<typename MutableGraph, typename Done, typename EdgeCentralityMap>
|
|
void
|
|
betweenness_centrality_clustering(MutableGraph& g, Done done,
|
|
EdgeCentralityMap edge_centrality)
|
|
{
|
|
betweenness_centrality_clustering(g, done, edge_centrality,
|
|
get(vertex_index, g));
|
|
}
|
|
|
|
/**
|
|
* \overload
|
|
*/
|
|
template<typename MutableGraph, typename Done>
|
|
void
|
|
betweenness_centrality_clustering(MutableGraph& g, Done done)
|
|
{
|
|
typedef typename Done::centrality_type centrality_type;
|
|
std::vector<centrality_type> edge_centrality(num_edges(g));
|
|
betweenness_centrality_clustering(g, done,
|
|
make_iterator_property_map(edge_centrality.begin(), get(edge_index, g)),
|
|
get(vertex_index, g));
|
|
}
|
|
|
|
} // end namespace boost
|
|
|
|
#endif // BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP
|