ecency-mobile/ios/Pods/boost-for-react-native/boost/numeric/ublas/traits.hpp

760 lines
26 KiB
C++

//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_TRAITS_
#define _BOOST_UBLAS_TRAITS_
#include <iterator>
#include <complex>
#include <boost/config/no_tr1/cmath.hpp>
#include <boost/numeric/ublas/detail/config.hpp>
#include <boost/numeric/ublas/detail/iterator.hpp>
#include <boost/numeric/ublas/detail/returntype_deduction.hpp>
#ifdef BOOST_UBLAS_USE_INTERVAL
#include <boost/numeric/interval.hpp>
#endif
#include <boost/type_traits.hpp>
#include <complex>
#include <boost/typeof/typeof.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_float.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/is_unsigned.hpp>
#include <boost/mpl/and.hpp>
// anonymous namespace to avoid ADL issues
namespace {
template<class T> T boost_numeric_ublas_sqrt (const T& t) {
using namespace std;
// we'll find either std::sqrt or else another version via ADL:
return sqrt (t);
}
template<typename T>
inline typename boost::disable_if<
boost::is_unsigned<T>, T >::type
boost_numeric_ublas_abs (const T &t ) {
using namespace std;
return abs( t );
}
template<typename T>
inline typename boost::enable_if<
boost::is_unsigned<T>, T >::type
boost_numeric_ublas_abs (const T &t ) {
return t;
}
}
namespace boost { namespace numeric { namespace ublas {
template<typename R, typename I>
typename boost::enable_if<
mpl::and_<
boost::is_float<R>,
boost::is_integral<I>
>,
std::complex<R> >::type inline operator+ (I in1, std::complex<R> const& in2 ) {
return R (in1) + in2;
}
template<typename R, typename I>
typename boost::enable_if<
mpl::and_<
boost::is_float<R>,
boost::is_integral<I>
>,
std::complex<R> >::type inline operator+ (std::complex<R> const& in1, I in2) {
return in1 + R (in2);
}
template<typename R, typename I>
typename boost::enable_if<
mpl::and_<
boost::is_float<R>,
boost::is_integral<I>
>,
std::complex<R> >::type inline operator- (I in1, std::complex<R> const& in2) {
return R (in1) - in2;
}
template<typename R, typename I>
typename boost::enable_if<
mpl::and_<
boost::is_float<R>,
boost::is_integral<I>
>,
std::complex<R> >::type inline operator- (std::complex<R> const& in1, I in2) {
return in1 - R (in2);
}
template<typename R, typename I>
typename boost::enable_if<
mpl::and_<
boost::is_float<R>,
boost::is_integral<I>
>,
std::complex<R> >::type inline operator* (I in1, std::complex<R> const& in2) {
return R (in1) * in2;
}
template<typename R, typename I>
typename boost::enable_if<
mpl::and_<
boost::is_float<R>,
boost::is_integral<I>
>,
std::complex<R> >::type inline operator* (std::complex<R> const& in1, I in2) {
return in1 * R(in2);
}
template<typename R, typename I>
typename boost::enable_if<
mpl::and_<
boost::is_float<R>,
boost::is_integral<I>
>,
std::complex<R> >::type inline operator/ (I in1, std::complex<R> const& in2) {
return R(in1) / in2;
}
template<typename R, typename I>
typename boost::enable_if<
mpl::and_<
boost::is_float<R>,
boost::is_integral<I>
>,
std::complex<R> >::type inline operator/ (std::complex<R> const& in1, I in2) {
return in1 / R (in2);
}
// Use Joel de Guzman's return type deduction
// uBLAS assumes a common return type for all binary arithmetic operators
template<class X, class Y>
struct promote_traits {
typedef type_deduction_detail::base_result_of<X, Y> base_type;
static typename base_type::x_type x;
static typename base_type::y_type y;
static const std::size_t size = sizeof (
type_deduction_detail::test<
typename base_type::x_type
, typename base_type::y_type
>(x + y) // Use x+y to stand of all the arithmetic actions
);
static const std::size_t index = (size / sizeof (char)) - 1;
typedef typename mpl::at_c<
typename base_type::types, index>::type id;
typedef typename id::type promote_type;
};
// Type traits - generic numeric properties and functions
template<class T>
struct type_traits;
// Define properties for a generic scalar type
template<class T>
struct scalar_traits {
typedef scalar_traits<T> self_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef T real_type;
typedef real_type precision_type; // we do not know what type has more precision then the real_type
static const unsigned plus_complexity = 1;
static const unsigned multiplies_complexity = 1;
static
BOOST_UBLAS_INLINE
real_type real (const_reference t) {
return t;
}
static
BOOST_UBLAS_INLINE
real_type imag (const_reference /*t*/) {
return 0;
}
static
BOOST_UBLAS_INLINE
value_type conj (const_reference t) {
return t;
}
static
BOOST_UBLAS_INLINE
real_type type_abs (const_reference t) {
return boost_numeric_ublas_abs (t);
}
static
BOOST_UBLAS_INLINE
value_type type_sqrt (const_reference t) {
// force a type conversion back to value_type for intgral types
return value_type (boost_numeric_ublas_sqrt (t));
}
static
BOOST_UBLAS_INLINE
real_type norm_1 (const_reference t) {
return self_type::type_abs (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_2 (const_reference t) {
return self_type::type_abs (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_inf (const_reference t) {
return self_type::type_abs (t);
}
static
BOOST_UBLAS_INLINE
bool equals (const_reference t1, const_reference t2) {
return self_type::norm_inf (t1 - t2) < BOOST_UBLAS_TYPE_CHECK_EPSILON *
(std::max) ((std::max) (self_type::norm_inf (t1),
self_type::norm_inf (t2)),
BOOST_UBLAS_TYPE_CHECK_MIN);
}
};
// Define default type traits, assume T is a scalar type
template<class T>
struct type_traits : scalar_traits <T> {
typedef type_traits<T> self_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef T real_type;
typedef real_type precision_type;
static const unsigned multiplies_complexity = 1;
};
// Define real type traits
template<>
struct type_traits<float> : scalar_traits<float> {
typedef type_traits<float> self_type;
typedef float value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef value_type real_type;
typedef double precision_type;
};
template<>
struct type_traits<double> : scalar_traits<double> {
typedef type_traits<double> self_type;
typedef double value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef value_type real_type;
typedef long double precision_type;
};
template<>
struct type_traits<long double> : scalar_traits<long double> {
typedef type_traits<long double> self_type;
typedef long double value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef value_type real_type;
typedef value_type precision_type;
};
// Define properties for a generic complex type
template<class T>
struct complex_traits {
typedef complex_traits<T> self_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef typename T::value_type real_type;
typedef real_type precision_type; // we do not know what type has more precision then the real_type
static const unsigned plus_complexity = 2;
static const unsigned multiplies_complexity = 6;
static
BOOST_UBLAS_INLINE
real_type real (const_reference t) {
return std::real (t);
}
static
BOOST_UBLAS_INLINE
real_type imag (const_reference t) {
return std::imag (t);
}
static
BOOST_UBLAS_INLINE
value_type conj (const_reference t) {
return std::conj (t);
}
static
BOOST_UBLAS_INLINE
real_type type_abs (const_reference t) {
return abs (t);
}
static
BOOST_UBLAS_INLINE
value_type type_sqrt (const_reference t) {
return sqrt (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_1 (const_reference t) {
return self_type::type_abs (t);
// original computation has been replaced because a complex number should behave like a scalar type
// return type_traits<real_type>::type_abs (self_type::real (t)) +
// type_traits<real_type>::type_abs (self_type::imag (t));
}
static
BOOST_UBLAS_INLINE
real_type norm_2 (const_reference t) {
return self_type::type_abs (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_inf (const_reference t) {
return self_type::type_abs (t);
// original computation has been replaced because a complex number should behave like a scalar type
// return (std::max) (type_traits<real_type>::type_abs (self_type::real (t)),
// type_traits<real_type>::type_abs (self_type::imag (t)));
}
static
BOOST_UBLAS_INLINE
bool equals (const_reference t1, const_reference t2) {
return self_type::norm_inf (t1 - t2) < BOOST_UBLAS_TYPE_CHECK_EPSILON *
(std::max) ((std::max) (self_type::norm_inf (t1),
self_type::norm_inf (t2)),
BOOST_UBLAS_TYPE_CHECK_MIN);
}
};
// Define complex type traits
template<>
struct type_traits<std::complex<float> > : complex_traits<std::complex<float> >{
typedef type_traits<std::complex<float> > self_type;
typedef std::complex<float> value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef float real_type;
typedef std::complex<double> precision_type;
};
template<>
struct type_traits<std::complex<double> > : complex_traits<std::complex<double> >{
typedef type_traits<std::complex<double> > self_type;
typedef std::complex<double> value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef double real_type;
typedef std::complex<long double> precision_type;
};
template<>
struct type_traits<std::complex<long double> > : complex_traits<std::complex<long double> > {
typedef type_traits<std::complex<long double> > self_type;
typedef std::complex<long double> value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef long double real_type;
typedef value_type precision_type;
};
#ifdef BOOST_UBLAS_USE_INTERVAL
// Define scalar interval type traits
template<>
struct type_traits<boost::numeric::interval<float> > : scalar_traits<boost::numeric::interval<float> > {
typedef type_traits<boost::numeric::interval<float> > self_type;
typedef boost::numeric::interval<float> value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef value_type real_type;
typedef boost::numeric::interval<double> precision_type;
};
template<>
struct type_traits<boost::numeric::interval<double> > : scalar_traits<boost::numeric::interval<double> > {
typedef type_traits<boost::numeric::interval<double> > self_type;
typedef boost::numeric::interval<double> value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef value_type real_type;
typedef boost::numeric::interval<long double> precision_type;
};
template<>
struct type_traits<boost::numeric::interval<long double> > : scalar_traits<boost::numeric::interval<long double> > {
typedef type_traits<boost::numeric::interval<long double> > self_type;
typedef boost::numeric::interval<long double> value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef value_type real_type;
typedef value_type precision_type;
};
#endif
// Storage tags -- hierarchical definition of storage characteristics
struct unknown_storage_tag {};
struct sparse_proxy_tag: public unknown_storage_tag {};
struct sparse_tag: public sparse_proxy_tag {};
struct packed_proxy_tag: public sparse_proxy_tag {};
struct packed_tag: public packed_proxy_tag {};
struct dense_proxy_tag: public packed_proxy_tag {};
struct dense_tag: public dense_proxy_tag {};
template<class S1, class S2>
struct storage_restrict_traits {
typedef S1 storage_category;
};
template<>
struct storage_restrict_traits<sparse_tag, dense_proxy_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<sparse_tag, packed_proxy_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<sparse_tag, sparse_proxy_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<packed_tag, dense_proxy_tag> {
typedef packed_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<packed_tag, packed_proxy_tag> {
typedef packed_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<packed_tag, sparse_proxy_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<packed_proxy_tag, sparse_proxy_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<dense_tag, dense_proxy_tag> {
typedef dense_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<dense_tag, packed_proxy_tag> {
typedef packed_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<dense_tag, sparse_proxy_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<dense_proxy_tag, packed_proxy_tag> {
typedef packed_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<dense_proxy_tag, sparse_proxy_tag> {
typedef sparse_proxy_tag storage_category;
};
// Iterator tags -- hierarchical definition of storage characteristics
struct sparse_bidirectional_iterator_tag : public std::bidirectional_iterator_tag {};
struct packed_random_access_iterator_tag : public std::random_access_iterator_tag {};
struct dense_random_access_iterator_tag : public packed_random_access_iterator_tag {};
// Thanks to Kresimir Fresl for convincing Comeau with iterator_base_traits ;-)
template<class IC>
struct iterator_base_traits {};
template<>
struct iterator_base_traits<std::forward_iterator_tag> {
template<class I, class T>
struct iterator_base {
typedef forward_iterator_base<std::forward_iterator_tag, I, T> type;
};
};
template<>
struct iterator_base_traits<std::bidirectional_iterator_tag> {
template<class I, class T>
struct iterator_base {
typedef bidirectional_iterator_base<std::bidirectional_iterator_tag, I, T> type;
};
};
template<>
struct iterator_base_traits<sparse_bidirectional_iterator_tag> {
template<class I, class T>
struct iterator_base {
typedef bidirectional_iterator_base<sparse_bidirectional_iterator_tag, I, T> type;
};
};
template<>
struct iterator_base_traits<std::random_access_iterator_tag> {
template<class I, class T>
struct iterator_base {
typedef random_access_iterator_base<std::random_access_iterator_tag, I, T> type;
};
};
template<>
struct iterator_base_traits<packed_random_access_iterator_tag> {
template<class I, class T>
struct iterator_base {
typedef random_access_iterator_base<packed_random_access_iterator_tag, I, T> type;
};
};
template<>
struct iterator_base_traits<dense_random_access_iterator_tag> {
template<class I, class T>
struct iterator_base {
typedef random_access_iterator_base<dense_random_access_iterator_tag, I, T> type;
};
};
template<class I1, class I2>
struct iterator_restrict_traits {
typedef I1 iterator_category;
};
template<>
struct iterator_restrict_traits<packed_random_access_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_bidirectional_iterator_tag iterator_category;
};
template<>
struct iterator_restrict_traits<sparse_bidirectional_iterator_tag, packed_random_access_iterator_tag> {
typedef sparse_bidirectional_iterator_tag iterator_category;
};
template<>
struct iterator_restrict_traits<dense_random_access_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_bidirectional_iterator_tag iterator_category;
};
template<>
struct iterator_restrict_traits<sparse_bidirectional_iterator_tag, dense_random_access_iterator_tag> {
typedef sparse_bidirectional_iterator_tag iterator_category;
};
template<>
struct iterator_restrict_traits<dense_random_access_iterator_tag, packed_random_access_iterator_tag> {
typedef packed_random_access_iterator_tag iterator_category;
};
template<>
struct iterator_restrict_traits<packed_random_access_iterator_tag, dense_random_access_iterator_tag> {
typedef packed_random_access_iterator_tag iterator_category;
};
template<class I>
BOOST_UBLAS_INLINE
void increment (I &it, const I &it_end, typename I::difference_type compare, packed_random_access_iterator_tag) {
it += (std::min) (compare, it_end - it);
}
template<class I>
BOOST_UBLAS_INLINE
void increment (I &it, const I &/* it_end */, typename I::difference_type /* compare */, sparse_bidirectional_iterator_tag) {
++ it;
}
template<class I>
BOOST_UBLAS_INLINE
void increment (I &it, const I &it_end, typename I::difference_type compare) {
increment (it, it_end, compare, typename I::iterator_category ());
}
template<class I>
BOOST_UBLAS_INLINE
void increment (I &it, const I &it_end) {
#if BOOST_UBLAS_TYPE_CHECK
I cit (it);
while (cit != it_end) {
BOOST_UBLAS_CHECK (*cit == typename I::value_type/*zero*/(), internal_logic ());
++ cit;
}
#endif
it = it_end;
}
namespace detail {
// specialisation which define whether a type has a trivial constructor
// or not. This is used by array types.
template<typename T>
struct has_trivial_constructor : public boost::has_trivial_constructor<T> {};
template<typename T>
struct has_trivial_destructor : public boost::has_trivial_destructor<T> {};
template<typename FLT>
struct has_trivial_constructor<std::complex<FLT> > : public has_trivial_constructor<FLT> {};
template<typename FLT>
struct has_trivial_destructor<std::complex<FLT> > : public has_trivial_destructor<FLT> {};
}
/** \brief Traits class to extract type information from a constant matrix or vector CONTAINER.
*
*/
template < class E >
struct container_view_traits {
/// type of indices
typedef typename E::size_type size_type;
/// type of differences of indices
typedef typename E::difference_type difference_type;
/// storage category: \c unknown_storage_tag, \c dense_tag, \c packed_tag, ...
typedef typename E::storage_category storage_category;
/// type of elements
typedef typename E::value_type value_type;
/// const reference to an element
typedef typename E::const_reference const_reference;
/// type used in expressions to mark a reference to this class (usually a const container_reference<const E> or the class itself)
typedef typename E::const_closure_type const_closure_type;
};
/** \brief Traits class to extract additional type information from a mutable matrix or vector CONTAINER.
*
*/
template < class E >
struct mutable_container_traits {
/// reference to an element
typedef typename E::reference reference;
/// type used in expressions to mark a reference to this class (usually a container_reference<E> or the class itself)
typedef typename E::closure_type closure_type;
};
/** \brief Traits class to extract type information from a matrix or vector CONTAINER.
*
*/
template < class E >
struct container_traits
: container_view_traits<E>, mutable_container_traits<E> {
};
/** \brief Traits class to extract type information from a constant MATRIX.
*
*/
template < class MATRIX >
struct matrix_view_traits : container_view_traits <MATRIX> {
/// orientation of the matrix, either \c row_major_tag, \c column_major_tag or \c unknown_orientation_tag
typedef typename MATRIX::orientation_category orientation_category;
/// row iterator for the matrix
typedef typename MATRIX::const_iterator1 const_iterator1;
/// column iterator for the matrix
typedef typename MATRIX::const_iterator2 const_iterator2;
};
/** \brief Traits class to extract additional type information from a mutable MATRIX.
*
*/
template < class MATRIX >
struct mutable_matrix_traits
: mutable_container_traits <MATRIX> {
/// row iterator for the matrix
typedef typename MATRIX::iterator1 iterator1;
/// column iterator for the matrix
typedef typename MATRIX::iterator2 iterator2;
};
/** \brief Traits class to extract type information from a MATRIX.
*
*/
template < class MATRIX >
struct matrix_traits
: matrix_view_traits <MATRIX>, mutable_matrix_traits <MATRIX> {
};
/** \brief Traits class to extract type information from a VECTOR.
*
*/
template < class VECTOR >
struct vector_view_traits : container_view_traits <VECTOR> {
/// iterator for the VECTOR
typedef typename VECTOR::const_iterator const_iterator;
/// iterator pointing to the first element
static
const_iterator begin(const VECTOR & v) {
return v.begin();
}
/// iterator pointing behind the last element
static
const_iterator end(const VECTOR & v) {
return v.end();
}
};
/** \brief Traits class to extract type information from a VECTOR.
*
*/
template < class VECTOR >
struct mutable_vector_traits : mutable_container_traits <VECTOR> {
/// iterator for the VECTOR
typedef typename VECTOR::iterator iterator;
/// iterator pointing to the first element
static
iterator begin(VECTOR & v) {
return v.begin();
}
/// iterator pointing behind the last element
static
iterator end(VECTOR & v) {
return v.end();
}
};
/** \brief Traits class to extract type information from a VECTOR.
*
*/
template < class VECTOR >
struct vector_traits
: vector_view_traits <VECTOR>, mutable_vector_traits <VECTOR> {
};
// Note: specializations for T[N] and T[M][N] have been moved to traits/c_array.hpp
}}}
#endif