mirror of
https://github.com/ecency/ecency-mobile.git
synced 2024-12-21 04:11:50 +03:00
359 lines
14 KiB
C++
359 lines
14 KiB
C++
// Copyright 2004 The Trustees of Indiana University.
|
||
|
||
// Distributed under the Boost Software License, Version 1.0.
|
||
// (See accompanying file LICENSE_1_0.txt or copy at
|
||
// http://www.boost.org/LICENSE_1_0.txt)
|
||
|
||
// Authors: Jeremiah Willcock
|
||
// Douglas Gregor
|
||
// Andrew Lumsdaine
|
||
#ifndef BOOST_GRAPH_GURSOY_ATUN_LAYOUT_HPP
|
||
#define BOOST_GRAPH_GURSOY_ATUN_LAYOUT_HPP
|
||
|
||
// Gürsoy-Atun graph layout, based on:
|
||
// "Neighbourhood Preserving Load Balancing: A Self-Organizing Approach"
|
||
// in 6th International Euro-Par Conference Munich, Germany, August 29 – September 1, 2000 Proceedings,
|
||
// pp 234-241
|
||
// http://dx.doi.org/10.1007/3-540-44520-X_32
|
||
|
||
#include <boost/config/no_tr1/cmath.hpp>
|
||
#include <boost/throw_exception.hpp>
|
||
#include <boost/assert.hpp>
|
||
#include <vector>
|
||
#include <exception>
|
||
#include <algorithm>
|
||
|
||
#include <boost/graph/visitors.hpp>
|
||
#include <boost/graph/properties.hpp>
|
||
#include <boost/random/uniform_01.hpp>
|
||
#include <boost/random/linear_congruential.hpp>
|
||
#include <boost/shared_ptr.hpp>
|
||
#include <boost/graph/breadth_first_search.hpp>
|
||
#include <boost/graph/dijkstra_shortest_paths.hpp>
|
||
#include <boost/graph/named_function_params.hpp>
|
||
#include <boost/graph/topology.hpp>
|
||
|
||
namespace boost {
|
||
|
||
namespace detail {
|
||
|
||
struct over_distance_limit : public std::exception {};
|
||
|
||
template <typename PositionMap, typename NodeDistanceMap, typename Topology,
|
||
typename Graph>
|
||
struct update_position_visitor {
|
||
typedef typename Topology::point_type Point;
|
||
PositionMap position_map;
|
||
NodeDistanceMap node_distance;
|
||
const Topology& space;
|
||
Point input_vector;
|
||
double distance_limit;
|
||
double learning_constant;
|
||
double falloff_ratio;
|
||
|
||
typedef boost::on_examine_vertex event_filter;
|
||
|
||
typedef typename graph_traits<Graph>::vertex_descriptor
|
||
vertex_descriptor;
|
||
|
||
update_position_visitor(PositionMap position_map,
|
||
NodeDistanceMap node_distance,
|
||
const Topology& space,
|
||
const Point& input_vector,
|
||
double distance_limit,
|
||
double learning_constant,
|
||
double falloff_ratio):
|
||
position_map(position_map), node_distance(node_distance),
|
||
space(space),
|
||
input_vector(input_vector), distance_limit(distance_limit),
|
||
learning_constant(learning_constant), falloff_ratio(falloff_ratio) {}
|
||
|
||
void operator()(vertex_descriptor v, const Graph&) const
|
||
{
|
||
#ifndef BOOST_NO_STDC_NAMESPACE
|
||
using std::pow;
|
||
#endif
|
||
|
||
if (get(node_distance, v) > distance_limit)
|
||
BOOST_THROW_EXCEPTION(over_distance_limit());
|
||
Point old_position = get(position_map, v);
|
||
double distance = get(node_distance, v);
|
||
double fraction =
|
||
learning_constant * pow(falloff_ratio, distance * distance);
|
||
put(position_map, v,
|
||
space.move_position_toward(old_position, fraction, input_vector));
|
||
}
|
||
};
|
||
|
||
template<typename EdgeWeightMap>
|
||
struct gursoy_shortest
|
||
{
|
||
template<typename Graph, typename NodeDistanceMap, typename UpdatePosition>
|
||
static inline void
|
||
run(const Graph& g, typename graph_traits<Graph>::vertex_descriptor s,
|
||
NodeDistanceMap node_distance, UpdatePosition& update_position,
|
||
EdgeWeightMap weight)
|
||
{
|
||
boost::dijkstra_shortest_paths(g, s, weight_map(weight).
|
||
visitor(boost::make_dijkstra_visitor(std::make_pair(
|
||
boost::record_distances(node_distance, boost::on_edge_relaxed()),
|
||
update_position))));
|
||
}
|
||
};
|
||
|
||
template<>
|
||
struct gursoy_shortest<dummy_property_map>
|
||
{
|
||
template<typename Graph, typename NodeDistanceMap, typename UpdatePosition>
|
||
static inline void
|
||
run(const Graph& g, typename graph_traits<Graph>::vertex_descriptor s,
|
||
NodeDistanceMap node_distance, UpdatePosition& update_position,
|
||
dummy_property_map)
|
||
{
|
||
boost::breadth_first_search(g, s,
|
||
visitor(boost::make_bfs_visitor(std::make_pair(
|
||
boost::record_distances(node_distance, boost::on_tree_edge()),
|
||
update_position))));
|
||
}
|
||
};
|
||
|
||
} // namespace detail
|
||
|
||
template <typename VertexListAndIncidenceGraph, typename Topology,
|
||
typename PositionMap, typename Diameter, typename VertexIndexMap,
|
||
typename EdgeWeightMap>
|
||
void
|
||
gursoy_atun_step
|
||
(const VertexListAndIncidenceGraph& graph,
|
||
const Topology& space,
|
||
PositionMap position,
|
||
Diameter diameter,
|
||
double learning_constant,
|
||
VertexIndexMap vertex_index_map,
|
||
EdgeWeightMap weight)
|
||
{
|
||
#ifndef BOOST_NO_STDC_NAMESPACE
|
||
using std::pow;
|
||
using std::exp;
|
||
#endif
|
||
|
||
typedef typename graph_traits<VertexListAndIncidenceGraph>::vertex_iterator
|
||
vertex_iterator;
|
||
typedef typename graph_traits<VertexListAndIncidenceGraph>::vertex_descriptor
|
||
vertex_descriptor;
|
||
typedef typename Topology::point_type point_type;
|
||
vertex_iterator i, iend;
|
||
std::vector<double> distance_from_input_vector(num_vertices(graph));
|
||
typedef boost::iterator_property_map<std::vector<double>::iterator,
|
||
VertexIndexMap,
|
||
double, double&>
|
||
DistanceFromInputMap;
|
||
DistanceFromInputMap distance_from_input(distance_from_input_vector.begin(),
|
||
vertex_index_map);
|
||
std::vector<double> node_distance_map_vector(num_vertices(graph));
|
||
typedef boost::iterator_property_map<std::vector<double>::iterator,
|
||
VertexIndexMap,
|
||
double, double&>
|
||
NodeDistanceMap;
|
||
NodeDistanceMap node_distance(node_distance_map_vector.begin(),
|
||
vertex_index_map);
|
||
point_type input_vector = space.random_point();
|
||
vertex_descriptor min_distance_loc
|
||
= graph_traits<VertexListAndIncidenceGraph>::null_vertex();
|
||
double min_distance = 0.0;
|
||
bool min_distance_unset = true;
|
||
for (boost::tie(i, iend) = vertices(graph); i != iend; ++i) {
|
||
double this_distance = space.distance(get(position, *i), input_vector);
|
||
put(distance_from_input, *i, this_distance);
|
||
if (min_distance_unset || this_distance < min_distance) {
|
||
min_distance = this_distance;
|
||
min_distance_loc = *i;
|
||
}
|
||
min_distance_unset = false;
|
||
}
|
||
BOOST_ASSERT (!min_distance_unset); // Graph must have at least one vertex
|
||
boost::detail::update_position_visitor<
|
||
PositionMap, NodeDistanceMap, Topology,
|
||
VertexListAndIncidenceGraph>
|
||
update_position(position, node_distance, space,
|
||
input_vector, diameter, learning_constant,
|
||
exp(-1. / (2 * diameter * diameter)));
|
||
std::fill(node_distance_map_vector.begin(), node_distance_map_vector.end(), 0);
|
||
try {
|
||
typedef detail::gursoy_shortest<EdgeWeightMap> shortest;
|
||
shortest::run(graph, min_distance_loc, node_distance, update_position,
|
||
weight);
|
||
} catch (detail::over_distance_limit) {
|
||
/* Thrown to break out of BFS or Dijkstra early */
|
||
}
|
||
}
|
||
|
||
template <typename VertexListAndIncidenceGraph, typename Topology,
|
||
typename PositionMap, typename VertexIndexMap,
|
||
typename EdgeWeightMap>
|
||
void gursoy_atun_refine(const VertexListAndIncidenceGraph& graph,
|
||
const Topology& space,
|
||
PositionMap position,
|
||
int nsteps,
|
||
double diameter_initial,
|
||
double diameter_final,
|
||
double learning_constant_initial,
|
||
double learning_constant_final,
|
||
VertexIndexMap vertex_index_map,
|
||
EdgeWeightMap weight)
|
||
{
|
||
#ifndef BOOST_NO_STDC_NAMESPACE
|
||
using std::pow;
|
||
using std::exp;
|
||
#endif
|
||
|
||
typedef typename graph_traits<VertexListAndIncidenceGraph>::vertex_iterator
|
||
vertex_iterator;
|
||
vertex_iterator i, iend;
|
||
double diameter_ratio = (double)diameter_final / diameter_initial;
|
||
double learning_constant_ratio =
|
||
learning_constant_final / learning_constant_initial;
|
||
std::vector<double> distance_from_input_vector(num_vertices(graph));
|
||
typedef boost::iterator_property_map<std::vector<double>::iterator,
|
||
VertexIndexMap,
|
||
double, double&>
|
||
DistanceFromInputMap;
|
||
DistanceFromInputMap distance_from_input(distance_from_input_vector.begin(),
|
||
vertex_index_map);
|
||
std::vector<int> node_distance_map_vector(num_vertices(graph));
|
||
typedef boost::iterator_property_map<std::vector<int>::iterator,
|
||
VertexIndexMap, double, double&>
|
||
NodeDistanceMap;
|
||
NodeDistanceMap node_distance(node_distance_map_vector.begin(),
|
||
vertex_index_map);
|
||
for (int round = 0; round < nsteps; ++round) {
|
||
double part_done = (double)round / (nsteps - 1);
|
||
// fprintf(stderr, "%2d%% done\n", int(rint(part_done * 100.)));
|
||
int diameter = (int)(diameter_initial * pow(diameter_ratio, part_done));
|
||
double learning_constant =
|
||
learning_constant_initial * pow(learning_constant_ratio, part_done);
|
||
gursoy_atun_step(graph, space, position, diameter, learning_constant,
|
||
vertex_index_map, weight);
|
||
}
|
||
}
|
||
|
||
template <typename VertexListAndIncidenceGraph, typename Topology,
|
||
typename PositionMap, typename VertexIndexMap,
|
||
typename EdgeWeightMap>
|
||
void gursoy_atun_layout(const VertexListAndIncidenceGraph& graph,
|
||
const Topology& space,
|
||
PositionMap position,
|
||
int nsteps,
|
||
double diameter_initial,
|
||
double diameter_final,
|
||
double learning_constant_initial,
|
||
double learning_constant_final,
|
||
VertexIndexMap vertex_index_map,
|
||
EdgeWeightMap weight)
|
||
{
|
||
typedef typename graph_traits<VertexListAndIncidenceGraph>::vertex_iterator
|
||
vertex_iterator;
|
||
vertex_iterator i, iend;
|
||
for (boost::tie(i, iend) = vertices(graph); i != iend; ++i) {
|
||
put(position, *i, space.random_point());
|
||
}
|
||
gursoy_atun_refine(graph, space,
|
||
position, nsteps,
|
||
diameter_initial, diameter_final,
|
||
learning_constant_initial, learning_constant_final,
|
||
vertex_index_map, weight);
|
||
}
|
||
|
||
template <typename VertexListAndIncidenceGraph, typename Topology,
|
||
typename PositionMap, typename VertexIndexMap>
|
||
void gursoy_atun_layout(const VertexListAndIncidenceGraph& graph,
|
||
const Topology& space,
|
||
PositionMap position,
|
||
int nsteps,
|
||
double diameter_initial,
|
||
double diameter_final,
|
||
double learning_constant_initial,
|
||
double learning_constant_final,
|
||
VertexIndexMap vertex_index_map)
|
||
{
|
||
gursoy_atun_layout(graph, space, position, nsteps,
|
||
diameter_initial, diameter_final,
|
||
learning_constant_initial, learning_constant_final,
|
||
vertex_index_map, dummy_property_map());
|
||
}
|
||
|
||
template <typename VertexListAndIncidenceGraph, typename Topology,
|
||
typename PositionMap>
|
||
void gursoy_atun_layout(const VertexListAndIncidenceGraph& graph,
|
||
const Topology& space,
|
||
PositionMap position,
|
||
int nsteps,
|
||
double diameter_initial,
|
||
double diameter_final = 1.0,
|
||
double learning_constant_initial = 0.8,
|
||
double learning_constant_final = 0.2)
|
||
{
|
||
gursoy_atun_layout(graph, space, position, nsteps, diameter_initial,
|
||
diameter_final, learning_constant_initial,
|
||
learning_constant_final, get(vertex_index, graph));
|
||
}
|
||
|
||
template <typename VertexListAndIncidenceGraph, typename Topology,
|
||
typename PositionMap>
|
||
void gursoy_atun_layout(const VertexListAndIncidenceGraph& graph,
|
||
const Topology& space,
|
||
PositionMap position,
|
||
int nsteps)
|
||
{
|
||
#ifndef BOOST_NO_STDC_NAMESPACE
|
||
using std::sqrt;
|
||
#endif
|
||
|
||
gursoy_atun_layout(graph, space, position, nsteps,
|
||
sqrt((double)num_vertices(graph)));
|
||
}
|
||
|
||
template <typename VertexListAndIncidenceGraph, typename Topology,
|
||
typename PositionMap>
|
||
void gursoy_atun_layout(const VertexListAndIncidenceGraph& graph,
|
||
const Topology& space,
|
||
PositionMap position)
|
||
{
|
||
gursoy_atun_layout(graph, space, position, num_vertices(graph));
|
||
}
|
||
|
||
template<typename VertexListAndIncidenceGraph, typename Topology,
|
||
typename PositionMap, typename P, typename T, typename R>
|
||
void
|
||
gursoy_atun_layout(const VertexListAndIncidenceGraph& graph,
|
||
const Topology& space,
|
||
PositionMap position,
|
||
const bgl_named_params<P,T,R>& params)
|
||
{
|
||
#ifndef BOOST_NO_STDC_NAMESPACE
|
||
using std::sqrt;
|
||
#endif
|
||
|
||
std::pair<double, double> diam(sqrt(double(num_vertices(graph))), 1.0);
|
||
std::pair<double, double> learn(0.8, 0.2);
|
||
gursoy_atun_layout(graph, space, position,
|
||
choose_param(get_param(params, iterations_t()),
|
||
num_vertices(graph)),
|
||
choose_param(get_param(params, diameter_range_t()),
|
||
diam).first,
|
||
choose_param(get_param(params, diameter_range_t()),
|
||
diam).second,
|
||
choose_param(get_param(params, learning_constant_range_t()),
|
||
learn).first,
|
||
choose_param(get_param(params, learning_constant_range_t()),
|
||
learn).second,
|
||
choose_const_pmap(get_param(params, vertex_index), graph,
|
||
vertex_index),
|
||
choose_param(get_param(params, edge_weight),
|
||
dummy_property_map()));
|
||
}
|
||
|
||
} // namespace boost
|
||
|
||
#endif // BOOST_GRAPH_GURSOY_ATUN_LAYOUT_HPP
|