mirror of
https://github.com/ecency/ecency-mobile.git
synced 2025-01-05 12:36:31 +03:00
1142 lines
32 KiB
C++
1142 lines
32 KiB
C++
/*
|
|
* Copyright 2016 Facebook, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/*
|
|
* For high-level documentation and usage examples see
|
|
* folly/docs/small_vector.md
|
|
*
|
|
* @author Jordan DeLong <delong.j@fb.com>
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <stdexcept>
|
|
#include <cstdlib>
|
|
#include <type_traits>
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <cassert>
|
|
|
|
#include <boost/operators.hpp>
|
|
#include <boost/type_traits.hpp>
|
|
#include <boost/mpl/if.hpp>
|
|
#include <boost/mpl/eval_if.hpp>
|
|
#include <boost/mpl/vector.hpp>
|
|
#include <boost/mpl/front.hpp>
|
|
#include <boost/mpl/filter_view.hpp>
|
|
#include <boost/mpl/identity.hpp>
|
|
#include <boost/mpl/placeholders.hpp>
|
|
#include <boost/mpl/empty.hpp>
|
|
#include <boost/mpl/size.hpp>
|
|
#include <boost/mpl/count.hpp>
|
|
|
|
#include <folly/FormatTraits.h>
|
|
#include <folly/Malloc.h>
|
|
#include <folly/Portability.h>
|
|
#include <folly/SmallLocks.h>
|
|
#include <folly/portability/BitsFunctexcept.h>
|
|
#include <folly/portability/Constexpr.h>
|
|
#include <folly/portability/Malloc.h>
|
|
#include <folly/portability/TypeTraits.h>
|
|
|
|
// Ignore shadowing warnings within this file, so includers can use -Wshadow.
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wshadow"
|
|
|
|
namespace folly {
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
namespace small_vector_policy {
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
/*
|
|
* A flag which makes us refuse to use the heap at all. If we
|
|
* overflow the in situ capacity we throw an exception.
|
|
*/
|
|
struct NoHeap;
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
} // small_vector_policy
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
template<class T, std::size_t M, class A, class B, class C>
|
|
class small_vector;
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
namespace detail {
|
|
|
|
/*
|
|
* Move a range to a range of uninitialized memory. Assumes the
|
|
* ranges don't overlap.
|
|
*/
|
|
template<class T>
|
|
typename std::enable_if<
|
|
!FOLLY_IS_TRIVIALLY_COPYABLE(T)
|
|
>::type
|
|
moveToUninitialized(T* first, T* last, T* out) {
|
|
std::size_t idx = 0;
|
|
try {
|
|
for (; first != last; ++first, ++idx) {
|
|
new (&out[idx]) T(std::move(*first));
|
|
}
|
|
} catch (...) {
|
|
// Even for callers trying to give the strong guarantee
|
|
// (e.g. push_back) it's ok to assume here that we don't have to
|
|
// move things back and that it was a copy constructor that
|
|
// threw: if someone throws from a move constructor the effects
|
|
// are unspecified.
|
|
for (std::size_t i = 0; i < idx; ++i) {
|
|
out[i].~T();
|
|
}
|
|
throw;
|
|
}
|
|
}
|
|
|
|
// Specialization for trivially copyable types.
|
|
template<class T>
|
|
typename std::enable_if<
|
|
FOLLY_IS_TRIVIALLY_COPYABLE(T)
|
|
>::type
|
|
moveToUninitialized(T* first, T* last, T* out) {
|
|
std::memmove(out, first, (last - first) * sizeof *first);
|
|
}
|
|
|
|
/*
|
|
* Move objects in memory to the right into some uninitialized
|
|
* memory, where the region overlaps. This doesn't just use
|
|
* std::move_backward because move_backward only works if all the
|
|
* memory is initialized to type T already.
|
|
*/
|
|
template<class T>
|
|
typename std::enable_if<
|
|
!FOLLY_IS_TRIVIALLY_COPYABLE(T)
|
|
>::type
|
|
moveObjectsRight(T* first, T* lastConstructed, T* realLast) {
|
|
if (lastConstructed == realLast) {
|
|
return;
|
|
}
|
|
|
|
T* end = first - 1; // Past the end going backwards.
|
|
T* out = realLast - 1;
|
|
T* in = lastConstructed - 1;
|
|
try {
|
|
for (; in != end && out >= lastConstructed; --in, --out) {
|
|
new (out) T(std::move(*in));
|
|
}
|
|
for (; in != end; --in, --out) {
|
|
*out = std::move(*in);
|
|
}
|
|
for (; out >= lastConstructed; --out) {
|
|
new (out) T();
|
|
}
|
|
} catch (...) {
|
|
// We want to make sure the same stuff is uninitialized memory
|
|
// if we exit via an exception (this is to make sure we provide
|
|
// the basic exception safety guarantee for insert functions).
|
|
if (out < lastConstructed) {
|
|
out = lastConstructed - 1;
|
|
}
|
|
for (auto it = out + 1; it != realLast; ++it) {
|
|
it->~T();
|
|
}
|
|
throw;
|
|
}
|
|
}
|
|
|
|
// Specialization for trivially copyable types. The call to
|
|
// std::move_backward here will just turn into a memmove. (TODO:
|
|
// change to std::is_trivially_copyable when that works.)
|
|
template<class T>
|
|
typename std::enable_if<
|
|
FOLLY_IS_TRIVIALLY_COPYABLE(T)
|
|
>::type
|
|
moveObjectsRight(T* first, T* lastConstructed, T* realLast) {
|
|
std::move_backward(first, lastConstructed, realLast);
|
|
}
|
|
|
|
/*
|
|
* Populate a region of memory using `op' to construct elements. If
|
|
* anything throws, undo what we did.
|
|
*/
|
|
template<class T, class Function>
|
|
void populateMemForward(T* mem, std::size_t n, Function const& op) {
|
|
std::size_t idx = 0;
|
|
try {
|
|
for (size_t i = 0; i < n; ++i) {
|
|
op(&mem[idx]);
|
|
++idx;
|
|
}
|
|
} catch (...) {
|
|
for (std::size_t i = 0; i < idx; ++i) {
|
|
mem[i].~T();
|
|
}
|
|
throw;
|
|
}
|
|
}
|
|
|
|
template<class SizeType, bool ShouldUseHeap>
|
|
struct IntegralSizePolicy {
|
|
typedef SizeType InternalSizeType;
|
|
|
|
IntegralSizePolicy() : size_(0) {}
|
|
|
|
protected:
|
|
static constexpr std::size_t policyMaxSize() {
|
|
return SizeType(~kExternMask);
|
|
}
|
|
|
|
std::size_t doSize() const {
|
|
return size_ & ~kExternMask;
|
|
}
|
|
|
|
std::size_t isExtern() const {
|
|
return kExternMask & size_;
|
|
}
|
|
|
|
void setExtern(bool b) {
|
|
if (b) {
|
|
size_ |= kExternMask;
|
|
} else {
|
|
size_ &= ~kExternMask;
|
|
}
|
|
}
|
|
|
|
void setSize(std::size_t sz) {
|
|
assert(sz <= policyMaxSize());
|
|
size_ = (kExternMask & size_) | SizeType(sz);
|
|
}
|
|
|
|
void swapSizePolicy(IntegralSizePolicy& o) {
|
|
std::swap(size_, o.size_);
|
|
}
|
|
|
|
protected:
|
|
static bool const kShouldUseHeap = ShouldUseHeap;
|
|
|
|
private:
|
|
static SizeType const kExternMask =
|
|
kShouldUseHeap ? SizeType(1) << (sizeof(SizeType) * 8 - 1)
|
|
: 0;
|
|
|
|
SizeType size_;
|
|
};
|
|
|
|
/*
|
|
* If you're just trying to use this class, ignore everything about
|
|
* this next small_vector_base class thing.
|
|
*
|
|
* The purpose of this junk is to minimize sizeof(small_vector<>)
|
|
* and allow specifying the template parameters in whatever order is
|
|
* convenient for the user. There's a few extra steps here to try
|
|
* to keep the error messages at least semi-reasonable.
|
|
*
|
|
* Apologies for all the black magic.
|
|
*/
|
|
namespace mpl = boost::mpl;
|
|
template<class Value,
|
|
std::size_t RequestedMaxInline,
|
|
class InPolicyA,
|
|
class InPolicyB,
|
|
class InPolicyC>
|
|
struct small_vector_base {
|
|
typedef mpl::vector<InPolicyA,InPolicyB,InPolicyC> PolicyList;
|
|
|
|
/*
|
|
* Determine the size type
|
|
*/
|
|
typedef typename mpl::filter_view<
|
|
PolicyList,
|
|
boost::is_integral<mpl::placeholders::_1>
|
|
>::type Integrals;
|
|
typedef typename mpl::eval_if<
|
|
mpl::empty<Integrals>,
|
|
mpl::identity<std::size_t>,
|
|
mpl::front<Integrals>
|
|
>::type SizeType;
|
|
|
|
static_assert(std::is_unsigned<SizeType>::value,
|
|
"Size type should be an unsigned integral type");
|
|
static_assert(mpl::size<Integrals>::value == 0 ||
|
|
mpl::size<Integrals>::value == 1,
|
|
"Multiple size types specified in small_vector<>");
|
|
|
|
/*
|
|
* Determine whether we should allow spilling to the heap or not.
|
|
*/
|
|
typedef typename mpl::count<
|
|
PolicyList,small_vector_policy::NoHeap
|
|
>::type HasNoHeap;
|
|
|
|
static_assert(HasNoHeap::value == 0 || HasNoHeap::value == 1,
|
|
"Multiple copies of small_vector_policy::NoHeap "
|
|
"supplied; this is probably a mistake");
|
|
|
|
/*
|
|
* Make the real policy base classes.
|
|
*/
|
|
typedef IntegralSizePolicy<SizeType,!HasNoHeap::value>
|
|
ActualSizePolicy;
|
|
|
|
/*
|
|
* Now inherit from them all. This is done in such a convoluted
|
|
* way to make sure we get the empty base optimizaton on all these
|
|
* types to keep sizeof(small_vector<>) minimal.
|
|
*/
|
|
typedef boost::totally_ordered1<
|
|
small_vector<Value,RequestedMaxInline,InPolicyA,InPolicyB,InPolicyC>,
|
|
ActualSizePolicy
|
|
> type;
|
|
};
|
|
|
|
template <class T>
|
|
T* pointerFlagSet(T* p) {
|
|
return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(p) | 1);
|
|
}
|
|
template <class T>
|
|
bool pointerFlagGet(T* p) {
|
|
return reinterpret_cast<uintptr_t>(p) & 1;
|
|
}
|
|
template <class T>
|
|
T* pointerFlagClear(T* p) {
|
|
return reinterpret_cast<T*>(
|
|
reinterpret_cast<uintptr_t>(p) & ~uintptr_t(1));
|
|
}
|
|
inline void* shiftPointer(void* p, size_t sizeBytes) {
|
|
return static_cast<char*>(p) + sizeBytes;
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
FOLLY_PACK_PUSH
|
|
template<class Value,
|
|
std::size_t RequestedMaxInline = 1,
|
|
class PolicyA = void,
|
|
class PolicyB = void,
|
|
class PolicyC = void>
|
|
class small_vector
|
|
: public detail::small_vector_base<
|
|
Value,RequestedMaxInline,PolicyA,PolicyB,PolicyC
|
|
>::type
|
|
{
|
|
typedef typename detail::small_vector_base<
|
|
Value,RequestedMaxInline,PolicyA,PolicyB,PolicyC
|
|
>::type BaseType;
|
|
typedef typename BaseType::InternalSizeType InternalSizeType;
|
|
|
|
/*
|
|
* Figure out the max number of elements we should inline. (If
|
|
* the user asks for less inlined elements than we can fit unioned
|
|
* into our value_type*, we will inline more than they asked.)
|
|
*/
|
|
static constexpr std::size_t MaxInline{
|
|
constexpr_max(sizeof(Value*) / sizeof(Value), RequestedMaxInline)};
|
|
|
|
public:
|
|
typedef std::size_t size_type;
|
|
typedef Value value_type;
|
|
typedef value_type& reference;
|
|
typedef value_type const& const_reference;
|
|
typedef value_type* iterator;
|
|
typedef value_type const* const_iterator;
|
|
typedef std::ptrdiff_t difference_type;
|
|
|
|
typedef std::reverse_iterator<iterator> reverse_iterator;
|
|
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
|
|
|
explicit small_vector() = default;
|
|
|
|
small_vector(small_vector const& o) {
|
|
auto n = o.size();
|
|
makeSize(n);
|
|
try {
|
|
std::uninitialized_copy(o.begin(), o.end(), begin());
|
|
} catch (...) {
|
|
if (this->isExtern()) {
|
|
u.freeHeap();
|
|
}
|
|
throw;
|
|
}
|
|
this->setSize(n);
|
|
}
|
|
|
|
small_vector(small_vector&& o)
|
|
noexcept(std::is_nothrow_move_constructible<Value>::value) {
|
|
if (o.isExtern()) {
|
|
swap(o);
|
|
} else {
|
|
std::uninitialized_copy(std::make_move_iterator(o.begin()),
|
|
std::make_move_iterator(o.end()),
|
|
begin());
|
|
this->setSize(o.size());
|
|
}
|
|
}
|
|
|
|
small_vector(std::initializer_list<value_type> il) {
|
|
constructImpl(il.begin(), il.end(), std::false_type());
|
|
}
|
|
|
|
explicit small_vector(size_type n, value_type const& t = value_type()) {
|
|
doConstruct(n, t);
|
|
}
|
|
|
|
template<class Arg>
|
|
explicit small_vector(Arg arg1, Arg arg2) {
|
|
// Forward using std::is_arithmetic to get to the proper
|
|
// implementation; this disambiguates between the iterators and
|
|
// (size_t, value_type) meaning for this constructor.
|
|
constructImpl(arg1, arg2, std::is_arithmetic<Arg>());
|
|
}
|
|
|
|
~small_vector() {
|
|
for (auto& t : *this) {
|
|
(&t)->~value_type();
|
|
}
|
|
if (this->isExtern()) {
|
|
u.freeHeap();
|
|
}
|
|
}
|
|
|
|
small_vector& operator=(small_vector const& o) {
|
|
assign(o.begin(), o.end());
|
|
return *this;
|
|
}
|
|
|
|
small_vector& operator=(small_vector&& o) {
|
|
// TODO: optimization:
|
|
// if both are internal, use move assignment where possible
|
|
if (this == &o) return *this;
|
|
clear();
|
|
swap(o);
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(small_vector const& o) const {
|
|
return size() == o.size() && std::equal(begin(), end(), o.begin());
|
|
}
|
|
|
|
bool operator<(small_vector const& o) const {
|
|
return std::lexicographical_compare(begin(), end(), o.begin(), o.end());
|
|
}
|
|
|
|
static constexpr size_type max_size() {
|
|
return !BaseType::kShouldUseHeap ? static_cast<size_type>(MaxInline)
|
|
: BaseType::policyMaxSize();
|
|
}
|
|
|
|
size_type size() const { return this->doSize(); }
|
|
bool empty() const { return !size(); }
|
|
|
|
iterator begin() { return data(); }
|
|
iterator end() { return data() + size(); }
|
|
const_iterator begin() const { return data(); }
|
|
const_iterator end() const { return data() + size(); }
|
|
const_iterator cbegin() const { return begin(); }
|
|
const_iterator cend() const { return end(); }
|
|
|
|
reverse_iterator rbegin() { return reverse_iterator(end()); }
|
|
reverse_iterator rend() { return reverse_iterator(begin()); }
|
|
|
|
const_reverse_iterator rbegin() const {
|
|
return const_reverse_iterator(end());
|
|
}
|
|
|
|
const_reverse_iterator rend() const {
|
|
return const_reverse_iterator(begin());
|
|
}
|
|
|
|
const_reverse_iterator crbegin() const { return rbegin(); }
|
|
const_reverse_iterator crend() const { return rend(); }
|
|
|
|
/*
|
|
* Usually one of the simplest functions in a Container-like class
|
|
* but a bit more complex here. We have to handle all combinations
|
|
* of in-place vs. heap between this and o.
|
|
*
|
|
* Basic guarantee only. Provides the nothrow guarantee iff our
|
|
* value_type has a nothrow move or copy constructor.
|
|
*/
|
|
void swap(small_vector& o) {
|
|
using std::swap; // Allow ADL on swap for our value_type.
|
|
|
|
if (this->isExtern() && o.isExtern()) {
|
|
this->swapSizePolicy(o);
|
|
|
|
auto thisCapacity = this->capacity();
|
|
auto oCapacity = o.capacity();
|
|
|
|
std::swap(unpackHack(&u.pdata_.heap_), unpackHack(&o.u.pdata_.heap_));
|
|
|
|
this->setCapacity(oCapacity);
|
|
o.setCapacity(thisCapacity);
|
|
|
|
return;
|
|
}
|
|
|
|
if (!this->isExtern() && !o.isExtern()) {
|
|
auto& oldSmall = size() < o.size() ? *this : o;
|
|
auto& oldLarge = size() < o.size() ? o : *this;
|
|
|
|
for (size_type i = 0; i < oldSmall.size(); ++i) {
|
|
swap(oldSmall[i], oldLarge[i]);
|
|
}
|
|
|
|
size_type i = oldSmall.size();
|
|
const size_type ci = i;
|
|
try {
|
|
for (; i < oldLarge.size(); ++i) {
|
|
auto addr = oldSmall.begin() + i;
|
|
new (addr) value_type(std::move(oldLarge[i]));
|
|
oldLarge[i].~value_type();
|
|
}
|
|
} catch (...) {
|
|
oldSmall.setSize(i);
|
|
for (; i < oldLarge.size(); ++i) {
|
|
oldLarge[i].~value_type();
|
|
}
|
|
oldLarge.setSize(ci);
|
|
throw;
|
|
}
|
|
oldSmall.setSize(i);
|
|
oldLarge.setSize(ci);
|
|
return;
|
|
}
|
|
|
|
// isExtern != o.isExtern()
|
|
auto& oldExtern = o.isExtern() ? o : *this;
|
|
auto& oldIntern = o.isExtern() ? *this : o;
|
|
|
|
auto oldExternCapacity = oldExtern.capacity();
|
|
auto oldExternHeap = oldExtern.u.pdata_.heap_;
|
|
|
|
auto buff = oldExtern.u.buffer();
|
|
size_type i = 0;
|
|
try {
|
|
for (; i < oldIntern.size(); ++i) {
|
|
new (&buff[i]) value_type(std::move(oldIntern[i]));
|
|
oldIntern[i].~value_type();
|
|
}
|
|
} catch (...) {
|
|
for (size_type kill = 0; kill < i; ++kill) {
|
|
buff[kill].~value_type();
|
|
}
|
|
for (; i < oldIntern.size(); ++i) {
|
|
oldIntern[i].~value_type();
|
|
}
|
|
oldIntern.setSize(0);
|
|
oldExtern.u.pdata_.heap_ = oldExternHeap;
|
|
oldExtern.setCapacity(oldExternCapacity);
|
|
throw;
|
|
}
|
|
oldIntern.u.pdata_.heap_ = oldExternHeap;
|
|
this->swapSizePolicy(o);
|
|
oldIntern.setCapacity(oldExternCapacity);
|
|
}
|
|
|
|
void resize(size_type sz) {
|
|
if (sz < size()) {
|
|
erase(begin() + sz, end());
|
|
return;
|
|
}
|
|
makeSize(sz);
|
|
detail::populateMemForward(begin() + size(), sz - size(),
|
|
[&] (void* p) { new (p) value_type(); }
|
|
);
|
|
this->setSize(sz);
|
|
}
|
|
|
|
void resize(size_type sz, value_type const& v) {
|
|
if (sz < size()) {
|
|
erase(begin() + sz, end());
|
|
return;
|
|
}
|
|
makeSize(sz);
|
|
detail::populateMemForward(begin() + size(), sz - size(),
|
|
[&] (void* p) { new (p) value_type(v); }
|
|
);
|
|
this->setSize(sz);
|
|
}
|
|
|
|
value_type* data() noexcept {
|
|
return this->isExtern() ? u.heap() : u.buffer();
|
|
}
|
|
|
|
value_type const* data() const noexcept {
|
|
return this->isExtern() ? u.heap() : u.buffer();
|
|
}
|
|
|
|
template<class ...Args>
|
|
iterator emplace(const_iterator p, Args&&... args) {
|
|
if (p == cend()) {
|
|
emplace_back(std::forward<Args>(args)...);
|
|
return end() - 1;
|
|
}
|
|
|
|
/*
|
|
* We implement emplace at places other than at the back with a
|
|
* temporary for exception safety reasons. It is possible to
|
|
* avoid having to do this, but it becomes hard to maintain the
|
|
* basic exception safety guarantee (unless you respond to a copy
|
|
* constructor throwing by clearing the whole vector).
|
|
*
|
|
* The reason for this is that otherwise you have to destruct an
|
|
* element before constructing this one in its place---if the
|
|
* constructor throws, you either need a nothrow default
|
|
* constructor or a nothrow copy/move to get something back in the
|
|
* "gap", and the vector requirements don't guarantee we have any
|
|
* of these. Clearing the whole vector is a legal response in
|
|
* this situation, but it seems like this implementation is easy
|
|
* enough and probably better.
|
|
*/
|
|
return insert(p, value_type(std::forward<Args>(args)...));
|
|
}
|
|
|
|
void reserve(size_type sz) {
|
|
makeSize(sz);
|
|
}
|
|
|
|
size_type capacity() const {
|
|
if (this->isExtern()) {
|
|
if (u.hasCapacity()) {
|
|
return *u.getCapacity();
|
|
}
|
|
return malloc_usable_size(u.pdata_.heap_) / sizeof(value_type);
|
|
}
|
|
return MaxInline;
|
|
}
|
|
|
|
void shrink_to_fit() {
|
|
if (!this->isExtern()) {
|
|
return;
|
|
}
|
|
|
|
small_vector tmp(begin(), end());
|
|
tmp.swap(*this);
|
|
}
|
|
|
|
template<class ...Args>
|
|
void emplace_back(Args&&... args) {
|
|
// call helper function for static dispatch of special cases
|
|
emplaceBack(std::forward<Args>(args)...);
|
|
}
|
|
|
|
void emplace_back(const value_type& t) {
|
|
push_back(t);
|
|
}
|
|
void emplace_back(value_type& t) {
|
|
push_back(t);
|
|
}
|
|
|
|
void emplace_back(value_type&& t) {
|
|
push_back(std::move(t));
|
|
}
|
|
|
|
void push_back(value_type&& t) {
|
|
if (capacity() == size()) {
|
|
makeSize(std::max(size_type(2), 3 * size() / 2), &t, size());
|
|
} else {
|
|
new (end()) value_type(std::move(t));
|
|
}
|
|
this->setSize(size() + 1);
|
|
}
|
|
|
|
void push_back(value_type const& t) {
|
|
// TODO: we'd like to make use of makeSize (it can be optimized better,
|
|
// because it manipulates the internals)
|
|
// unfortunately the current implementation only supports moving from
|
|
// a supplied rvalue, and doing an extra move just to reuse it is a perf
|
|
// net loss
|
|
if (size() == capacity()) {// && isInside(&t)) {
|
|
value_type tmp(t);
|
|
emplaceBack(std::move(tmp));
|
|
} else {
|
|
emplaceBack(t);
|
|
}
|
|
}
|
|
|
|
void pop_back() {
|
|
erase(end() - 1);
|
|
}
|
|
|
|
iterator insert(const_iterator constp, value_type&& t) {
|
|
iterator p = unconst(constp);
|
|
|
|
if (p == end()) {
|
|
push_back(std::move(t));
|
|
return end() - 1;
|
|
}
|
|
|
|
auto offset = p - begin();
|
|
|
|
if (capacity() == size()) {
|
|
makeSize(size() + 1, &t, offset);
|
|
this->setSize(this->size() + 1);
|
|
} else {
|
|
makeSize(size() + 1);
|
|
detail::moveObjectsRight(data() + offset,
|
|
data() + size(),
|
|
data() + size() + 1);
|
|
this->setSize(size() + 1);
|
|
data()[offset] = std::move(t);
|
|
}
|
|
return begin() + offset;
|
|
|
|
}
|
|
|
|
iterator insert(const_iterator p, value_type const& t) {
|
|
// Make a copy and forward to the rvalue value_type&& overload
|
|
// above.
|
|
return insert(p, value_type(t));
|
|
}
|
|
|
|
iterator insert(const_iterator pos, size_type n, value_type const& val) {
|
|
auto offset = pos - begin();
|
|
makeSize(size() + n);
|
|
detail::moveObjectsRight(data() + offset,
|
|
data() + size(),
|
|
data() + size() + n);
|
|
this->setSize(size() + n);
|
|
std::generate_n(begin() + offset, n, [&] { return val; });
|
|
return begin() + offset;
|
|
}
|
|
|
|
template<class Arg>
|
|
iterator insert(const_iterator p, Arg arg1, Arg arg2) {
|
|
// Forward using std::is_arithmetic to get to the proper
|
|
// implementation; this disambiguates between the iterators and
|
|
// (size_t, value_type) meaning for this function.
|
|
return insertImpl(unconst(p), arg1, arg2, std::is_arithmetic<Arg>());
|
|
}
|
|
|
|
iterator insert(const_iterator p, std::initializer_list<value_type> il) {
|
|
return insert(p, il.begin(), il.end());
|
|
}
|
|
|
|
iterator erase(const_iterator q) {
|
|
std::move(unconst(q) + 1, end(), unconst(q));
|
|
(data() + size() - 1)->~value_type();
|
|
this->setSize(size() - 1);
|
|
return unconst(q);
|
|
}
|
|
|
|
iterator erase(const_iterator q1, const_iterator q2) {
|
|
if (q1 == q2) return unconst(q1);
|
|
std::move(unconst(q2), end(), unconst(q1));
|
|
for (auto it = (end() - std::distance(q1, q2)); it != end(); ++it) {
|
|
it->~value_type();
|
|
}
|
|
this->setSize(size() - (q2 - q1));
|
|
return unconst(q1);
|
|
}
|
|
|
|
void clear() {
|
|
erase(begin(), end());
|
|
}
|
|
|
|
template<class Arg>
|
|
void assign(Arg first, Arg last) {
|
|
clear();
|
|
insert(end(), first, last);
|
|
}
|
|
|
|
void assign(std::initializer_list<value_type> il) {
|
|
assign(il.begin(), il.end());
|
|
}
|
|
|
|
void assign(size_type n, const value_type& t) {
|
|
clear();
|
|
insert(end(), n, t);
|
|
}
|
|
|
|
reference front() { assert(!empty()); return *begin(); }
|
|
reference back() { assert(!empty()); return *(end() - 1); }
|
|
const_reference front() const { assert(!empty()); return *begin(); }
|
|
const_reference back() const { assert(!empty()); return *(end() - 1); }
|
|
|
|
reference operator[](size_type i) {
|
|
assert(i < size());
|
|
return *(begin() + i);
|
|
}
|
|
|
|
const_reference operator[](size_type i) const {
|
|
assert(i < size());
|
|
return *(begin() + i);
|
|
}
|
|
|
|
reference at(size_type i) {
|
|
if (i >= size()) {
|
|
std::__throw_out_of_range("index out of range");
|
|
}
|
|
return (*this)[i];
|
|
}
|
|
|
|
const_reference at(size_type i) const {
|
|
if (i >= size()) {
|
|
std::__throw_out_of_range("index out of range");
|
|
}
|
|
return (*this)[i];
|
|
}
|
|
|
|
private:
|
|
|
|
/*
|
|
* This is doing the same like emplace_back, but we need this helper
|
|
* to catch the special case - see the next overload function..
|
|
*/
|
|
template<class ...Args>
|
|
void emplaceBack(Args&&... args) {
|
|
makeSize(size() + 1);
|
|
new (end()) value_type(std::forward<Args>(args)...);
|
|
this->setSize(size() + 1);
|
|
}
|
|
|
|
static iterator unconst(const_iterator it) {
|
|
return const_cast<iterator>(it);
|
|
}
|
|
|
|
/*
|
|
* g++ doesn't allow you to bind a non-const reference to a member
|
|
* of a packed structure, presumably because it would make it too
|
|
* easy to accidentally make an unaligned memory access?
|
|
*/
|
|
template<class T> static T& unpackHack(T* p) {
|
|
return *p;
|
|
}
|
|
|
|
// The std::false_type argument is part of disambiguating the
|
|
// iterator insert functions from integral types (see insert().)
|
|
template<class It>
|
|
iterator insertImpl(iterator pos, It first, It last, std::false_type) {
|
|
typedef typename std::iterator_traits<It>::iterator_category categ;
|
|
if (std::is_same<categ,std::input_iterator_tag>::value) {
|
|
auto offset = pos - begin();
|
|
while (first != last) {
|
|
pos = insert(pos, *first++);
|
|
++pos;
|
|
}
|
|
return begin() + offset;
|
|
}
|
|
|
|
auto distance = std::distance(first, last);
|
|
auto offset = pos - begin();
|
|
makeSize(size() + distance);
|
|
detail::moveObjectsRight(data() + offset,
|
|
data() + size(),
|
|
data() + size() + distance);
|
|
this->setSize(size() + distance);
|
|
std::copy_n(first, distance, begin() + offset);
|
|
return begin() + offset;
|
|
}
|
|
|
|
iterator insertImpl(iterator pos, size_type n, const value_type& val,
|
|
std::true_type) {
|
|
// The true_type means this should call the size_t,value_type
|
|
// overload. (See insert().)
|
|
return insert(pos, n, val);
|
|
}
|
|
|
|
// The std::false_type argument came from std::is_arithmetic as part
|
|
// of disambiguating an overload (see the comment in the
|
|
// constructor).
|
|
template<class It>
|
|
void constructImpl(It first, It last, std::false_type) {
|
|
typedef typename std::iterator_traits<It>::iterator_category categ;
|
|
if (std::is_same<categ,std::input_iterator_tag>::value) {
|
|
// With iterators that only allow a single pass, we can't really
|
|
// do anything sane here.
|
|
while (first != last) {
|
|
emplace_back(*first++);
|
|
}
|
|
return;
|
|
}
|
|
|
|
auto distance = std::distance(first, last);
|
|
makeSize(distance);
|
|
this->setSize(distance);
|
|
try {
|
|
detail::populateMemForward(data(), distance,
|
|
[&] (void* p) { new (p) value_type(*first++); }
|
|
);
|
|
} catch (...) {
|
|
if (this->isExtern()) {
|
|
u.freeHeap();
|
|
}
|
|
throw;
|
|
}
|
|
}
|
|
|
|
void doConstruct(size_type n, value_type const& val) {
|
|
makeSize(n);
|
|
this->setSize(n);
|
|
try {
|
|
detail::populateMemForward(data(), n,
|
|
[&] (void* p) { new (p) value_type(val); }
|
|
);
|
|
} catch (...) {
|
|
if (this->isExtern()) {
|
|
u.freeHeap();
|
|
}
|
|
throw;
|
|
}
|
|
}
|
|
|
|
// The true_type means we should forward to the size_t,value_type
|
|
// overload.
|
|
void constructImpl(size_type n, value_type const& val, std::true_type) {
|
|
doConstruct(n, val);
|
|
}
|
|
|
|
void makeSize(size_type size, value_type* v = nullptr) {
|
|
makeSize(size, v, size - 1);
|
|
}
|
|
|
|
/*
|
|
* Ensure we have a large enough memory region to be size `size'.
|
|
* Will move/copy elements if we are spilling to heap_ or needed to
|
|
* allocate a new region, but if resized in place doesn't initialize
|
|
* anything in the new region. In any case doesn't change size().
|
|
* Supports insertion of new element during reallocation by given
|
|
* pointer to new element and position of new element.
|
|
* NOTE: If reallocation is not needed, and new element should be
|
|
* inserted in the middle of vector (not at the end), do the move
|
|
* objects and insertion outside the function, otherwise exception is thrown.
|
|
*/
|
|
void makeSize(size_type size, value_type* v, size_type pos) {
|
|
if (size > this->max_size()) {
|
|
throw std::length_error("max_size exceeded in small_vector");
|
|
}
|
|
if (size <= this->capacity()) {
|
|
return;
|
|
}
|
|
|
|
auto needBytes = size * sizeof(value_type);
|
|
// If the capacity isn't explicitly stored inline, but the heap
|
|
// allocation is grown to over some threshold, we should store
|
|
// a capacity at the front of the heap allocation.
|
|
bool heapifyCapacity =
|
|
!kHasInlineCapacity && needBytes > kHeapifyCapacityThreshold;
|
|
if (heapifyCapacity) {
|
|
needBytes += kHeapifyCapacitySize;
|
|
}
|
|
auto const sizeBytes = goodMallocSize(needBytes);
|
|
void* newh = checkedMalloc(sizeBytes);
|
|
// We expect newh to be at least 2-aligned, because we want to
|
|
// use its least significant bit as a flag.
|
|
assert(!detail::pointerFlagGet(newh));
|
|
|
|
value_type* newp = static_cast<value_type*>(
|
|
heapifyCapacity ?
|
|
detail::shiftPointer(newh, kHeapifyCapacitySize) :
|
|
newh);
|
|
|
|
if (v != nullptr) {
|
|
// move new element
|
|
try {
|
|
new (&newp[pos]) value_type(std::move(*v));
|
|
} catch (...) {
|
|
free(newh);
|
|
throw;
|
|
}
|
|
|
|
// move old elements to the left of the new one
|
|
try {
|
|
detail::moveToUninitialized(begin(), begin() + pos, newp);
|
|
} catch (...) {
|
|
newp[pos].~value_type();
|
|
free(newh);
|
|
throw;
|
|
}
|
|
|
|
// move old elements to the right of the new one
|
|
try {
|
|
if (pos < size-1) {
|
|
detail::moveToUninitialized(begin() + pos, end(), newp + pos + 1);
|
|
}
|
|
} catch (...) {
|
|
for (size_type i = 0; i <= pos; ++i) {
|
|
newp[i].~value_type();
|
|
}
|
|
free(newh);
|
|
throw;
|
|
}
|
|
} else {
|
|
// move without inserting new element
|
|
try {
|
|
detail::moveToUninitialized(begin(), end(), newp);
|
|
} catch (...) {
|
|
free(newh);
|
|
throw;
|
|
}
|
|
}
|
|
for (auto& val : *this) {
|
|
val.~value_type();
|
|
}
|
|
|
|
if (this->isExtern()) {
|
|
u.freeHeap();
|
|
}
|
|
auto availableSizeBytes = sizeBytes;
|
|
if (heapifyCapacity) {
|
|
u.pdata_.heap_ = detail::pointerFlagSet(newh);
|
|
availableSizeBytes -= kHeapifyCapacitySize;
|
|
} else {
|
|
u.pdata_.heap_ = newh;
|
|
}
|
|
this->setExtern(true);
|
|
this->setCapacity(availableSizeBytes / sizeof(value_type));
|
|
}
|
|
|
|
/*
|
|
* This will set the capacity field, stored inline in the storage_ field
|
|
* if there is sufficient room to store it.
|
|
*/
|
|
void setCapacity(size_type newCapacity) {
|
|
assert(this->isExtern());
|
|
if (u.hasCapacity()) {
|
|
assert(newCapacity < std::numeric_limits<InternalSizeType>::max());
|
|
*u.getCapacity() = InternalSizeType(newCapacity);
|
|
}
|
|
}
|
|
|
|
private:
|
|
struct HeapPtrWithCapacity {
|
|
void* heap_;
|
|
InternalSizeType capacity_;
|
|
|
|
InternalSizeType* getCapacity() {
|
|
return &capacity_;
|
|
}
|
|
} FOLLY_PACK_ATTR;
|
|
|
|
struct HeapPtr {
|
|
// Lower order bit of heap_ is used as flag to indicate whether capacity is
|
|
// stored at the front of the heap allocation.
|
|
void* heap_;
|
|
|
|
InternalSizeType* getCapacity() {
|
|
assert(detail::pointerFlagGet(heap_));
|
|
return static_cast<InternalSizeType*>(
|
|
detail::pointerFlagClear(heap_));
|
|
}
|
|
} FOLLY_PACK_ATTR;
|
|
|
|
#if (FOLLY_X64 || FOLLY_PPC64)
|
|
typedef unsigned char InlineStorageDataType[sizeof(value_type) * MaxInline];
|
|
#else
|
|
typedef typename std::aligned_storage<
|
|
sizeof(value_type) * MaxInline,
|
|
alignof(value_type)
|
|
>::type InlineStorageDataType;
|
|
#endif
|
|
|
|
typedef typename std::conditional<
|
|
sizeof(value_type) * MaxInline != 0,
|
|
InlineStorageDataType,
|
|
void*
|
|
>::type InlineStorageType;
|
|
|
|
static bool const kHasInlineCapacity =
|
|
sizeof(HeapPtrWithCapacity) < sizeof(InlineStorageType);
|
|
|
|
// This value should we multiple of word size.
|
|
static size_t const kHeapifyCapacitySize = sizeof(
|
|
typename std::aligned_storage<
|
|
sizeof(InternalSizeType),
|
|
alignof(value_type)
|
|
>::type);
|
|
// Threshold to control capacity heapifying.
|
|
static size_t const kHeapifyCapacityThreshold =
|
|
100 * kHeapifyCapacitySize;
|
|
|
|
typedef typename std::conditional<
|
|
kHasInlineCapacity,
|
|
HeapPtrWithCapacity,
|
|
HeapPtr
|
|
>::type PointerType;
|
|
|
|
union Data {
|
|
explicit Data() { pdata_.heap_ = 0; }
|
|
|
|
PointerType pdata_;
|
|
InlineStorageType storage_;
|
|
|
|
value_type* buffer() noexcept {
|
|
void* vp = &storage_;
|
|
return static_cast<value_type*>(vp);
|
|
}
|
|
value_type const* buffer() const noexcept {
|
|
return const_cast<Data*>(this)->buffer();
|
|
}
|
|
value_type* heap() noexcept {
|
|
if (kHasInlineCapacity || !detail::pointerFlagGet(pdata_.heap_)) {
|
|
return static_cast<value_type*>(pdata_.heap_);
|
|
}
|
|
return static_cast<value_type*>(
|
|
detail::shiftPointer(
|
|
detail::pointerFlagClear(pdata_.heap_), kHeapifyCapacitySize));
|
|
}
|
|
value_type const* heap() const noexcept {
|
|
return const_cast<Data*>(this)->heap();
|
|
}
|
|
|
|
bool hasCapacity() const {
|
|
return kHasInlineCapacity || detail::pointerFlagGet(pdata_.heap_);
|
|
}
|
|
InternalSizeType* getCapacity() {
|
|
return pdata_.getCapacity();
|
|
}
|
|
InternalSizeType* getCapacity() const {
|
|
return const_cast<Data*>(this)->getCapacity();
|
|
}
|
|
|
|
void freeHeap() {
|
|
auto vp = detail::pointerFlagClear(pdata_.heap_);
|
|
free(vp);
|
|
}
|
|
} FOLLY_PACK_ATTR u;
|
|
} FOLLY_PACK_ATTR;
|
|
FOLLY_PACK_POP
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// Basic guarantee only, or provides the nothrow guarantee iff T has a
|
|
// nothrow move or copy constructor.
|
|
template<class T, std::size_t MaxInline, class A, class B, class C>
|
|
void swap(small_vector<T,MaxInline,A,B,C>& a,
|
|
small_vector<T,MaxInline,A,B,C>& b) {
|
|
a.swap(b);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
namespace detail {
|
|
|
|
// Format support.
|
|
template <class T, size_t M, class A, class B, class C>
|
|
struct IndexableTraits<small_vector<T, M, A, B, C>>
|
|
: public IndexableTraitsSeq<small_vector<T, M, A, B, C>> {
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
} // namespace folly
|
|
|
|
#pragma GCC diagnostic pop
|