ecency-mobile/ios/Pods/boost-for-react-native/boost/geometry/algorithms/touches.hpp

588 lines
18 KiB
C++

// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2015 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2015 Mateusz Loskot, London, UK.
// Copyright (c) 2013-2015 Adam Wulkiewicz, Lodz, Poland.
// This file was modified by Oracle on 2013, 2014, 2015.
// Modifications copyright (c) 2013-2015, Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_TOUCHES_HPP
#define BOOST_GEOMETRY_ALGORITHMS_TOUCHES_HPP
#include <deque>
#include <boost/variant/apply_visitor.hpp>
#include <boost/variant/static_visitor.hpp>
#include <boost/variant/variant_fwd.hpp>
#include <boost/geometry/geometries/concepts/check.hpp>
#include <boost/geometry/algorithms/detail/for_each_range.hpp>
#include <boost/geometry/algorithms/detail/overlay/overlay.hpp>
#include <boost/geometry/algorithms/detail/overlay/self_turn_points.hpp>
#include <boost/geometry/algorithms/disjoint.hpp>
#include <boost/geometry/algorithms/intersects.hpp>
#include <boost/geometry/algorithms/num_geometries.hpp>
#include <boost/geometry/algorithms/detail/sub_range.hpp>
#include <boost/geometry/policies/robustness/no_rescale_policy.hpp>
#include <boost/geometry/algorithms/relate.hpp>
#include <boost/geometry/algorithms/detail/relate/relate_impl.hpp>
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace touches
{
// Box/Box
template
<
std::size_t Dimension,
std::size_t DimensionCount
>
struct box_box_loop
{
template <typename Box1, typename Box2>
static inline bool apply(Box1 const& b1, Box2 const& b2, bool & touch)
{
typedef typename coordinate_type<Box1>::type coordinate_type1;
typedef typename coordinate_type<Box2>::type coordinate_type2;
coordinate_type1 const& min1 = get<min_corner, Dimension>(b1);
coordinate_type1 const& max1 = get<max_corner, Dimension>(b1);
coordinate_type2 const& min2 = get<min_corner, Dimension>(b2);
coordinate_type2 const& max2 = get<max_corner, Dimension>(b2);
// TODO assert or exception?
//BOOST_GEOMETRY_ASSERT(min1 <= max1 && min2 <= max2);
if (max1 < min2 || max2 < min1)
{
return false;
}
if (max1 == min2 || max2 == min1)
{
touch = true;
}
return box_box_loop
<
Dimension + 1,
DimensionCount
>::apply(b1, b2, touch);
}
};
template
<
std::size_t DimensionCount
>
struct box_box_loop<DimensionCount, DimensionCount>
{
template <typename Box1, typename Box2>
static inline bool apply(Box1 const& , Box2 const&, bool &)
{
return true;
}
};
struct box_box
{
template <typename Box1, typename Box2>
static inline bool apply(Box1 const& b1, Box2 const& b2)
{
BOOST_STATIC_ASSERT((boost::is_same
<
typename geometry::coordinate_system<Box1>::type,
typename geometry::coordinate_system<Box2>::type
>::value
));
assert_dimension_equal<Box1, Box2>();
bool touches = false;
bool ok = box_box_loop
<
0,
dimension<Box1>::type::value
>::apply(b1, b2, touches);
return ok && touches;
}
};
// Areal/Areal
struct areal_interrupt_policy
{
static bool const enabled = true;
bool found_touch;
bool found_not_touch;
// dummy variable required by self_get_turn_points::get_turns
static bool const has_intersections = false;
inline bool result()
{
return found_touch && !found_not_touch;
}
inline areal_interrupt_policy()
: found_touch(false), found_not_touch(false)
{}
template <typename Range>
inline bool apply(Range const& range)
{
// if already rejected (temp workaround?)
if ( found_not_touch )
return true;
typedef typename boost::range_iterator<Range const>::type iterator;
for ( iterator it = boost::begin(range) ; it != boost::end(range) ; ++it )
{
if ( it->has(overlay::operation_intersection) )
{
found_not_touch = true;
return true;
}
switch(it->method)
{
case overlay::method_crosses:
found_not_touch = true;
return true;
case overlay::method_equal:
// Segment spatially equal means: at the right side
// the polygon internally overlaps. So return false.
found_not_touch = true;
return true;
case overlay::method_touch:
case overlay::method_touch_interior:
case overlay::method_collinear:
if ( ok_for_touch(*it) )
{
found_touch = true;
}
else
{
found_not_touch = true;
return true;
}
break;
case overlay::method_none :
case overlay::method_disjoint :
case overlay::method_error :
break;
}
}
return false;
}
template <typename Turn>
inline bool ok_for_touch(Turn const& turn)
{
return turn.both(overlay::operation_union)
|| turn.both(overlay::operation_blocked)
|| turn.combination(overlay::operation_union, overlay::operation_blocked)
;
}
};
template<typename Geometry>
struct check_each_ring_for_within
{
bool has_within;
Geometry const& m_geometry;
inline check_each_ring_for_within(Geometry const& g)
: has_within(false)
, m_geometry(g)
{}
template <typename Range>
inline void apply(Range const& range)
{
typename geometry::point_type<Range>::type p;
geometry::point_on_border(p, range);
if ( !has_within && geometry::within(p, m_geometry) )
{
has_within = true;
}
}
};
template <typename FirstGeometry, typename SecondGeometry>
inline bool rings_containing(FirstGeometry const& geometry1,
SecondGeometry const& geometry2)
{
check_each_ring_for_within<FirstGeometry> checker(geometry1);
geometry::detail::for_each_range(geometry2, checker);
return checker.has_within;
}
template <typename Geometry1, typename Geometry2>
struct areal_areal
{
static inline
bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2)
{
typedef detail::no_rescale_policy rescale_policy_type;
typedef typename geometry::point_type<Geometry1>::type point_type;
typedef detail::overlay::turn_info
<
point_type,
typename segment_ratio_type<point_type, rescale_policy_type>::type
> turn_info;
std::deque<turn_info> turns;
detail::touches::areal_interrupt_policy policy;
rescale_policy_type robust_policy;
boost::geometry::get_turns
<
detail::overlay::do_reverse<geometry::point_order<Geometry1>::value>::value,
detail::overlay::do_reverse<geometry::point_order<Geometry2>::value>::value,
detail::overlay::assign_null_policy
>(geometry1, geometry2, robust_policy, turns, policy);
return policy.result()
&& ! geometry::detail::touches::rings_containing(geometry1, geometry2)
&& ! geometry::detail::touches::rings_containing(geometry2, geometry1);
}
};
// P/*
struct use_point_in_geometry
{
template <typename Point, typename Geometry>
static inline bool apply(Point const& point, Geometry const& geometry)
{
return detail::within::point_in_geometry(point, geometry) == 0;
}
};
}}
#endif // DOXYGEN_NO_DETAIL
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch {
// TODO: Since CastedTags are used is Reverse needed?
template
<
typename Geometry1, typename Geometry2,
typename Tag1 = typename tag<Geometry1>::type,
typename Tag2 = typename tag<Geometry2>::type,
typename CastedTag1 = typename tag_cast<Tag1, pointlike_tag, linear_tag, areal_tag>::type,
typename CastedTag2 = typename tag_cast<Tag2, pointlike_tag, linear_tag, areal_tag>::type,
bool Reverse = reverse_dispatch<Geometry1, Geometry2>::type::value
>
struct touches
: not_implemented<Tag1, Tag2>
{};
// If reversal is needed, perform it
template
<
typename Geometry1, typename Geometry2,
typename Tag1, typename Tag2,
typename CastedTag1, typename CastedTag2
>
struct touches<Geometry1, Geometry2, Tag1, Tag2, CastedTag1, CastedTag2, true>
: touches<Geometry2, Geometry1, Tag2, Tag1, CastedTag2, CastedTag1, false>
{
static inline bool apply(Geometry1 const& g1, Geometry2 const& g2)
{
return touches<Geometry2, Geometry1>::apply(g2, g1);
}
};
// P/P
template <typename Geometry1, typename Geometry2, typename Tag1, typename Tag2>
struct touches<Geometry1, Geometry2, Tag1, Tag2, pointlike_tag, pointlike_tag, false>
{
static inline bool apply(Geometry1 const& , Geometry2 const& )
{
return false;
}
};
// P/*
template <typename Point, typename Geometry, typename Tag2, typename CastedTag2>
struct touches<Point, Geometry, point_tag, Tag2, pointlike_tag, CastedTag2, false>
: detail::touches::use_point_in_geometry
{};
// TODO: support touches(MPt, Linear/Areal)
// Box/Box
template <typename Box1, typename Box2, typename CastedTag1, typename CastedTag2>
struct touches<Box1, Box2, box_tag, box_tag, CastedTag1, CastedTag2, false>
: detail::touches::box_box
{};
template <typename Box1, typename Box2>
struct touches<Box1, Box2, box_tag, box_tag, areal_tag, areal_tag, false>
: detail::touches::box_box
{};
// L/L
template <typename Linear1, typename Linear2, typename Tag1, typename Tag2>
struct touches<Linear1, Linear2, Tag1, Tag2, linear_tag, linear_tag, false>
: detail::relate::relate_impl
<
detail::de9im::static_mask_touches_type,
Linear1,
Linear2
>
{};
// L/A
template <typename Linear, typename Areal, typename Tag1, typename Tag2>
struct touches<Linear, Areal, Tag1, Tag2, linear_tag, areal_tag, false>
: detail::relate::relate_impl
<
detail::de9im::static_mask_touches_type,
Linear,
Areal
>
{};
// A/L
template <typename Linear, typename Areal, typename Tag1, typename Tag2>
struct touches<Areal, Linear, Tag1, Tag2, areal_tag, linear_tag, false>
: detail::relate::relate_impl
<
detail::de9im::static_mask_touches_type,
Areal,
Linear
>
{};
// A/A
template <typename Areal1, typename Areal2, typename Tag1, typename Tag2>
struct touches<Areal1, Areal2, Tag1, Tag2, areal_tag, areal_tag, false>
: detail::relate::relate_impl
<
detail::de9im::static_mask_touches_type,
Areal1,
Areal2
>
{};
template <typename Areal1, typename Areal2>
struct touches<Areal1, Areal2, ring_tag, ring_tag, areal_tag, areal_tag, false>
: detail::touches::areal_areal<Areal1, Areal2>
{};
} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH
namespace resolve_variant {
template <typename Geometry1, typename Geometry2>
struct touches
{
static bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2)
{
concepts::check<Geometry1 const>();
concepts::check<Geometry2 const>();
return dispatch::touches<Geometry1, Geometry2>
::apply(geometry1, geometry2);
}
};
template <BOOST_VARIANT_ENUM_PARAMS(typename T), typename Geometry2>
struct touches<boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)>, Geometry2>
{
struct visitor: boost::static_visitor<bool>
{
Geometry2 const& m_geometry2;
visitor(Geometry2 const& geometry2): m_geometry2(geometry2) {}
template <typename Geometry1>
bool operator()(Geometry1 const& geometry1) const
{
return touches<Geometry1, Geometry2>::apply(geometry1, m_geometry2);
}
};
static inline bool
apply(boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& geometry1,
Geometry2 const& geometry2)
{
return boost::apply_visitor(visitor(geometry2), geometry1);
}
};
template <typename Geometry1, BOOST_VARIANT_ENUM_PARAMS(typename T)>
struct touches<Geometry1, boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> >
{
struct visitor: boost::static_visitor<bool>
{
Geometry1 const& m_geometry1;
visitor(Geometry1 const& geometry1): m_geometry1(geometry1) {}
template <typename Geometry2>
bool operator()(Geometry2 const& geometry2) const
{
return touches<Geometry1, Geometry2>::apply(m_geometry1, geometry2);
}
};
static inline bool
apply(Geometry1 const& geometry1,
boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& geometry2)
{
return boost::apply_visitor(visitor(geometry1), geometry2);
}
};
template <BOOST_VARIANT_ENUM_PARAMS(typename T1),
BOOST_VARIANT_ENUM_PARAMS(typename T2)>
struct touches<boost::variant<BOOST_VARIANT_ENUM_PARAMS(T1)>,
boost::variant<BOOST_VARIANT_ENUM_PARAMS(T2)> >
{
struct visitor: boost::static_visitor<bool>
{
template <typename Geometry1, typename Geometry2>
bool operator()(Geometry1 const& geometry1,
Geometry2 const& geometry2) const
{
return touches<Geometry1, Geometry2>::apply(geometry1, geometry2);
}
};
static inline bool
apply(boost::variant<BOOST_VARIANT_ENUM_PARAMS(T1)> const& geometry1,
boost::variant<BOOST_VARIANT_ENUM_PARAMS(T2)> const& geometry2)
{
return boost::apply_visitor(visitor(), geometry1, geometry2);
}
};
template <typename Geometry>
struct self_touches
{
static bool apply(Geometry const& geometry)
{
concepts::check<Geometry const>();
typedef detail::no_rescale_policy rescale_policy_type;
typedef typename geometry::point_type<Geometry>::type point_type;
typedef detail::overlay::turn_info
<
point_type,
typename segment_ratio_type<point_type, rescale_policy_type>::type
> turn_info;
typedef detail::overlay::get_turn_info
<
detail::overlay::assign_null_policy
> policy_type;
std::deque<turn_info> turns;
detail::touches::areal_interrupt_policy policy;
rescale_policy_type robust_policy;
detail::self_get_turn_points::get_turns
<
policy_type
>::apply(geometry, robust_policy, turns, policy);
return policy.result();
}
};
template <BOOST_VARIANT_ENUM_PARAMS(typename T)>
struct self_touches<boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> >
{
struct visitor: boost::static_visitor<bool>
{
template <typename Geometry>
bool operator()(Geometry const& geometry) const
{
return self_touches<Geometry>::apply(geometry);
}
};
static inline bool
apply(boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& geometry)
{
return boost::apply_visitor(visitor(), geometry);
}
};
} // namespace resolve_variant
/*!
\brief \brief_check{has at least one touching point (self-tangency)}
\note This function can be called for one geometry (self-tangency) and
also for two geometries (touch)
\ingroup touches
\tparam Geometry \tparam_geometry
\param geometry \param_geometry
\return \return_check{is self-touching}
\qbk{distinguish,one geometry}
\qbk{[def __one_parameter__]}
\qbk{[include reference/algorithms/touches.qbk]}
*/
template <typename Geometry>
inline bool touches(Geometry const& geometry)
{
return resolve_variant::self_touches<Geometry>::apply(geometry);
}
/*!
\brief \brief_check2{have at least one touching point (tangent - non overlapping)}
\ingroup touches
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\param geometry1 \param_geometry
\param geometry2 \param_geometry
\return \return_check2{touch each other}
\qbk{distinguish,two geometries}
\qbk{[include reference/algorithms/touches.qbk]}
*/
template <typename Geometry1, typename Geometry2>
inline bool touches(Geometry1 const& geometry1, Geometry2 const& geometry2)
{
return resolve_variant::touches<Geometry1, Geometry2>::apply(geometry1, geometry2);
}
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_TOUCHES_HPP