mirror of
https://github.com/ecency/ecency-mobile.git
synced 2024-12-04 17:33:55 +03:00
332 lines
13 KiB
C++
332 lines
13 KiB
C++
/*
|
|
Copyright 2005-2007 Adobe Systems Incorporated
|
|
|
|
Use, modification and distribution are subject to the Boost Software License,
|
|
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
|
http://www.boost.org/LICENSE_1_0.txt).
|
|
|
|
See http://opensource.adobe.com/gil for most recent version including documentation.
|
|
*/
|
|
|
|
/*************************************************************************************************/
|
|
|
|
#ifndef GIL_UTILITIES_H
|
|
#define GIL_UTILITIES_H
|
|
|
|
#include "gil_config.hpp"
|
|
#include <functional>
|
|
#include <boost/config/no_tr1/cmath.hpp>
|
|
#include <cstddef>
|
|
#include <algorithm>
|
|
#include <utility>
|
|
#include <iterator>
|
|
#include <boost/static_assert.hpp>
|
|
#include <boost/type_traits.hpp>
|
|
#include <boost/mpl/size.hpp>
|
|
#include <boost/mpl/distance.hpp>
|
|
#include <boost/mpl/begin.hpp>
|
|
#include <boost/mpl/find.hpp>
|
|
#include <boost/mpl/range_c.hpp>
|
|
#include <boost/iterator/iterator_adaptor.hpp>
|
|
#include <boost/iterator/iterator_facade.hpp>
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
/// \file
|
|
/// \brief Various utilities not specific to the image library. Some are non-standard STL extensions or generic iterator adaptors
|
|
/// \author Lubomir Bourdev and Hailin Jin \n
|
|
/// Adobe Systems Incorporated
|
|
/// \date 2005-2007 \n Last updated on September 18, 2007
|
|
///
|
|
///
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace boost { namespace gil {
|
|
|
|
/**
|
|
\addtogroup PointModel
|
|
|
|
Example:
|
|
\code
|
|
point2<std::ptrdiff_t> p(3,2);
|
|
assert((p[0] == p.x) && (p[1] == p.y));
|
|
assert(axis_value<0>(p) == 3);
|
|
assert(axis_value<1>(p) == 2);
|
|
\endcode
|
|
*/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
// CLASS point2
|
|
///
|
|
/// \brief 2D point both axes of which have the same dimension type
|
|
/// \ingroup PointModel
|
|
/// Models: Point2DConcept
|
|
///
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
class point2 {
|
|
public:
|
|
typedef T value_type;
|
|
template <std::size_t D> struct axis { typedef value_type coord_t; };
|
|
static const std::size_t num_dimensions=2;
|
|
|
|
point2() : x(0), y(0) {}
|
|
point2(T newX, T newY) : x(newX), y(newY) {}
|
|
point2(const point2& p) : x(p.x), y(p.y) {}
|
|
~point2() {}
|
|
|
|
point2& operator=(const point2& p) { x=p.x; y=p.y; return *this; }
|
|
|
|
point2 operator<<(std::ptrdiff_t shift) const { return point2(x<<shift,y<<shift); }
|
|
point2 operator>>(std::ptrdiff_t shift) const { return point2(x>>shift,y>>shift); }
|
|
point2& operator+=(const point2& p) { x+=p.x; y+=p.y; return *this; }
|
|
point2& operator-=(const point2& p) { x-=p.x; y-=p.y; return *this; }
|
|
point2& operator/=(double t) { x/=t; y/=t; return *this; }
|
|
|
|
const T& operator[](std::size_t i) const { return this->*mem_array[i]; }
|
|
T& operator[](std::size_t i) { return this->*mem_array[i]; }
|
|
|
|
T x,y;
|
|
private:
|
|
// this static array of pointers to member variables makes operator[] safe and doesn't seem to exhibit any performance penalty
|
|
static T point2<T>::* const mem_array[num_dimensions];
|
|
};
|
|
|
|
template <typename T>
|
|
T point2<T>::* const point2<T>::mem_array[point2<T>::num_dimensions] = { &point2<T>::x, &point2<T>::y };
|
|
|
|
/// \ingroup PointModel
|
|
template <typename T> GIL_FORCEINLINE
|
|
bool operator==(const point2<T>& p1, const point2<T>& p2) { return (p1.x==p2.x && p1.y==p2.y); }
|
|
/// \ingroup PointModel
|
|
template <typename T> GIL_FORCEINLINE
|
|
bool operator!=(const point2<T>& p1, const point2<T>& p2) { return p1.x!=p2.x || p1.y!=p2.y; }
|
|
/// \ingroup PointModel
|
|
template <typename T> GIL_FORCEINLINE
|
|
point2<T> operator+(const point2<T>& p1, const point2<T>& p2) { return point2<T>(p1.x+p2.x,p1.y+p2.y); }
|
|
/// \ingroup PointModel
|
|
template <typename T> GIL_FORCEINLINE
|
|
point2<T> operator-(const point2<T>& p) { return point2<T>(-p.x,-p.y); }
|
|
/// \ingroup PointModel
|
|
template <typename T> GIL_FORCEINLINE
|
|
point2<T> operator-(const point2<T>& p1, const point2<T>& p2) { return point2<T>(p1.x-p2.x,p1.y-p2.y); }
|
|
/// \ingroup PointModel
|
|
template <typename T> GIL_FORCEINLINE
|
|
point2<double> operator/(const point2<T>& p, double t) { return t==0 ? point2<double>(0,0):point2<double>(p.x/t,p.y/t); }
|
|
/// \ingroup PointModel
|
|
template <typename T> GIL_FORCEINLINE
|
|
point2<T> operator*(const point2<T>& p, std::ptrdiff_t t) { return point2<T>(p.x*t,p.y*t); }
|
|
/// \ingroup PointModel
|
|
template <typename T> GIL_FORCEINLINE
|
|
point2<T> operator*(std::ptrdiff_t t, const point2<T>& p) { return point2<T>(p.x*t,p.y*t); }
|
|
|
|
/// \ingroup PointModel
|
|
template <std::size_t K, typename T> GIL_FORCEINLINE
|
|
const T& axis_value(const point2<T>& p) { return p[K]; }
|
|
|
|
/// \ingroup PointModel
|
|
template <std::size_t K, typename T> GIL_FORCEINLINE
|
|
T& axis_value( point2<T>& p) { return p[K]; }
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
///
|
|
/// Rounding of real numbers / points to integers / integer points
|
|
///
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
inline std::ptrdiff_t iround(float x ) { return static_cast<std::ptrdiff_t>(x + (x < 0.0f ? -0.5f : 0.5f)); }
|
|
inline std::ptrdiff_t iround(double x) { return static_cast<std::ptrdiff_t>(x + (x < 0.0 ? -0.5 : 0.5)); }
|
|
inline std::ptrdiff_t ifloor(float x ) { return static_cast<std::ptrdiff_t>(std::floor(x)); }
|
|
inline std::ptrdiff_t ifloor(double x) { return static_cast<std::ptrdiff_t>(std::floor(x)); }
|
|
inline std::ptrdiff_t iceil(float x ) { return static_cast<std::ptrdiff_t>(std::ceil(x)); }
|
|
inline std::ptrdiff_t iceil(double x) { return static_cast<std::ptrdiff_t>(std::ceil(x)); }
|
|
|
|
/**
|
|
\addtogroup PointAlgorithm
|
|
|
|
Example:
|
|
\code
|
|
assert(iround(point2<double>(3.1, 3.9)) == point2<std::ptrdiff_t>(3,4));
|
|
\endcode
|
|
*/
|
|
|
|
/// \ingroup PointAlgorithm
|
|
inline point2<std::ptrdiff_t> iround(const point2<float >& p) { return point2<std::ptrdiff_t>(iround(p.x),iround(p.y)); }
|
|
/// \ingroup PointAlgorithm
|
|
inline point2<std::ptrdiff_t> iround(const point2<double>& p) { return point2<std::ptrdiff_t>(iround(p.x),iround(p.y)); }
|
|
/// \ingroup PointAlgorithm
|
|
inline point2<std::ptrdiff_t> ifloor(const point2<float >& p) { return point2<std::ptrdiff_t>(ifloor(p.x),ifloor(p.y)); }
|
|
/// \ingroup PointAlgorithm
|
|
inline point2<std::ptrdiff_t> ifloor(const point2<double>& p) { return point2<std::ptrdiff_t>(ifloor(p.x),ifloor(p.y)); }
|
|
/// \ingroup PointAlgorithm
|
|
inline point2<std::ptrdiff_t> iceil (const point2<float >& p) { return point2<std::ptrdiff_t>(iceil(p.x), iceil(p.y)); }
|
|
/// \ingroup PointAlgorithm
|
|
inline point2<std::ptrdiff_t> iceil (const point2<double>& p) { return point2<std::ptrdiff_t>(iceil(p.x), iceil(p.y)); }
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
///
|
|
/// computing size with alignment
|
|
///
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <typename T>
|
|
inline T align(T val, std::size_t alignment) {
|
|
return val+(alignment - val%alignment)%alignment;
|
|
}
|
|
|
|
/// \brief Helper base class for pixel dereference adaptors.
|
|
/// \ingroup PixelDereferenceAdaptorModel
|
|
///
|
|
template <typename ConstT, typename Value, typename Reference, typename ConstReference,
|
|
typename ArgType, typename ResultType, bool IsMutable>
|
|
struct deref_base : public std::unary_function<ArgType, ResultType> {
|
|
typedef ConstT const_t;
|
|
typedef Value value_type;
|
|
typedef Reference reference;
|
|
typedef ConstReference const_reference;
|
|
BOOST_STATIC_CONSTANT(bool, is_mutable = IsMutable);
|
|
};
|
|
|
|
/// \brief Composes two dereference function objects. Similar to std::unary_compose but needs to pull some typedefs from the component types. Models: PixelDereferenceAdaptorConcept
|
|
/// \ingroup PixelDereferenceAdaptorModel
|
|
///
|
|
template <typename D1, typename D2>
|
|
class deref_compose : public deref_base<
|
|
deref_compose<typename D1::const_t, typename D2::const_t>,
|
|
typename D1::value_type, typename D1::reference, typename D1::const_reference,
|
|
typename D2::argument_type, typename D1::result_type, D1::is_mutable && D2::is_mutable>
|
|
{
|
|
public:
|
|
D1 _fn1;
|
|
D2 _fn2;
|
|
|
|
typedef typename D2::argument_type argument_type;
|
|
typedef typename D1::result_type result_type;
|
|
|
|
deref_compose() {}
|
|
deref_compose(const D1& x, const D2& y) : _fn1(x), _fn2(y) {}
|
|
deref_compose(const deref_compose& dc) : _fn1(dc._fn1), _fn2(dc._fn2) {}
|
|
template <typename _D1, typename _D2> deref_compose(const deref_compose<_D1,_D2>& dc) : _fn1(dc._fn1), _fn2(dc._fn2) {}
|
|
|
|
result_type operator()(argument_type x) const { return _fn1(_fn2(x)); }
|
|
result_type operator()(argument_type x) { return _fn1(_fn2(x)); }
|
|
};
|
|
|
|
// reinterpret_cast is implementation-defined. Static cast is not.
|
|
template <typename OutPtr, typename In> GIL_FORCEINLINE
|
|
OutPtr gil_reinterpret_cast( In* p) { return static_cast<OutPtr>(static_cast<void*>(p)); }
|
|
|
|
template <typename OutPtr, typename In> GIL_FORCEINLINE
|
|
const OutPtr gil_reinterpret_cast_c(const In* p) { return static_cast<const OutPtr>(static_cast<const void*>(p)); }
|
|
|
|
namespace detail {
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
///
|
|
/// \brief copy_n taken from SGI STL.
|
|
///
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template <class InputIter, class Size, class OutputIter>
|
|
std::pair<InputIter, OutputIter> _copy_n(InputIter first, Size count,
|
|
OutputIter result,
|
|
std::input_iterator_tag) {
|
|
for ( ; count > 0; --count) {
|
|
*result = *first;
|
|
++first;
|
|
++result;
|
|
}
|
|
return std::pair<InputIter, OutputIter>(first, result);
|
|
}
|
|
|
|
template <class RAIter, class Size, class OutputIter>
|
|
inline std::pair<RAIter, OutputIter>
|
|
_copy_n(RAIter first, Size count, OutputIter result, std::random_access_iterator_tag) {
|
|
RAIter last = first + count;
|
|
return std::pair<RAIter, OutputIter>(last, std::copy(first, last, result));
|
|
}
|
|
|
|
template <class InputIter, class Size, class OutputIter>
|
|
inline std::pair<InputIter, OutputIter>
|
|
_copy_n(InputIter first, Size count, OutputIter result) {
|
|
return _copy_n(first, count, result, typename std::iterator_traits<InputIter>::iterator_category());
|
|
}
|
|
|
|
template <class InputIter, class Size, class OutputIter>
|
|
inline std::pair<InputIter, OutputIter>
|
|
copy_n(InputIter first, Size count, OutputIter result) {
|
|
return detail::_copy_n(first, count, result);
|
|
}
|
|
|
|
/// \brief identity taken from SGI STL.
|
|
template <typename T>
|
|
struct identity : public std::unary_function<T,T> {
|
|
const T& operator()(const T& val) const { return val; }
|
|
};
|
|
|
|
/*************************************************************************************************/
|
|
|
|
/// \brief plus function object whose arguments may be of different type.
|
|
template <typename T1, typename T2>
|
|
struct plus_asymmetric : public std::binary_function<T1,T2,T1> {
|
|
T1 operator()(T1 f1, T2 f2) const {
|
|
return f1+f2;
|
|
}
|
|
};
|
|
|
|
/*************************************************************************************************/
|
|
|
|
/// \brief operator++ wrapped in a function object
|
|
template <typename T>
|
|
struct inc : public std::unary_function<T,T> {
|
|
T operator()(T x) const { return ++x; }
|
|
};
|
|
|
|
/*************************************************************************************************/
|
|
|
|
/// \brief operator-- wrapped in a function object
|
|
template <typename T>
|
|
struct dec : public std::unary_function<T,T> {
|
|
T operator()(T x) const { return --x; }
|
|
};
|
|
|
|
/// \brief Returns the index corresponding to the first occurrance of a given given type in
|
|
// a given MPL RandomAccessSequence (or size if the type is not present)
|
|
template <typename Types, typename T>
|
|
struct type_to_index
|
|
: public mpl::distance<typename mpl::begin<Types>::type,
|
|
typename mpl::find<Types,T>::type>::type {};
|
|
} // namespace detail
|
|
|
|
|
|
|
|
/// \ingroup ColorSpaceAndLayoutModel
|
|
/// \brief Represents a color space and ordering of channels in memory
|
|
template <typename ColorSpace, typename ChannelMapping = mpl::range_c<int,0,mpl::size<ColorSpace>::value> >
|
|
struct layout {
|
|
typedef ColorSpace color_space_t;
|
|
typedef ChannelMapping channel_mapping_t;
|
|
};
|
|
|
|
/// \brief A version of swap that also works with reference proxy objects
|
|
template <typename Value, typename T1, typename T2> // where value_type<T1> == value_type<T2> == Value
|
|
void swap_proxy(T1& left, T2& right) {
|
|
Value tmp = left;
|
|
left = right;
|
|
right = tmp;
|
|
}
|
|
|
|
/// \brief Run-time detection of whether the underlying architecture is little endian
|
|
inline bool little_endian() {
|
|
short tester = 0x0001;
|
|
return *(char*)&tester!=0;
|
|
}
|
|
/// \brief Run-time detection of whether the underlying architecture is big endian
|
|
inline bool big_endian() {
|
|
return !little_endian();
|
|
}
|
|
|
|
} } // namespace boost::gil
|
|
|
|
#endif
|