mirror of
https://github.com/ecency/ecency-mobile.git
synced 2025-01-03 03:25:24 +03:00
584 lines
16 KiB
C++
584 lines
16 KiB
C++
// - lambda_traits.hpp --- Boost Lambda Library ----------------------------
|
|
//
|
|
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0. (See
|
|
// accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
//
|
|
// For more information, see www.boost.org
|
|
// -------------------------------------------------------------------------
|
|
|
|
#ifndef BOOST_LAMBDA_LAMBDA_TRAITS_HPP
|
|
#define BOOST_LAMBDA_LAMBDA_TRAITS_HPP
|
|
|
|
#include "boost/type_traits/transform_traits.hpp"
|
|
#include "boost/type_traits/cv_traits.hpp"
|
|
#include "boost/type_traits/function_traits.hpp"
|
|
#include "boost/type_traits/object_traits.hpp"
|
|
#include "boost/tuple/tuple.hpp"
|
|
|
|
namespace boost {
|
|
namespace lambda {
|
|
|
|
// -- if construct ------------------------------------------------
|
|
// Proposed by Krzysztof Czarnecki and Ulrich Eisenecker
|
|
|
|
namespace detail {
|
|
|
|
template <bool If, class Then, class Else> struct IF { typedef Then RET; };
|
|
|
|
template <class Then, class Else> struct IF<false, Then, Else> {
|
|
typedef Else RET;
|
|
};
|
|
|
|
|
|
// An if construct that doesn't instantiate the non-matching template:
|
|
|
|
// Called as:
|
|
// IF_type<condition, A, B>::type
|
|
// The matching template must define the typeded 'type'
|
|
// I.e. A::type if condition is true, B::type if condition is false
|
|
// Idea from Vesa Karvonen (from C&E as well I guess)
|
|
template<class T>
|
|
struct IF_type_
|
|
{
|
|
typedef typename T::type type;
|
|
};
|
|
|
|
|
|
template<bool C, class T, class E>
|
|
struct IF_type
|
|
{
|
|
typedef typename
|
|
IF_type_<typename IF<C, T, E>::RET >::type type;
|
|
};
|
|
|
|
// helper that can be used to give typedef T to some type
|
|
template <class T> struct identity_mapping { typedef T type; };
|
|
|
|
// An if construct for finding an integral constant 'value'
|
|
// Does not instantiate the non-matching branch
|
|
// Called as IF_value<condition, A, B>::value
|
|
// If condition is true A::value must be defined, otherwise B::value
|
|
|
|
template<class T>
|
|
struct IF_value_
|
|
{
|
|
BOOST_STATIC_CONSTANT(int, value = T::value);
|
|
};
|
|
|
|
|
|
template<bool C, class T, class E>
|
|
struct IF_value
|
|
{
|
|
BOOST_STATIC_CONSTANT(int, value = (IF_value_<typename IF<C, T, E>::RET>::value));
|
|
};
|
|
|
|
|
|
// --------------------------------------------------------------
|
|
|
|
// removes reference from other than function types:
|
|
template<class T> class remove_reference_if_valid
|
|
{
|
|
|
|
typedef typename boost::remove_reference<T>::type plainT;
|
|
public:
|
|
typedef typename IF<
|
|
boost::is_function<plainT>::value,
|
|
T,
|
|
plainT
|
|
>::RET type;
|
|
|
|
};
|
|
|
|
|
|
template<class T> struct remove_reference_and_cv {
|
|
typedef typename boost::remove_cv<
|
|
typename boost::remove_reference<T>::type
|
|
>::type type;
|
|
};
|
|
|
|
|
|
|
|
// returns a reference to the element of tuple T
|
|
template<int N, class T> struct tuple_element_as_reference {
|
|
typedef typename
|
|
boost::tuples::access_traits<
|
|
typename boost::tuples::element<N, T>::type
|
|
>::non_const_type type;
|
|
};
|
|
|
|
// returns the cv and reverence stripped type of a tuple element
|
|
template<int N, class T> struct tuple_element_stripped {
|
|
typedef typename
|
|
remove_reference_and_cv<
|
|
typename boost::tuples::element<N, T>::type
|
|
>::type type;
|
|
};
|
|
|
|
// is_lambda_functor -------------------------------------------------
|
|
|
|
template <class T> struct is_lambda_functor_ {
|
|
BOOST_STATIC_CONSTANT(bool, value = false);
|
|
};
|
|
|
|
template <class Arg> struct is_lambda_functor_<lambda_functor<Arg> > {
|
|
BOOST_STATIC_CONSTANT(bool, value = true);
|
|
};
|
|
|
|
} // end detail
|
|
|
|
|
|
template <class T> struct is_lambda_functor {
|
|
BOOST_STATIC_CONSTANT(bool,
|
|
value =
|
|
detail::is_lambda_functor_<
|
|
typename detail::remove_reference_and_cv<T>::type
|
|
>::value);
|
|
};
|
|
|
|
|
|
namespace detail {
|
|
|
|
// -- parameter_traits_ ---------------------------------------------
|
|
|
|
// An internal parameter type traits class that respects
|
|
// the reference_wrapper class.
|
|
|
|
// The conversions performed are:
|
|
// references -> compile_time_error
|
|
// T1 -> T2,
|
|
// reference_wrapper<T> -> T&
|
|
// const array -> ref to const array
|
|
// array -> ref to array
|
|
// function -> ref to function
|
|
|
|
// ------------------------------------------------------------------------
|
|
|
|
template<class T1, class T2>
|
|
struct parameter_traits_ {
|
|
typedef T2 type;
|
|
};
|
|
|
|
// Do not instantiate with reference types
|
|
template<class T, class Any> struct parameter_traits_<T&, Any> {
|
|
typedef typename
|
|
generate_error<T&>::
|
|
parameter_traits_class_instantiated_with_reference_type type;
|
|
};
|
|
|
|
// Arrays can't be stored as plain types; convert them to references
|
|
template<class T, int n, class Any> struct parameter_traits_<T[n], Any> {
|
|
typedef T (&type)[n];
|
|
};
|
|
|
|
template<class T, int n, class Any>
|
|
struct parameter_traits_<const T[n], Any> {
|
|
typedef const T (&type)[n];
|
|
};
|
|
|
|
template<class T, int n, class Any>
|
|
struct parameter_traits_<volatile T[n], Any> {
|
|
typedef volatile T (&type)[n];
|
|
};
|
|
template<class T, int n, class Any>
|
|
struct parameter_traits_<const volatile T[n], Any> {
|
|
typedef const volatile T (&type)[n];
|
|
};
|
|
|
|
|
|
template<class T, class Any>
|
|
struct parameter_traits_<boost::reference_wrapper<T>, Any >{
|
|
typedef T& type;
|
|
};
|
|
|
|
template<class T, class Any>
|
|
struct parameter_traits_<const boost::reference_wrapper<T>, Any >{
|
|
typedef T& type;
|
|
};
|
|
|
|
template<class T, class Any>
|
|
struct parameter_traits_<volatile boost::reference_wrapper<T>, Any >{
|
|
typedef T& type;
|
|
};
|
|
|
|
template<class T, class Any>
|
|
struct parameter_traits_<const volatile boost::reference_wrapper<T>, Any >{
|
|
typedef T& type;
|
|
};
|
|
|
|
template<class Any>
|
|
struct parameter_traits_<void, Any> {
|
|
typedef void type;
|
|
};
|
|
|
|
template<class Arg, class Any>
|
|
struct parameter_traits_<lambda_functor<Arg>, Any > {
|
|
typedef lambda_functor<Arg> type;
|
|
};
|
|
|
|
template<class Arg, class Any>
|
|
struct parameter_traits_<const lambda_functor<Arg>, Any > {
|
|
typedef lambda_functor<Arg> type;
|
|
};
|
|
|
|
// Are the volatile versions needed?
|
|
template<class Arg, class Any>
|
|
struct parameter_traits_<volatile lambda_functor<Arg>, Any > {
|
|
typedef lambda_functor<Arg> type;
|
|
};
|
|
|
|
template<class Arg, class Any>
|
|
struct parameter_traits_<const volatile lambda_functor<Arg>, Any > {
|
|
typedef lambda_functor<Arg> type;
|
|
};
|
|
|
|
} // end namespace detail
|
|
|
|
|
|
// ------------------------------------------------------------------------
|
|
// traits classes for lambda expressions (bind functions, operators ...)
|
|
|
|
// must be instantiated with non-reference types
|
|
|
|
// The default is const plain type -------------------------
|
|
// const T -> const T,
|
|
// T -> const T,
|
|
// references -> compile_time_error
|
|
// reference_wrapper<T> -> T&
|
|
// array -> const ref array
|
|
template<class T>
|
|
struct const_copy_argument {
|
|
typedef typename
|
|
detail::parameter_traits_<
|
|
T,
|
|
typename detail::IF<boost::is_function<T>::value, T&, const T>::RET
|
|
>::type type;
|
|
};
|
|
|
|
// T may be a function type. Without the IF test, const would be added
|
|
// to a function type, which is illegal.
|
|
|
|
// all arrays are converted to const.
|
|
// This traits template is used for 'const T&' parameter passing
|
|
// and thus the knowledge of the potential
|
|
// non-constness of an actual argument is lost.
|
|
template<class T, int n> struct const_copy_argument <T[n]> {
|
|
typedef const T (&type)[n];
|
|
};
|
|
template<class T, int n> struct const_copy_argument <volatile T[n]> {
|
|
typedef const volatile T (&type)[n];
|
|
};
|
|
|
|
template<class T>
|
|
struct const_copy_argument<T&> {};
|
|
// do not instantiate with references
|
|
// typedef typename detail::generate_error<T&>::references_not_allowed type;
|
|
|
|
|
|
template<>
|
|
struct const_copy_argument<void> {
|
|
typedef void type;
|
|
};
|
|
|
|
template<>
|
|
struct const_copy_argument<void const> {
|
|
typedef void type;
|
|
};
|
|
|
|
|
|
// Does the same as const_copy_argument, but passes references through as such
|
|
template<class T>
|
|
struct bound_argument_conversion {
|
|
typedef typename const_copy_argument<T>::type type;
|
|
};
|
|
|
|
template<class T>
|
|
struct bound_argument_conversion<T&> {
|
|
typedef T& type;
|
|
};
|
|
|
|
// The default is non-const reference -------------------------
|
|
// const T -> const T&,
|
|
// T -> T&,
|
|
// references -> compile_time_error
|
|
// reference_wrapper<T> -> T&
|
|
template<class T>
|
|
struct reference_argument {
|
|
typedef typename detail::parameter_traits_<T, T&>::type type;
|
|
};
|
|
|
|
template<class T>
|
|
struct reference_argument<T&> {
|
|
typedef typename detail::generate_error<T&>::references_not_allowed type;
|
|
};
|
|
|
|
template<class Arg>
|
|
struct reference_argument<lambda_functor<Arg> > {
|
|
typedef lambda_functor<Arg> type;
|
|
};
|
|
|
|
template<class Arg>
|
|
struct reference_argument<const lambda_functor<Arg> > {
|
|
typedef lambda_functor<Arg> type;
|
|
};
|
|
|
|
// Are the volatile versions needed?
|
|
template<class Arg>
|
|
struct reference_argument<volatile lambda_functor<Arg> > {
|
|
typedef lambda_functor<Arg> type;
|
|
};
|
|
|
|
template<class Arg>
|
|
struct reference_argument<const volatile lambda_functor<Arg> > {
|
|
typedef lambda_functor<Arg> type;
|
|
};
|
|
|
|
template<>
|
|
struct reference_argument<void> {
|
|
typedef void type;
|
|
};
|
|
|
|
namespace detail {
|
|
|
|
// Array to pointer conversion
|
|
template <class T>
|
|
struct array_to_pointer {
|
|
typedef T type;
|
|
};
|
|
|
|
template <class T, int N>
|
|
struct array_to_pointer <const T[N]> {
|
|
typedef const T* type;
|
|
};
|
|
template <class T, int N>
|
|
struct array_to_pointer <T[N]> {
|
|
typedef T* type;
|
|
};
|
|
|
|
template <class T, int N>
|
|
struct array_to_pointer <const T (&) [N]> {
|
|
typedef const T* type;
|
|
};
|
|
template <class T, int N>
|
|
struct array_to_pointer <T (&) [N]> {
|
|
typedef T* type;
|
|
};
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// The call_traits for bind
|
|
// Respects the reference_wrapper class.
|
|
|
|
// These templates are used outside of bind functions as well.
|
|
// the bind_tuple_mapper provides a shorter notation for default
|
|
// bound argument storing semantics, if all arguments are treated
|
|
// uniformly.
|
|
|
|
// from template<class T> foo(const T& t) : bind_traits<const T>::type
|
|
// from template<class T> foo(T& t) : bind_traits<T>::type
|
|
|
|
// Conversions:
|
|
// T -> const T,
|
|
// cv T -> cv T,
|
|
// T& -> T&
|
|
// reference_wrapper<T> -> T&
|
|
// const reference_wrapper<T> -> T&
|
|
// array -> const ref array
|
|
|
|
// make bound arguments const, this is a deliberate design choice, the
|
|
// purpose is to prevent side effects to bound arguments that are stored
|
|
// as copies
|
|
template<class T>
|
|
struct bind_traits {
|
|
typedef const T type;
|
|
};
|
|
|
|
template<class T>
|
|
struct bind_traits<T&> {
|
|
typedef T& type;
|
|
};
|
|
|
|
// null_types are an exception, we always want to store them as non const
|
|
// so that other templates can assume that null_type is always without const
|
|
template<>
|
|
struct bind_traits<null_type> {
|
|
typedef null_type type;
|
|
};
|
|
|
|
// the bind_tuple_mapper, bind_type_generators may
|
|
// introduce const to null_type
|
|
template<>
|
|
struct bind_traits<const null_type> {
|
|
typedef null_type type;
|
|
};
|
|
|
|
// Arrays can't be stored as plain types; convert them to references.
|
|
// All arrays are converted to const. This is because bind takes its
|
|
// parameters as const T& and thus the knowledge of the potential
|
|
// non-constness of actual argument is lost.
|
|
template<class T, int n> struct bind_traits <T[n]> {
|
|
typedef const T (&type)[n];
|
|
};
|
|
|
|
template<class T, int n>
|
|
struct bind_traits<const T[n]> {
|
|
typedef const T (&type)[n];
|
|
};
|
|
|
|
template<class T, int n> struct bind_traits<volatile T[n]> {
|
|
typedef const volatile T (&type)[n];
|
|
};
|
|
|
|
template<class T, int n>
|
|
struct bind_traits<const volatile T[n]> {
|
|
typedef const volatile T (&type)[n];
|
|
};
|
|
|
|
template<class R>
|
|
struct bind_traits<R()> {
|
|
typedef R(&type)();
|
|
};
|
|
|
|
template<class R, class Arg1>
|
|
struct bind_traits<R(Arg1)> {
|
|
typedef R(&type)(Arg1);
|
|
};
|
|
|
|
template<class R, class Arg1, class Arg2>
|
|
struct bind_traits<R(Arg1, Arg2)> {
|
|
typedef R(&type)(Arg1, Arg2);
|
|
};
|
|
|
|
template<class R, class Arg1, class Arg2, class Arg3>
|
|
struct bind_traits<R(Arg1, Arg2, Arg3)> {
|
|
typedef R(&type)(Arg1, Arg2, Arg3);
|
|
};
|
|
|
|
template<class R, class Arg1, class Arg2, class Arg3, class Arg4>
|
|
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4)> {
|
|
typedef R(&type)(Arg1, Arg2, Arg3, Arg4);
|
|
};
|
|
|
|
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5>
|
|
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5)> {
|
|
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5);
|
|
};
|
|
|
|
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6>
|
|
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> {
|
|
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6);
|
|
};
|
|
|
|
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7>
|
|
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> {
|
|
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7);
|
|
};
|
|
|
|
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8>
|
|
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> {
|
|
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8);
|
|
};
|
|
|
|
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Arg9>
|
|
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9)> {
|
|
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9);
|
|
};
|
|
|
|
template<class T>
|
|
struct bind_traits<reference_wrapper<T> >{
|
|
typedef T& type;
|
|
};
|
|
|
|
template<class T>
|
|
struct bind_traits<const reference_wrapper<T> >{
|
|
typedef T& type;
|
|
};
|
|
|
|
template<>
|
|
struct bind_traits<void> {
|
|
typedef void type;
|
|
};
|
|
|
|
|
|
|
|
template <
|
|
class T0 = null_type, class T1 = null_type, class T2 = null_type,
|
|
class T3 = null_type, class T4 = null_type, class T5 = null_type,
|
|
class T6 = null_type, class T7 = null_type, class T8 = null_type,
|
|
class T9 = null_type
|
|
>
|
|
struct bind_tuple_mapper {
|
|
typedef
|
|
tuple<typename bind_traits<T0>::type,
|
|
typename bind_traits<T1>::type,
|
|
typename bind_traits<T2>::type,
|
|
typename bind_traits<T3>::type,
|
|
typename bind_traits<T4>::type,
|
|
typename bind_traits<T5>::type,
|
|
typename bind_traits<T6>::type,
|
|
typename bind_traits<T7>::type,
|
|
typename bind_traits<T8>::type,
|
|
typename bind_traits<T9>::type> type;
|
|
};
|
|
|
|
// bind_traits, except map const T& -> const T
|
|
// this is needed e.g. in currying. Const reference arguments can
|
|
// refer to temporaries, so it is not safe to store them as references.
|
|
template <class T> struct remove_const_reference {
|
|
typedef typename bind_traits<T>::type type;
|
|
};
|
|
|
|
template <class T> struct remove_const_reference<const T&> {
|
|
typedef const T type;
|
|
};
|
|
|
|
|
|
// maps the bind argument types to the resulting lambda functor type
|
|
template <
|
|
class T0 = null_type, class T1 = null_type, class T2 = null_type,
|
|
class T3 = null_type, class T4 = null_type, class T5 = null_type,
|
|
class T6 = null_type, class T7 = null_type, class T8 = null_type,
|
|
class T9 = null_type
|
|
>
|
|
class bind_type_generator {
|
|
|
|
typedef typename
|
|
detail::bind_tuple_mapper<
|
|
T0, T1, T2, T3, T4, T5, T6, T7, T8, T9
|
|
>::type args_t;
|
|
|
|
BOOST_STATIC_CONSTANT(int, nof_elems = boost::tuples::length<args_t>::value);
|
|
|
|
typedef
|
|
action<
|
|
nof_elems,
|
|
function_action<nof_elems>
|
|
> action_type;
|
|
|
|
public:
|
|
typedef
|
|
lambda_functor<
|
|
lambda_functor_base<
|
|
action_type,
|
|
args_t
|
|
>
|
|
> type;
|
|
|
|
};
|
|
|
|
|
|
|
|
} // detail
|
|
|
|
template <class T> inline const T& make_const(const T& t) { return t; }
|
|
|
|
|
|
} // end of namespace lambda
|
|
} // end of namespace boost
|
|
|
|
|
|
|
|
#endif // BOOST_LAMBDA_TRAITS_HPP
|