mirror of
https://github.com/ecency/ecency-mobile.git
synced 2025-01-03 11:34:30 +03:00
121 lines
4.8 KiB
C++
121 lines
4.8 KiB
C++
/* Boost interval/rounded_arith.hpp template implementation file
|
|
*
|
|
* Copyright 2002-2003 Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion
|
|
*
|
|
* Distributed under the Boost Software License, Version 1.0.
|
|
* (See accompanying file LICENSE_1_0.txt or
|
|
* copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
|
|
#ifndef BOOST_NUMERIC_INTERVAL_ROUNDED_ARITH_HPP
|
|
#define BOOST_NUMERIC_INTERVAL_ROUNDED_ARITH_HPP
|
|
|
|
#include <boost/numeric/interval/rounding.hpp>
|
|
#include <boost/numeric/interval/detail/bugs.hpp>
|
|
#include <boost/config/no_tr1/cmath.hpp>
|
|
|
|
namespace boost {
|
|
namespace numeric {
|
|
namespace interval_lib {
|
|
|
|
/*
|
|
* Three classes of rounding: exact, std, opp
|
|
* See documentation for details.
|
|
*/
|
|
|
|
template<class T, class Rounding>
|
|
struct rounded_arith_exact: Rounding {
|
|
void init() { }
|
|
template<class U> T conv_down(U const &v) { return v; }
|
|
template<class U> T conv_up (U const &v) { return v; }
|
|
T add_down (const T& x, const T& y) { return x + y; }
|
|
T add_up (const T& x, const T& y) { return x + y; }
|
|
T sub_down (const T& x, const T& y) { return x - y; }
|
|
T sub_up (const T& x, const T& y) { return x - y; }
|
|
T mul_down (const T& x, const T& y) { return x * y; }
|
|
T mul_up (const T& x, const T& y) { return x * y; }
|
|
T div_down (const T& x, const T& y) { return x / y; }
|
|
T div_up (const T& x, const T& y) { return x / y; }
|
|
T median (const T& x, const T& y) { return (x + y) / 2; }
|
|
T sqrt_down(const T& x)
|
|
{ BOOST_NUMERIC_INTERVAL_using_math(sqrt); return sqrt(x); }
|
|
T sqrt_up (const T& x)
|
|
{ BOOST_NUMERIC_INTERVAL_using_math(sqrt); return sqrt(x); }
|
|
T int_down (const T& x)
|
|
{ BOOST_NUMERIC_INTERVAL_using_math(floor); return floor(x); }
|
|
T int_up (const T& x)
|
|
{ BOOST_NUMERIC_INTERVAL_using_math(ceil); return ceil(x); }
|
|
};
|
|
|
|
template<class T, class Rounding>
|
|
struct rounded_arith_std: Rounding {
|
|
# define BOOST_DN(EXPR) this->downward(); return this->force_rounding(EXPR)
|
|
# define BOOST_NR(EXPR) this->to_nearest(); return this->force_rounding(EXPR)
|
|
# define BOOST_UP(EXPR) this->upward(); return this->force_rounding(EXPR)
|
|
void init() { }
|
|
template<class U> T conv_down(U const &v) { BOOST_DN(v); }
|
|
template<class U> T conv_up (U const &v) { BOOST_UP(v); }
|
|
T add_down(const T& x, const T& y) { BOOST_DN(x + y); }
|
|
T sub_down(const T& x, const T& y) { BOOST_DN(x - y); }
|
|
T mul_down(const T& x, const T& y) { BOOST_DN(x * y); }
|
|
T div_down(const T& x, const T& y) { BOOST_DN(x / y); }
|
|
T add_up (const T& x, const T& y) { BOOST_UP(x + y); }
|
|
T sub_up (const T& x, const T& y) { BOOST_UP(x - y); }
|
|
T mul_up (const T& x, const T& y) { BOOST_UP(x * y); }
|
|
T div_up (const T& x, const T& y) { BOOST_UP(x / y); }
|
|
T median(const T& x, const T& y) { BOOST_NR((x + y) / 2); }
|
|
T sqrt_down(const T& x)
|
|
{ BOOST_NUMERIC_INTERVAL_using_math(sqrt); BOOST_DN(sqrt(x)); }
|
|
T sqrt_up (const T& x)
|
|
{ BOOST_NUMERIC_INTERVAL_using_math(sqrt); BOOST_UP(sqrt(x)); }
|
|
T int_down(const T& x) { this->downward(); return this->to_int(x); }
|
|
T int_up (const T& x) { this->upward(); return this->to_int(x); }
|
|
# undef BOOST_DN
|
|
# undef BOOST_NR
|
|
# undef BOOST_UP
|
|
};
|
|
|
|
template<class T, class Rounding>
|
|
struct rounded_arith_opp: Rounding {
|
|
void init() { this->upward(); }
|
|
# define BOOST_DN(EXPR) \
|
|
this->downward(); \
|
|
T r = this->force_rounding(EXPR); \
|
|
this->upward(); \
|
|
return r
|
|
# define BOOST_NR(EXPR) \
|
|
this->to_nearest(); \
|
|
T r = this->force_rounding(EXPR); \
|
|
this->upward(); \
|
|
return r
|
|
# define BOOST_UP(EXPR) return this->force_rounding(EXPR)
|
|
# define BOOST_UP_NEG(EXPR) return -this->force_rounding(EXPR)
|
|
template<class U> T conv_down(U const &v) { BOOST_UP_NEG(-v); }
|
|
template<class U> T conv_up (U const &v) { BOOST_UP(v); }
|
|
T add_down(const T& x, const T& y) { BOOST_UP_NEG((-x) - y); }
|
|
T sub_down(const T& x, const T& y) { BOOST_UP_NEG(y - x); }
|
|
T mul_down(const T& x, const T& y) { BOOST_UP_NEG(x * (-y)); }
|
|
T div_down(const T& x, const T& y) { BOOST_UP_NEG(x / (-y)); }
|
|
T add_up (const T& x, const T& y) { BOOST_UP(x + y); }
|
|
T sub_up (const T& x, const T& y) { BOOST_UP(x - y); }
|
|
T mul_up (const T& x, const T& y) { BOOST_UP(x * y); }
|
|
T div_up (const T& x, const T& y) { BOOST_UP(x / y); }
|
|
T median (const T& x, const T& y) { BOOST_NR((x + y) / 2); }
|
|
T sqrt_down(const T& x)
|
|
{ BOOST_NUMERIC_INTERVAL_using_math(sqrt); BOOST_DN(sqrt(x)); }
|
|
T sqrt_up (const T& x)
|
|
{ BOOST_NUMERIC_INTERVAL_using_math(sqrt); BOOST_UP(sqrt(x)); }
|
|
T int_down(const T& x) { return -this->to_int(-x); }
|
|
T int_up (const T& x) { return this->to_int(x); }
|
|
# undef BOOST_DN
|
|
# undef BOOST_NR
|
|
# undef BOOST_UP
|
|
# undef BOOST_UP_NEG
|
|
};
|
|
|
|
} // namespace interval_lib
|
|
} // namespace numeric
|
|
} // namespace boost
|
|
|
|
#endif // BOOST_NUMERIC_INTERVAL_ROUNDED_ARITH_HPP
|