ecency-mobile/ios/Pods/Folly/folly/ThreadLocal.h
2019-05-29 14:32:35 +03:00

472 lines
14 KiB
C++

/*
* Copyright 2011-present Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* Improved thread local storage for non-trivial types (similar speed as
* pthread_getspecific but only consumes a single pthread_key_t, and 4x faster
* than boost::thread_specific_ptr).
*
* Also includes an accessor interface to walk all the thread local child
* objects of a parent. accessAllThreads() initializes an accessor which holds
* a global lock *that blocks all creation and destruction of ThreadLocal
* objects with the same Tag* and can be used as an iterable container.
* accessAllThreads() can race with destruction of thread-local elements. We
* provide a strict mode which is dangerous because it requires the access lock
* to be held while destroying thread-local elements which could cause
* deadlocks. We gate this mode behind the AccessModeStrict template parameter.
*
* Intended use is for frequent write, infrequent read data access patterns such
* as counters.
*
* There are two classes here - ThreadLocal and ThreadLocalPtr. ThreadLocalPtr
* has semantics similar to boost::thread_specific_ptr. ThreadLocal is a thin
* wrapper around ThreadLocalPtr that manages allocation automatically.
*
* @author Spencer Ahrens (sahrens)
*/
#pragma once
#include <iterator>
#include <type_traits>
#include <utility>
#include <folly/Likely.h>
#include <folly/Portability.h>
#include <folly/ScopeGuard.h>
#include <folly/SharedMutex.h>
#include <folly/detail/ThreadLocalDetail.h>
namespace folly {
template <class T, class Tag, class AccessMode>
class ThreadLocalPtr;
template <class T, class Tag = void, class AccessMode = void>
class ThreadLocal {
public:
constexpr ThreadLocal() : constructor_([]() { return new T(); }) {}
template <
typename F,
_t<std::enable_if<is_invocable_r<T*, F>::value, int>> = 0>
explicit ThreadLocal(F&& constructor)
: constructor_(std::forward<F>(constructor)) {}
FOLLY_ALWAYS_INLINE FOLLY_ATTR_VISIBILITY_HIDDEN T* get() const {
auto const ptr = tlp_.get();
return FOLLY_LIKELY(!!ptr) ? ptr : makeTlp();
}
T* operator->() const {
return get();
}
T& operator*() const {
return *get();
}
void reset(T* newPtr = nullptr) {
tlp_.reset(newPtr);
}
typedef typename ThreadLocalPtr<T, Tag, AccessMode>::Accessor Accessor;
Accessor accessAllThreads() const {
return tlp_.accessAllThreads();
}
// movable
ThreadLocal(ThreadLocal&&) = default;
ThreadLocal& operator=(ThreadLocal&&) = default;
private:
// non-copyable
ThreadLocal(const ThreadLocal&) = delete;
ThreadLocal& operator=(const ThreadLocal&) = delete;
FOLLY_NOINLINE T* makeTlp() const {
auto const ptr = constructor_();
tlp_.reset(ptr);
return ptr;
}
mutable ThreadLocalPtr<T, Tag, AccessMode> tlp_;
std::function<T*()> constructor_;
};
/*
* The idea here is that __thread is faster than pthread_getspecific, so we
* keep a __thread array of pointers to objects (ThreadEntry::elements) where
* each array has an index for each unique instance of the ThreadLocalPtr
* object. Each ThreadLocalPtr object has a unique id that is an index into
* these arrays so we can fetch the correct object from thread local storage
* very efficiently.
*
* In order to prevent unbounded growth of the id space and thus huge
* ThreadEntry::elements, arrays, for example due to continuous creation and
* destruction of ThreadLocalPtr objects, we keep a set of all active
* instances. When an instance is destroyed we remove it from the active
* set and insert the id into freeIds_ for reuse. These operations require a
* global mutex, but only happen at construction and destruction time.
*
* We use a single global pthread_key_t per Tag to manage object destruction and
* memory cleanup upon thread exit because there is a finite number of
* pthread_key_t's available per machine.
*
* NOTE: Apple platforms don't support the same semantics for __thread that
* Linux does (and it's only supported at all on i386). For these, use
* pthread_setspecific()/pthread_getspecific() for the per-thread
* storage. Windows (MSVC and GCC) does support the same semantics
* with __declspec(thread)
*/
template <class T, class Tag = void, class AccessMode = void>
class ThreadLocalPtr {
private:
typedef threadlocal_detail::StaticMeta<Tag, AccessMode> StaticMeta;
public:
constexpr ThreadLocalPtr() : id_() {}
ThreadLocalPtr(ThreadLocalPtr&& other) noexcept : id_(std::move(other.id_)) {}
ThreadLocalPtr& operator=(ThreadLocalPtr&& other) {
assert(this != &other);
destroy();
id_ = std::move(other.id_);
return *this;
}
~ThreadLocalPtr() {
destroy();
}
T* get() const {
threadlocal_detail::ElementWrapper& w = StaticMeta::get(&id_);
return static_cast<T*>(w.ptr);
}
T* operator->() const {
return get();
}
T& operator*() const {
return *get();
}
T* release() {
threadlocal_detail::ElementWrapper& w = StaticMeta::get(&id_);
return static_cast<T*>(w.release());
}
void reset(T* newPtr = nullptr) {
auto guard = makeGuard([&] { delete newPtr; });
threadlocal_detail::ElementWrapper* w = &StaticMeta::get(&id_);
w->dispose(TLPDestructionMode::THIS_THREAD);
// need to get a new ptr since the
// ThreadEntry::elements array can be reallocated
w = &StaticMeta::get(&id_);
w->cleanup();
guard.dismiss();
w->set(newPtr);
}
explicit operator bool() const {
return get() != nullptr;
}
/**
* reset() that transfers ownership from a smart pointer
*/
template <
typename SourceT,
typename Deleter,
typename = typename std::enable_if<
std::is_convertible<SourceT*, T*>::value>::type>
void reset(std::unique_ptr<SourceT, Deleter> source) {
auto deleter = [delegate = source.get_deleter()](
T* ptr, TLPDestructionMode) { delegate(ptr); };
reset(source.release(), deleter);
}
/**
* reset() that transfers ownership from a smart pointer with the default
* deleter
*/
template <
typename SourceT,
typename = typename std::enable_if<
std::is_convertible<SourceT*, T*>::value>::type>
void reset(std::unique_ptr<SourceT> source) {
reset(source.release());
}
/**
* reset() with a custom deleter:
* deleter(T* ptr, TLPDestructionMode mode)
* "mode" is ALL_THREADS if we're destructing this ThreadLocalPtr (and thus
* deleting pointers for all threads), and THIS_THREAD if we're only deleting
* the member for one thread (because of thread exit or reset()).
* Invoking the deleter must not throw.
*/
template <class Deleter>
void reset(T* newPtr, const Deleter& deleter) {
auto guard = makeGuard([&] {
if (newPtr) {
deleter(newPtr, TLPDestructionMode::THIS_THREAD);
}
});
threadlocal_detail::ElementWrapper* w = &StaticMeta::get(&id_);
w->dispose(TLPDestructionMode::THIS_THREAD);
// need to get a new ptr since the
// ThreadEntry::elements array can be reallocated
w = &StaticMeta::get(&id_);
w->cleanup();
guard.dismiss();
w->set(newPtr, deleter);
}
// Holds a global lock for iteration through all thread local child objects.
// Can be used as an iterable container.
// Use accessAllThreads() to obtain one.
class Accessor {
friend class ThreadLocalPtr<T, Tag, AccessMode>;
threadlocal_detail::StaticMetaBase& meta_;
SharedMutex* accessAllThreadsLock_;
std::mutex* lock_;
uint32_t id_;
public:
class Iterator;
friend class Iterator;
// The iterators obtained from Accessor are bidirectional iterators.
class Iterator {
friend class Accessor;
const Accessor* accessor_;
threadlocal_detail::ThreadEntryNode* e_;
void increment() {
e_ = e_->getNext();
incrementToValid();
}
void decrement() {
e_ = e_->getPrev();
decrementToValid();
}
const T& dereference() const {
return *static_cast<T*>(
e_->getThreadEntry()->elements[accessor_->id_].ptr);
}
T& dereference() {
return *static_cast<T*>(
e_->getThreadEntry()->elements[accessor_->id_].ptr);
}
bool equal(const Iterator& other) const {
return (accessor_->id_ == other.accessor_->id_ && e_ == other.e_);
}
explicit Iterator(const Accessor* accessor)
: accessor_(accessor),
e_(&accessor_->meta_.head_.elements[accessor_->id_].node) {}
// we just need to check the ptr since it can be set to nullptr
// even if the entry is part of the list
bool valid() const {
return (e_->getThreadEntry()->elements[accessor_->id_].ptr);
}
void incrementToValid() {
for (; e_ != &accessor_->meta_.head_.elements[accessor_->id_].node &&
!valid();
e_ = e_->getNext()) {
}
}
void decrementToValid() {
for (; e_ != &accessor_->meta_.head_.elements[accessor_->id_].node &&
!valid();
e_ = e_->getPrev()) {
}
}
public:
using difference_type = ssize_t;
using value_type = T;
using reference = T const&;
using pointer = T const*;
using iterator_category = std::bidirectional_iterator_tag;
Iterator& operator++() {
increment();
return *this;
}
Iterator& operator++(int) {
Iterator copy(*this);
increment();
return copy;
}
Iterator& operator--() {
decrement();
return *this;
}
Iterator& operator--(int) {
Iterator copy(*this);
decrement();
return copy;
}
T& operator*() {
return dereference();
}
T const& operator*() const {
return dereference();
}
T* operator->() {
return &dereference();
}
T const* operator->() const {
return &dereference();
}
bool operator==(Iterator const& rhs) const {
return equal(rhs);
}
bool operator!=(Iterator const& rhs) const {
return !equal(rhs);
}
};
~Accessor() {
release();
}
Iterator begin() const {
return ++Iterator(this);
}
Iterator end() const {
return Iterator(this);
}
Accessor(const Accessor&) = delete;
Accessor& operator=(const Accessor&) = delete;
Accessor(Accessor&& other) noexcept
: meta_(other.meta_),
accessAllThreadsLock_(other.accessAllThreadsLock_),
lock_(other.lock_),
id_(other.id_) {
other.id_ = 0;
other.accessAllThreadsLock_ = nullptr;
other.lock_ = nullptr;
}
Accessor& operator=(Accessor&& other) noexcept {
// Each Tag has its own unique meta, and accessors with different Tags
// have different types. So either *this is empty, or this and other
// have the same tag. But if they have the same tag, they have the same
// meta (and lock), so they'd both hold the lock at the same time,
// which is impossible, which leaves only one possible scenario --
// *this is empty. Assert it.
assert(&meta_ == &other.meta_);
assert(lock_ == nullptr);
using std::swap;
swap(accessAllThreadsLock_, other.accessAllThreadsLock_);
swap(lock_, other.lock_);
swap(id_, other.id_);
}
Accessor()
: meta_(threadlocal_detail::StaticMeta<Tag, AccessMode>::instance()),
accessAllThreadsLock_(nullptr),
lock_(nullptr),
id_(0) {}
private:
explicit Accessor(uint32_t id)
: meta_(threadlocal_detail::StaticMeta<Tag, AccessMode>::instance()),
accessAllThreadsLock_(&meta_.accessAllThreadsLock_),
lock_(&meta_.lock_) {
accessAllThreadsLock_->lock();
lock_->lock();
id_ = id;
}
void release() {
if (lock_) {
lock_->unlock();
DCHECK(accessAllThreadsLock_ != nullptr);
accessAllThreadsLock_->unlock();
id_ = 0;
lock_ = nullptr;
accessAllThreadsLock_ = nullptr;
}
}
};
// accessor allows a client to iterate through all thread local child
// elements of this ThreadLocal instance. Holds a global lock for each <Tag>
Accessor accessAllThreads() const {
static_assert(
!std::is_same<Tag, void>::value,
"Must use a unique Tag to use the accessAllThreads feature");
return Accessor(id_.getOrAllocate(StaticMeta::instance()));
}
private:
void destroy() {
StaticMeta::instance().destroy(&id_);
}
// non-copyable
ThreadLocalPtr(const ThreadLocalPtr&) = delete;
ThreadLocalPtr& operator=(const ThreadLocalPtr&) = delete;
mutable typename StaticMeta::EntryID id_;
};
namespace threadlocal_detail {
template <typename>
struct static_meta_of;
template <typename T, typename Tag, typename AccessMode>
struct static_meta_of<ThreadLocalPtr<T, Tag, AccessMode>> {
using type = StaticMeta<Tag, AccessMode>;
};
template <typename T, typename Tag, typename AccessMode>
struct static_meta_of<ThreadLocal<T, Tag, AccessMode>> {
using type = StaticMeta<Tag, AccessMode>;
};
} // namespace threadlocal_detail
} // namespace folly