mirror of
https://github.com/ecency/ecency-mobile.git
synced 2024-12-22 21:01:31 +03:00
636 lines
22 KiB
C++
636 lines
22 KiB
C++
// Copyright (C) 2006-2009 Dmitry Bufistov and Andrey Parfenov
|
|
|
|
// Use, modification and distribution is subject to the Boost Software
|
|
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_GRAPH_CYCLE_RATIO_HOWARD_HPP
|
|
#define BOOST_GRAPH_CYCLE_RATIO_HOWARD_HPP
|
|
|
|
#include <vector>
|
|
#include <list>
|
|
#include <algorithm>
|
|
#include <limits>
|
|
|
|
#include <boost/bind.hpp>
|
|
#include <boost/type_traits/is_same.hpp>
|
|
#include <boost/type_traits/remove_const.hpp>
|
|
#include <boost/concept_check.hpp>
|
|
#include <boost/pending/queue.hpp>
|
|
#include <boost/property_map/property_map.hpp>
|
|
#include <boost/graph/graph_traits.hpp>
|
|
#include <boost/graph/graph_concepts.hpp>
|
|
#include <boost/concept/assert.hpp>
|
|
|
|
/** @file howard_cycle_ratio.hpp
|
|
* @brief The implementation of the maximum/minimum cycle ratio/mean algorithm.
|
|
* @author Dmitry Bufistov
|
|
* @author Andrey Parfenov
|
|
*/
|
|
|
|
namespace boost {
|
|
|
|
/**
|
|
* The mcr_float is like numeric_limits, but only for floating point types
|
|
* and only defines infinity() and epsilon(). This class is primarily used
|
|
* to encapsulate a less-precise epsilon than natively supported by the
|
|
* floating point type.
|
|
*/
|
|
template <typename Float = double> struct mcr_float {
|
|
typedef Float value_type;
|
|
|
|
static Float infinity()
|
|
{ return std::numeric_limits<value_type>::infinity(); }
|
|
|
|
static Float epsilon()
|
|
{ return Float(-0.005); }
|
|
};
|
|
|
|
namespace detail {
|
|
|
|
template <typename FloatTraits> struct
|
|
min_comparator_props {
|
|
typedef std::greater<typename FloatTraits::value_type> comparator;
|
|
static const int multiplier = 1;
|
|
};
|
|
|
|
template <typename FloatTraits> struct
|
|
max_comparator_props {
|
|
typedef std::less<typename FloatTraits::value_type> comparator;
|
|
static const int multiplier = -1;
|
|
};
|
|
|
|
template <typename FloatTraits, typename ComparatorProps>
|
|
struct float_wrapper {
|
|
typedef typename FloatTraits::value_type value_type;
|
|
typedef ComparatorProps comparator_props_t;
|
|
typedef typename ComparatorProps::comparator comparator;
|
|
|
|
static value_type infinity()
|
|
{ return FloatTraits::infinity() * ComparatorProps::multiplier; }
|
|
|
|
static value_type epsilon()
|
|
{ return FloatTraits::epsilon() * ComparatorProps::multiplier; }
|
|
|
|
};
|
|
|
|
/*! @class mcr_howard
|
|
* @brief Calculates optimum (maximum/minimum) cycle ratio of a directed graph.
|
|
* Uses Howard's iteration policy algorithm. </br>(It is described in the paper
|
|
* "Experimental Analysis of the Fastest Optimum Cycle Ratio and Mean Algorithm"
|
|
* by Ali Dasdan).
|
|
*/
|
|
template <typename FloatTraits,
|
|
typename Graph, typename VertexIndexMap,
|
|
typename EdgeWeight1, typename EdgeWeight2>
|
|
class mcr_howard
|
|
{
|
|
public:
|
|
typedef typename FloatTraits::value_type float_t;
|
|
typedef typename FloatTraits::comparator_props_t cmp_props_t;
|
|
typedef typename FloatTraits::comparator comparator_t;
|
|
typedef enum{ my_white = 0, my_black } my_color_type;
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
|
|
typedef typename graph_traits<Graph>::edge_descriptor edge_t;
|
|
typedef typename graph_traits<Graph>::vertices_size_type vn_t;
|
|
typedef std::vector<float_t> vp_t;
|
|
typedef typename boost::iterator_property_map<
|
|
typename vp_t::iterator, VertexIndexMap
|
|
> distance_map_t; //V -> float_t
|
|
|
|
typedef typename std::vector<edge_t> ve_t;
|
|
typedef std::vector<my_color_type> vcol_t;
|
|
typedef typename ::boost::iterator_property_map<
|
|
typename ve_t::iterator, VertexIndexMap
|
|
> policy_t; //Vertex -> Edge
|
|
typedef typename ::boost::iterator_property_map<
|
|
typename vcol_t::iterator, VertexIndexMap
|
|
> color_map_t;
|
|
|
|
typedef typename std::list<vertex_t> pinel_t;// The in_edges list of the policy graph
|
|
typedef typename std::vector<pinel_t> inedges1_t;
|
|
typedef typename ::boost::iterator_property_map<
|
|
typename inedges1_t::iterator, VertexIndexMap
|
|
> inedges_t;
|
|
typedef typename std::vector<edge_t> critical_cycle_t;
|
|
|
|
//Bad vertex flag. If true, then the vertex is "bad".
|
|
// Vertex is "bad" if its out_degree is equal to zero.
|
|
typedef typename boost::iterator_property_map<
|
|
std::vector<int>::iterator, VertexIndexMap
|
|
> badv_t;
|
|
|
|
/*!
|
|
* Constructor
|
|
* \param g = (V, E) - a directed multigraph.
|
|
* \param vim Vertex Index Map. Read property Map: V -> [0, num_vertices(g)).
|
|
* \param ewm edge weight map. Read property map: E -> R
|
|
* \param ew2m edge weight map. Read property map: E -> R+
|
|
* \param infty A big enough value to guaranty that there exist a cycle with
|
|
* better ratio.
|
|
* \param cmp The compare operator for float_ts.
|
|
*/
|
|
mcr_howard(const Graph &g, VertexIndexMap vim,
|
|
EdgeWeight1 ewm, EdgeWeight2 ew2m) :
|
|
m_g(g), m_vim(vim), m_ew1m(ewm), m_ew2m(ew2m),
|
|
m_bound(mcr_bound()),
|
|
m_cr(m_bound),
|
|
m_V(num_vertices(m_g)),
|
|
m_dis(m_V, 0), m_dm(m_dis.begin(), m_vim),
|
|
m_policyc(m_V), m_policy(m_policyc.begin(), m_vim),
|
|
m_inelc(m_V), m_inel(m_inelc.begin(), m_vim),
|
|
m_badvc(m_V, false), m_badv(m_badvc.begin(), m_vim),
|
|
m_colcv(m_V),
|
|
m_col_bfs(m_V)
|
|
{ }
|
|
|
|
/*!
|
|
* \return maximum/minimum_{for all cycles C}
|
|
* [sum_{e in C} w1(e)] / [sum_{e in C} w2(e)],
|
|
* or FloatTraits::infinity() if graph has no cycles.
|
|
*/
|
|
float_t ocr_howard()
|
|
{
|
|
construct_policy_graph();
|
|
int k = 0;
|
|
float_t mcr = 0;
|
|
do
|
|
{
|
|
mcr = policy_mcr();
|
|
++k;
|
|
}
|
|
while (try_improve_policy(mcr) && k < 100); //To avoid infinite loop
|
|
|
|
const float_t eps_ = -0.00000001 * cmp_props_t::multiplier;
|
|
if (m_cmp(mcr, m_bound + eps_))
|
|
{
|
|
return FloatTraits::infinity();
|
|
}
|
|
else
|
|
{
|
|
return mcr;
|
|
}
|
|
}
|
|
virtual ~mcr_howard() {}
|
|
|
|
protected:
|
|
virtual void store_critical_edge(edge_t, critical_cycle_t &) {}
|
|
virtual void store_critical_cycle(critical_cycle_t &) {}
|
|
|
|
private:
|
|
/*!
|
|
* \return lower/upper bound for the maximal/minimal cycle ratio
|
|
*/
|
|
float_t mcr_bound()
|
|
{
|
|
typename graph_traits<Graph>::vertex_iterator vi, vie;
|
|
typename graph_traits<Graph>::out_edge_iterator oei, oeie;
|
|
float_t cz = (std::numeric_limits<float_t>::max)(); //Closest to zero value
|
|
float_t s = 0;
|
|
const float_t eps_ = std::numeric_limits<float_t>::epsilon();
|
|
for (boost::tie(vi, vie) = vertices(m_g); vi != vie; ++vi)
|
|
{
|
|
for (boost::tie(oei, oeie) = out_edges(*vi, m_g); oei != oeie; ++oei)
|
|
{
|
|
s += std::abs(m_ew1m[*oei]);
|
|
float_t a = std::abs(m_ew2m[*oei]);
|
|
if ( a > eps_ && a < cz)
|
|
{
|
|
cz = a;
|
|
}
|
|
}
|
|
}
|
|
return cmp_props_t::multiplier * (s / cz);
|
|
}
|
|
|
|
|
|
/*!
|
|
* Constructs an arbitrary policy graph.
|
|
*/
|
|
void construct_policy_graph()
|
|
{
|
|
m_sink = graph_traits<Graph>().null_vertex();
|
|
typename graph_traits<Graph>::vertex_iterator vi, vie;
|
|
typename graph_traits<Graph>::out_edge_iterator oei, oeie;
|
|
for ( boost::tie(vi, vie) = vertices(m_g); vi != vie; ++vi )
|
|
{
|
|
boost::tie(oei, oeie) = out_edges(*vi, m_g);
|
|
typename graph_traits<Graph>::out_edge_iterator mei =
|
|
std::max_element(oei, oeie,
|
|
boost::bind(m_cmp,
|
|
boost::bind(&EdgeWeight1::operator[], m_ew1m, _1),
|
|
boost::bind(&EdgeWeight1::operator[], m_ew1m, _2)
|
|
)
|
|
);
|
|
if (mei == oeie)
|
|
{
|
|
if (m_sink == graph_traits<Graph>().null_vertex())
|
|
{
|
|
m_sink = *vi;
|
|
}
|
|
m_badv[*vi] = true;
|
|
m_inel[m_sink].push_back(*vi);
|
|
}
|
|
else
|
|
{
|
|
m_inel[target(*mei, m_g)].push_back(*vi);
|
|
m_policy[*vi] = *mei;
|
|
}
|
|
}
|
|
}
|
|
/*! Sets the distance value for all vertices "v" such that there is
|
|
* a path from "v" to "sv". It does "inverse" breadth first visit of the policy
|
|
* graph, starting from the vertex "sv".
|
|
*/
|
|
void mcr_bfv(vertex_t sv, float_t cr, color_map_t c)
|
|
{
|
|
boost::queue<vertex_t> Q;
|
|
c[sv] = my_black;
|
|
Q.push(sv);
|
|
while (!Q.empty())
|
|
{
|
|
vertex_t v = Q.top(); Q.pop();
|
|
for (typename pinel_t::const_iterator itr = m_inel[v].begin();
|
|
itr != m_inel[v].end(); ++itr)
|
|
//For all in_edges of the policy graph
|
|
{
|
|
if (*itr != sv)
|
|
{
|
|
if (m_badv[*itr])
|
|
{
|
|
m_dm[*itr] = m_dm[v] + m_bound - cr;
|
|
}
|
|
else
|
|
{
|
|
m_dm[*itr] = m_dm[v] + m_ew1m[m_policy[*itr]] -
|
|
m_ew2m[m_policy[*itr]] * cr;
|
|
}
|
|
c[*itr] = my_black;
|
|
Q.push(*itr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \param sv an arbitrary (undiscovered) vertex of the policy graph.
|
|
* \return a vertex in the policy graph that belongs to a cycle.
|
|
* Performs a depth first visit until a cycle edge is found.
|
|
*/
|
|
vertex_t find_cycle_vertex(vertex_t sv)
|
|
{
|
|
vertex_t gv = sv;
|
|
std::fill(m_colcv.begin(), m_colcv.end(), my_white);
|
|
color_map_t cm(m_colcv.begin(), m_vim);
|
|
do
|
|
{
|
|
cm[gv] = my_black;
|
|
if (! m_badv[gv])
|
|
{
|
|
gv = target(m_policy[gv], m_g);
|
|
}
|
|
else
|
|
{
|
|
gv = m_sink;
|
|
}
|
|
}
|
|
while (cm[gv] != my_black);
|
|
return gv;
|
|
}
|
|
|
|
/*!
|
|
* \param sv - vertex that belongs to a cycle in the policy graph.
|
|
*/
|
|
float_t cycle_ratio(vertex_t sv)
|
|
{
|
|
if (sv == m_sink) return m_bound;
|
|
std::pair<float_t, float_t> sums_(float_t(0), float_t(0));
|
|
vertex_t v = sv;
|
|
critical_cycle_t cc;
|
|
do
|
|
{
|
|
store_critical_edge(m_policy[v], cc);
|
|
sums_.first += m_ew1m[m_policy[v]];
|
|
sums_.second += m_ew2m[m_policy[v]];
|
|
v = target(m_policy[v], m_g);
|
|
}
|
|
while (v != sv);
|
|
float_t cr = sums_.first / sums_.second;
|
|
if ( m_cmp(m_cr, cr) )
|
|
{
|
|
m_cr = cr;
|
|
store_critical_cycle(cc);
|
|
}
|
|
return cr;
|
|
}
|
|
|
|
/*!
|
|
* Finds the optimal cycle ratio of the policy graph
|
|
*/
|
|
float_t policy_mcr()
|
|
{
|
|
std::fill(m_col_bfs.begin(), m_col_bfs.end(), my_white);
|
|
color_map_t vcm_ = color_map_t(m_col_bfs.begin(), m_vim);
|
|
typename graph_traits<Graph>::vertex_iterator uv_itr, vie;
|
|
boost::tie(uv_itr, vie) = vertices(m_g);
|
|
float_t mcr = m_bound;
|
|
while ( (uv_itr = std::find_if(uv_itr, vie,
|
|
boost::bind(std::equal_to<my_color_type>(),
|
|
my_white,
|
|
boost::bind(&color_map_t::operator[], vcm_, _1)
|
|
)
|
|
)
|
|
) != vie )
|
|
///While there are undiscovered vertices
|
|
{
|
|
vertex_t gv = find_cycle_vertex(*uv_itr);
|
|
float_t cr = cycle_ratio(gv) ;
|
|
mcr_bfv(gv, cr, vcm_);
|
|
if ( m_cmp(mcr, cr) ) mcr = cr;
|
|
++uv_itr;
|
|
}
|
|
return mcr;
|
|
}
|
|
|
|
/*!
|
|
* Changes the edge m_policy[s] to the new_edge.
|
|
*/
|
|
void improve_policy(vertex_t s, edge_t new_edge)
|
|
{
|
|
vertex_t t = target(m_policy[s], m_g);
|
|
typename property_traits<VertexIndexMap>::value_type ti = m_vim[t];
|
|
m_inelc[ti].erase( std::find(m_inelc[ti].begin(), m_inelc[ti].end(), s));
|
|
m_policy[s] = new_edge;
|
|
t = target(new_edge, m_g);
|
|
m_inel[t].push_back(s); ///Maintain in_edge list
|
|
}
|
|
|
|
/*!
|
|
* A negative cycle detector.
|
|
*/
|
|
bool try_improve_policy(float_t cr)
|
|
{
|
|
bool improved = false;
|
|
typename graph_traits<Graph>::vertex_iterator vi, vie;
|
|
typename graph_traits<Graph>::out_edge_iterator oei, oeie;
|
|
const float_t eps_ = FloatTraits::epsilon();
|
|
for (boost::tie(vi, vie) = vertices(m_g); vi != vie; ++vi)
|
|
{
|
|
if (!m_badv[*vi])
|
|
{
|
|
for (boost::tie(oei, oeie) = out_edges(*vi, m_g); oei != oeie; ++oei)
|
|
{
|
|
vertex_t t = target(*oei, m_g);
|
|
//Current distance from *vi to some vertex
|
|
float_t dis_ = m_ew1m[*oei] - m_ew2m[*oei] * cr + m_dm[t];
|
|
if ( m_cmp(m_dm[*vi] + eps_, dis_) )
|
|
{
|
|
improve_policy(*vi, *oei);
|
|
m_dm[*vi] = dis_;
|
|
improved = true;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
float_t dis_ = m_bound - cr + m_dm[m_sink];
|
|
if ( m_cmp(m_dm[*vi] + eps_, dis_) )
|
|
{
|
|
m_dm[*vi] = dis_;
|
|
}
|
|
}
|
|
}
|
|
return improved;
|
|
}
|
|
private:
|
|
const Graph &m_g;
|
|
VertexIndexMap m_vim;
|
|
EdgeWeight1 m_ew1m;
|
|
EdgeWeight2 m_ew2m;
|
|
comparator_t m_cmp;
|
|
float_t m_bound; //> The lower/upper bound to the maximal/minimal cycle ratio
|
|
float_t m_cr; //>The best cycle ratio that has been found so far
|
|
|
|
vn_t m_V; //>The number of the vertices in the graph
|
|
vp_t m_dis; //>Container for the distance map
|
|
distance_map_t m_dm; //>Distance map
|
|
|
|
ve_t m_policyc; //>Container for the policy graph
|
|
policy_t m_policy; //>The interface for the policy graph
|
|
|
|
inedges1_t m_inelc; //>Container fot in edges list
|
|
inedges_t m_inel; //>Policy graph, input edges list
|
|
|
|
std::vector<int> m_badvc;
|
|
badv_t m_badv; //Marks "bad" vertices
|
|
|
|
vcol_t m_colcv, m_col_bfs; //Color maps
|
|
vertex_t m_sink; //To convert any graph to "good"
|
|
};
|
|
|
|
/*! \class mcr_howard1
|
|
* \brief Finds optimum cycle raio and a critical cycle
|
|
*/
|
|
template <typename FloatTraits,
|
|
typename Graph, typename VertexIndexMap,
|
|
typename EdgeWeight1, typename EdgeWeight2>
|
|
class mcr_howard1 : public
|
|
mcr_howard<FloatTraits, Graph, VertexIndexMap,
|
|
EdgeWeight1, EdgeWeight2>
|
|
{
|
|
public:
|
|
typedef mcr_howard<FloatTraits, Graph, VertexIndexMap,
|
|
EdgeWeight1, EdgeWeight2> inhr_t;
|
|
mcr_howard1(const Graph &g, VertexIndexMap vim,
|
|
EdgeWeight1 ewm, EdgeWeight2 ew2m) :
|
|
inhr_t(g, vim, ewm, ew2m)
|
|
{ }
|
|
|
|
void get_critical_cycle(typename inhr_t::critical_cycle_t &cc)
|
|
{ return cc.swap(m_cc); }
|
|
|
|
protected:
|
|
void store_critical_edge(typename inhr_t::edge_t ed,
|
|
typename inhr_t::critical_cycle_t &cc)
|
|
{ cc.push_back(ed); }
|
|
|
|
void store_critical_cycle(typename inhr_t::critical_cycle_t &cc)
|
|
{ m_cc.swap(cc); }
|
|
|
|
private:
|
|
typename inhr_t::critical_cycle_t m_cc; //Critical cycle
|
|
};
|
|
|
|
/*!
|
|
* \param g a directed multigraph.
|
|
* \param vim Vertex Index Map. A map V->[0, num_vertices(g))
|
|
* \param ewm Edge weight1 map.
|
|
* \param ew2m Edge weight2 map.
|
|
* \param pcc pointer to the critical edges list.
|
|
* \return Optimum cycle ratio of g or FloatTraits::infinity() if g has no cycles.
|
|
*/
|
|
template <typename FT,
|
|
typename TG, typename TVIM,
|
|
typename TEW1, typename TEW2,
|
|
typename EV>
|
|
typename FT::value_type
|
|
optimum_cycle_ratio(const TG &g, TVIM vim, TEW1 ewm, TEW2 ew2m, EV* pcc)
|
|
{
|
|
typedef typename graph_traits<TG>::directed_category DirCat;
|
|
BOOST_STATIC_ASSERT((is_convertible<DirCat*, directed_tag*>::value == true));
|
|
BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<TG> ));
|
|
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<TG> ));
|
|
typedef typename graph_traits<TG>::vertex_descriptor Vertex;
|
|
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<TVIM, Vertex> ));
|
|
typedef typename graph_traits<TG>::edge_descriptor Edge;
|
|
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<TEW1, Edge> ));
|
|
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<TEW2, Edge> ));
|
|
|
|
if(pcc == 0) {
|
|
return detail::mcr_howard<FT,TG, TVIM, TEW1, TEW2>(
|
|
g, vim, ewm, ew2m
|
|
).ocr_howard();
|
|
}
|
|
|
|
detail::mcr_howard1<FT, TG, TVIM, TEW1, TEW2> obj(g, vim, ewm, ew2m);
|
|
double ocr = obj.ocr_howard();
|
|
obj.get_critical_cycle(*pcc);
|
|
return ocr;
|
|
}
|
|
} // namespace detail
|
|
|
|
// Algorithms
|
|
// Maximum Cycle Ratio
|
|
|
|
template <
|
|
typename FloatTraits,
|
|
typename Graph,
|
|
typename VertexIndexMap,
|
|
typename EdgeWeight1Map,
|
|
typename EdgeWeight2Map>
|
|
inline typename FloatTraits::value_type
|
|
maximum_cycle_ratio(const Graph &g, VertexIndexMap vim, EdgeWeight1Map ew1m,
|
|
EdgeWeight2Map ew2m,
|
|
std::vector<typename graph_traits<Graph>::edge_descriptor>* pcc = 0,
|
|
FloatTraits = FloatTraits())
|
|
{
|
|
typedef detail::float_wrapper<
|
|
FloatTraits, detail::max_comparator_props<FloatTraits>
|
|
> Traits;
|
|
return detail::optimum_cycle_ratio<Traits>(g, vim, ew1m, ew2m, pcc);
|
|
}
|
|
|
|
template <
|
|
typename Graph,
|
|
typename VertexIndexMap,
|
|
typename EdgeWeight1Map,
|
|
typename EdgeWeight2Map>
|
|
inline double
|
|
maximum_cycle_ratio(const Graph &g, VertexIndexMap vim,
|
|
EdgeWeight1Map ew1m, EdgeWeight2Map ew2m,
|
|
std::vector<typename graph_traits<Graph>::edge_descriptor>* pcc = 0)
|
|
{ return maximum_cycle_ratio(g, vim, ew1m, ew2m, pcc, mcr_float<>()); }
|
|
|
|
// Minimum Cycle Ratio
|
|
|
|
template <
|
|
typename FloatTraits,
|
|
typename Graph,
|
|
typename VertexIndexMap,
|
|
typename EdgeWeight1Map,
|
|
typename EdgeWeight2Map>
|
|
typename FloatTraits::value_type
|
|
minimum_cycle_ratio(const Graph &g, VertexIndexMap vim,
|
|
EdgeWeight1Map ew1m, EdgeWeight2Map ew2m,
|
|
std::vector<typename graph_traits<Graph>::edge_descriptor> *pcc = 0,
|
|
FloatTraits = FloatTraits())
|
|
{
|
|
typedef detail::float_wrapper<
|
|
FloatTraits, detail::min_comparator_props<FloatTraits>
|
|
> Traits;
|
|
return detail::optimum_cycle_ratio<Traits>(g, vim, ew1m, ew2m, pcc);
|
|
}
|
|
|
|
template <
|
|
typename Graph,
|
|
typename VertexIndexMap,
|
|
typename EdgeWeight1Map,
|
|
typename EdgeWeight2Map>
|
|
inline double
|
|
minimum_cycle_ratio(const Graph &g, VertexIndexMap vim,
|
|
EdgeWeight1Map ew1m, EdgeWeight2Map ew2m,
|
|
std::vector<typename graph_traits<Graph>::edge_descriptor>* pcc = 0)
|
|
{ return minimum_cycle_ratio(g, vim, ew1m, ew2m, pcc, mcr_float<>()); }
|
|
|
|
// Maximum Cycle Mean
|
|
|
|
template <
|
|
typename FloatTraits,
|
|
typename Graph,
|
|
typename VertexIndexMap,
|
|
typename EdgeWeightMap,
|
|
typename EdgeIndexMap>
|
|
inline typename FloatTraits::value_type
|
|
maximum_cycle_mean(const Graph &g, VertexIndexMap vim,
|
|
EdgeWeightMap ewm, EdgeIndexMap eim,
|
|
std::vector<typename graph_traits<Graph>::edge_descriptor>* pcc = 0,
|
|
FloatTraits ft = FloatTraits())
|
|
{
|
|
typedef typename remove_const<
|
|
typename property_traits<EdgeWeightMap>::value_type
|
|
>::type Weight;
|
|
typename std::vector<Weight> ed_w2(boost::num_edges(g), 1);
|
|
return maximum_cycle_ratio(g, vim, ewm,
|
|
make_iterator_property_map(ed_w2.begin(), eim),
|
|
pcc, ft);
|
|
}
|
|
|
|
template <
|
|
typename Graph,
|
|
typename VertexIndexMap,
|
|
typename EdgeWeightMap,
|
|
typename EdgeIndexMap>
|
|
inline double
|
|
maximum_cycle_mean(const Graph& g, VertexIndexMap vim,
|
|
EdgeWeightMap ewm, EdgeIndexMap eim,
|
|
std::vector<typename graph_traits<Graph>::edge_descriptor>* pcc = 0)
|
|
{ return maximum_cycle_mean(g, vim, ewm, eim, pcc, mcr_float<>()); }
|
|
|
|
// Minimum Cycle Mean
|
|
|
|
template <
|
|
typename FloatTraits,
|
|
typename Graph,
|
|
typename VertexIndexMap,
|
|
typename EdgeWeightMap,
|
|
typename EdgeIndexMap>
|
|
inline typename FloatTraits::value_type
|
|
minimum_cycle_mean(const Graph &g, VertexIndexMap vim,
|
|
EdgeWeightMap ewm, EdgeIndexMap eim,
|
|
std::vector<typename graph_traits<Graph>::edge_descriptor>* pcc = 0,
|
|
FloatTraits ft = FloatTraits())
|
|
{
|
|
typedef typename remove_const<
|
|
typename property_traits<EdgeWeightMap>::value_type
|
|
>::type Weight;
|
|
typename std::vector<Weight> ed_w2(boost::num_edges(g), 1);
|
|
return minimum_cycle_ratio(g, vim, ewm,
|
|
make_iterator_property_map(ed_w2.begin(), eim),
|
|
pcc, ft);
|
|
}
|
|
|
|
template <
|
|
typename Graph,
|
|
typename VertexIndexMap,
|
|
typename EdgeWeightMap,
|
|
typename EdgeIndexMap>
|
|
inline double
|
|
minimum_cycle_mean(const Graph &g, VertexIndexMap vim,
|
|
EdgeWeightMap ewm, EdgeIndexMap eim,
|
|
std::vector<typename graph_traits<Graph>::edge_descriptor>* pcc = 0)
|
|
{ return minimum_cycle_mean(g, vim, ewm, eim, pcc, mcr_float<>()); }
|
|
|
|
} //namespace boost
|
|
|
|
#endif
|