ecency-mobile/ios/Pods/boost-for-react-native/boost/random/detail/polynomial.hpp

385 lines
13 KiB
C++

/* boost random/detail/polynomial.hpp header file
*
* Copyright Steven Watanabe 2014
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id$
*/
#ifndef BOOST_RANDOM_DETAIL_POLYNOMIAL_HPP
#define BOOST_RANDOM_DETAIL_POLYNOMIAL_HPP
#include <cstddef>
#include <limits>
#include <vector>
#include <algorithm>
#include <boost/assert.hpp>
#include <boost/cstdint.hpp>
namespace boost {
namespace random {
namespace detail {
class polynomial_ops {
public:
typedef unsigned long digit_t;
static void add(std::size_t size, const digit_t * lhs,
const digit_t * rhs, digit_t * output)
{
for(std::size_t i = 0; i < size; ++i) {
output[i] = lhs[i] ^ rhs[i];
}
}
static void add_shifted_inplace(std::size_t size, const digit_t * lhs,
digit_t * output, std::size_t shift)
{
if(shift == 0) {
add(size, lhs, output, output);
return;
}
std::size_t bits = std::numeric_limits<digit_t>::digits;
digit_t prev = 0;
for(std::size_t i = 0; i < size; ++i) {
digit_t tmp = lhs[i];
output[i] ^= (tmp << shift) | (prev >> (bits-shift));
prev = tmp;
}
output[size] ^= (prev >> (bits-shift));
}
static void multiply_simple(std::size_t size, const digit_t * lhs,
const digit_t * rhs, digit_t * output)
{
std::size_t bits = std::numeric_limits<digit_t>::digits;
for(std::size_t i = 0; i < 2*size; ++i) {
output[i] = 0;
}
for(std::size_t i = 0; i < size; ++i) {
for(std::size_t j = 0; j < bits; ++j) {
if((lhs[i] & (digit_t(1) << j)) != 0) {
add_shifted_inplace(size, rhs, output + i, j);
}
}
}
}
// memory requirements: (size - cutoff) * 4 + next_smaller
static void multiply_karatsuba(std::size_t size,
const digit_t * lhs, const digit_t * rhs,
digit_t * output)
{
if(size < 64) {
multiply_simple(size, lhs, rhs, output);
return;
}
// split in half
std::size_t cutoff = size/2;
multiply_karatsuba(cutoff, lhs, rhs, output);
multiply_karatsuba(size - cutoff, lhs + cutoff, rhs + cutoff,
output + cutoff*2);
std::vector<digit_t> local1(size - cutoff);
std::vector<digit_t> local2(size - cutoff);
// combine the digits for the inner multiply
add(cutoff, lhs, lhs + cutoff, &local1[0]);
if(size & 1) local1[cutoff] = lhs[size - 1];
add(cutoff, rhs + cutoff, rhs, &local2[0]);
if(size & 1) local2[cutoff] = rhs[size - 1];
std::vector<digit_t> local3((size - cutoff) * 2);
multiply_karatsuba(size - cutoff, &local1[0], &local2[0], &local3[0]);
add(cutoff * 2, output, &local3[0], &local3[0]);
add((size - cutoff) * 2, output + cutoff*2, &local3[0], &local3[0]);
// Finally, add the inner result
add((size - cutoff) * 2, output + cutoff, &local3[0], output + cutoff);
}
static void multiply_add_karatsuba(std::size_t size,
const digit_t * lhs, const digit_t * rhs,
digit_t * output)
{
std::vector<digit_t> buf(size * 2);
multiply_karatsuba(size, lhs, rhs, &buf[0]);
add(size * 2, &buf[0], output, output);
}
static void multiply(const digit_t * lhs, std::size_t lhs_size,
const digit_t * rhs, std::size_t rhs_size,
digit_t * output)
{
std::fill_n(output, lhs_size + rhs_size, digit_t(0));
multiply_add(lhs, lhs_size, rhs, rhs_size, output);
}
static void multiply_add(const digit_t * lhs, std::size_t lhs_size,
const digit_t * rhs, std::size_t rhs_size,
digit_t * output)
{
// split into pieces that can be passed to
// karatsuba multiply.
while(lhs_size != 0) {
if(lhs_size < rhs_size) {
std::swap(lhs, rhs);
std::swap(lhs_size, rhs_size);
}
multiply_add_karatsuba(rhs_size, lhs, rhs, output);
lhs += rhs_size;
lhs_size -= rhs_size;
output += rhs_size;
}
}
static void copy_bits(const digit_t * x, std::size_t low, std::size_t high,
digit_t * out)
{
const std::size_t bits = std::numeric_limits<digit_t>::digits;
std::size_t offset = low/bits;
x += offset;
low -= offset*bits;
high -= offset*bits;
std::size_t n = (high-low)/bits;
if(low == 0) {
for(std::size_t i = 0; i < n; ++i) {
out[i] = x[i];
}
} else {
for(std::size_t i = 0; i < n; ++i) {
out[i] = (x[i] >> low) | (x[i+1] << (bits-low));
}
}
if((high-low)%bits) {
digit_t low_mask = (digit_t(1) << ((high-low)%bits)) - 1;
digit_t result = (x[n] >> low);
if(low != 0 && (n+1)*bits < high) {
result |= (x[n+1] << (bits-low));
}
out[n] = (result & low_mask);
}
}
static void shift_left(digit_t * val, std::size_t size, std::size_t shift)
{
const std::size_t bits = std::numeric_limits<digit_t>::digits;
BOOST_ASSERT(shift > 0);
BOOST_ASSERT(shift < bits);
digit_t prev = 0;
for(std::size_t i = 0; i < size; ++i) {
digit_t tmp = val[i];
val[i] = (prev >> (bits - shift)) | (val[i] << shift);
prev = tmp;
}
}
static digit_t sqr(digit_t val) {
const std::size_t bits = std::numeric_limits<digit_t>::digits;
digit_t mask = (digit_t(1) << bits/2) - 1;
for(std::size_t i = bits; i > 1; i /= 2) {
val = ((val & ~mask) << i/2) | (val & mask);
mask = mask & (mask >> i/4);
mask = mask | (mask << i/2);
}
return val;
}
static void sqr(digit_t * val, std::size_t size)
{
const std::size_t bits = std::numeric_limits<digit_t>::digits;
digit_t mask = (digit_t(1) << bits/2) - 1;
for(std::size_t i = 0; i < size; ++i) {
digit_t x = val[size - i - 1];
val[(size - i - 1) * 2] = sqr(x & mask);
val[(size - i - 1) * 2 + 1] = sqr(x >> bits/2);
}
}
// optimized for the case when the modulus has few bits set.
struct sparse_mod {
sparse_mod(const digit_t * divisor, std::size_t divisor_bits)
{
const std::size_t bits = std::numeric_limits<digit_t>::digits;
_remainder_bits = divisor_bits - 1;
for(std::size_t i = 0; i < divisor_bits; ++i) {
if(divisor[i/bits] & (digit_t(1) << i%bits)) {
_bit_indices.push_back(i);
}
}
BOOST_ASSERT(_bit_indices.back() == divisor_bits - 1);
_bit_indices.pop_back();
if(_bit_indices.empty()) {
_block_bits = divisor_bits;
_lower_bits = 0;
} else {
_block_bits = divisor_bits - _bit_indices.back() - 1;
_lower_bits = _bit_indices.back() + 1;
}
_partial_quotient.resize((_block_bits + bits - 1)/bits);
}
void operator()(digit_t * dividend, std::size_t dividend_bits)
{
const std::size_t bits = std::numeric_limits<digit_t>::digits;
while(dividend_bits > _remainder_bits) {
std::size_t block_start = (std::max)(dividend_bits - _block_bits, _remainder_bits);
std::size_t block_size = (dividend_bits - block_start + bits - 1) / bits;
copy_bits(dividend, block_start, dividend_bits, &_partial_quotient[0]);
for(std::size_t i = 0; i < _bit_indices.size(); ++i) {
std::size_t pos = _bit_indices[i] + block_start - _remainder_bits;
add_shifted_inplace(block_size, &_partial_quotient[0], dividend + pos/bits, pos%bits);
}
add_shifted_inplace(block_size, &_partial_quotient[0], dividend + block_start/bits, block_start%bits);
dividend_bits = block_start;
}
}
std::vector<digit_t> _partial_quotient;
std::size_t _remainder_bits;
std::size_t _block_bits;
std::size_t _lower_bits;
std::vector<std::size_t> _bit_indices;
};
// base should have the same number of bits as mod
// base, and mod should both be able to hold a power
// of 2 >= mod_bits. out needs to be twice as large.
static void mod_pow_x(boost::uintmax_t exponent, const digit_t * mod, std::size_t mod_bits, digit_t * out)
{
const std::size_t bits = std::numeric_limits<digit_t>::digits;
const std::size_t n = (mod_bits + bits - 1) / bits;
const std::size_t highbit = mod_bits - 1;
if(exponent == 0) {
out[0] = 1;
std::fill_n(out + 1, n - 1, digit_t(0));
return;
}
boost::uintmax_t i = std::numeric_limits<boost::uintmax_t>::digits - 1;
while(((boost::uintmax_t(1) << i) & exponent) == 0) {
--i;
}
out[0] = 2;
std::fill_n(out + 1, n - 1, digit_t(0));
sparse_mod m(mod, mod_bits);
while(i--) {
sqr(out, n);
m(out, 2 * mod_bits - 1);
if((boost::uintmax_t(1) << i) & exponent) {
shift_left(out, n, 1);
if(out[highbit / bits] & (digit_t(1) << highbit%bits))
add(n, out, mod, out);
}
}
}
};
class polynomial
{
typedef polynomial_ops::digit_t digit_t;
public:
polynomial() : _size(0) {}
class reference {
public:
reference(digit_t &value, int idx)
: _value(value), _idx(idx) {}
operator bool() const { return (_value & (digit_t(1) << _idx)) != 0; }
reference& operator=(bool b)
{
if(b) {
_value |= (digit_t(1) << _idx);
} else {
_value &= ~(digit_t(1) << _idx);
}
return *this;
}
reference &operator^=(bool b)
{
_value ^= (digit_t(b) << _idx);
return *this;
}
reference &operator=(const reference &other)
{
return *this = static_cast<bool>(other);
}
private:
digit_t &_value;
int _idx;
};
reference operator[](std::size_t i)
{
static const std::size_t bits = std::numeric_limits<digit_t>::digits;
ensure_bit(i);
return reference(_storage[i/bits], i%bits);
}
bool operator[](std::size_t i) const
{
static const std::size_t bits = std::numeric_limits<digit_t>::digits;
if(i < size())
return (_storage[i/bits] & (digit_t(1) << (i%bits))) != 0;
else
return false;
}
std::size_t size() const
{
return _size;
}
void resize(std::size_t n)
{
static const std::size_t bits = std::numeric_limits<digit_t>::digits;
_storage.resize((n + bits - 1)/bits);
// clear the high order bits in case we're shrinking.
if(n%bits) {
_storage.back() &= ((digit_t(1) << (n%bits)) - 1);
}
_size = n;
}
friend polynomial operator*(const polynomial &lhs, const polynomial &rhs);
friend polynomial mod_pow_x(boost::uintmax_t exponent, polynomial mod);
private:
std::vector<polynomial_ops::digit_t> _storage;
std::size_t _size;
void ensure_bit(std::size_t i)
{
if(i >= size()) {
resize(i + 1);
}
}
void normalize()
{
while(size() && (*this)[size() - 1] == 0)
resize(size() - 1);
}
};
inline polynomial operator*(const polynomial &lhs, const polynomial &rhs)
{
polynomial result;
result._storage.resize(lhs._storage.size() + rhs._storage.size());
polynomial_ops::multiply(&lhs._storage[0], lhs._storage.size(),
&rhs._storage[0], rhs._storage.size(),
&result._storage[0]);
result._size = lhs._size + rhs._size;
return result;
}
inline polynomial mod_pow_x(boost::uintmax_t exponent, polynomial mod)
{
polynomial result;
mod.normalize();
std::size_t mod_size = mod.size();
result._storage.resize(mod._storage.size() * 2);
result._size = mod.size() * 2;
polynomial_ops::mod_pow_x(exponent, &mod._storage[0], mod_size, &result._storage[0]);
result.resize(mod.size() - 1);
return result;
}
}
}
}
#endif // BOOST_RANDOM_DETAIL_POLYNOMIAL_HPP