mirror of
https://github.com/ecency/ecency-mobile.git
synced 2025-01-08 07:02:25 +03:00
951 lines
30 KiB
C++
951 lines
30 KiB
C++
//=======================================================================
|
|
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
|
|
// Copyright 2004 The Trustees of Indiana University.
|
|
// Copyright 2007 University of Karlsruhe
|
|
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek, Douglas Gregor,
|
|
// Jens Mueller
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0. (See
|
|
// accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
//=======================================================================
|
|
#ifndef BOOST_GRAPH_LEDA_HPP
|
|
#define BOOST_GRAPH_LEDA_HPP
|
|
|
|
#include <boost/config.hpp>
|
|
#include <boost/iterator/iterator_facade.hpp>
|
|
#include <boost/graph/graph_traits.hpp>
|
|
#include <boost/graph/properties.hpp>
|
|
|
|
#include <LEDA/graph/graph.h>
|
|
#include <LEDA/graph/node_array.h>
|
|
#include <LEDA/graph/node_map.h>
|
|
|
|
// The functions and classes in this file allows the user to
|
|
// treat a LEDA GRAPH object as a boost graph "as is". No
|
|
// wrapper is needed for the GRAPH object.
|
|
|
|
// Warning: this implementation relies on partial specialization
|
|
// for the graph_traits class (so it won't compile with Visual C++)
|
|
|
|
// Warning: this implementation is in alpha and has not been tested
|
|
|
|
namespace boost {
|
|
|
|
struct leda_graph_traversal_category :
|
|
public virtual bidirectional_graph_tag,
|
|
public virtual adjacency_graph_tag,
|
|
public virtual vertex_list_graph_tag { };
|
|
|
|
template <class vtype, class etype>
|
|
struct graph_traits< leda::GRAPH<vtype,etype> > {
|
|
typedef leda::node vertex_descriptor;
|
|
typedef leda::edge edge_descriptor;
|
|
|
|
class adjacency_iterator
|
|
: public iterator_facade<adjacency_iterator,
|
|
leda::node,
|
|
bidirectional_traversal_tag,
|
|
leda::node,
|
|
const leda::node*>
|
|
{
|
|
public:
|
|
adjacency_iterator(leda::node node = 0,
|
|
const leda::GRAPH<vtype, etype>* g = 0)
|
|
: base(node), g(g) {}
|
|
private:
|
|
leda::node dereference() const { return leda::target(base); }
|
|
|
|
bool equal(const adjacency_iterator& other) const
|
|
{ return base == other.base; }
|
|
|
|
void increment() { base = g->adj_succ(base); }
|
|
void decrement() { base = g->adj_pred(base); }
|
|
|
|
leda::edge base;
|
|
const leda::GRAPH<vtype, etype>* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class out_edge_iterator
|
|
: public iterator_facade<out_edge_iterator,
|
|
leda::edge,
|
|
bidirectional_traversal_tag,
|
|
const leda::edge&,
|
|
const leda::edge*>
|
|
{
|
|
public:
|
|
out_edge_iterator(leda::node node = 0,
|
|
const leda::GRAPH<vtype, etype>* g = 0)
|
|
: base(node), g(g) {}
|
|
|
|
private:
|
|
const leda::edge& dereference() const { return base; }
|
|
|
|
bool equal(const out_edge_iterator& other) const
|
|
{ return base == other.base; }
|
|
|
|
void increment() { base = g->adj_succ(base); }
|
|
void decrement() { base = g->adj_pred(base); }
|
|
|
|
leda::edge base;
|
|
const leda::GRAPH<vtype, etype>* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class in_edge_iterator
|
|
: public iterator_facade<in_edge_iterator,
|
|
leda::edge,
|
|
bidirectional_traversal_tag,
|
|
const leda::edge&,
|
|
const leda::edge*>
|
|
{
|
|
public:
|
|
in_edge_iterator(leda::node node = 0,
|
|
const leda::GRAPH<vtype, etype>* g = 0)
|
|
: base(node), g(g) {}
|
|
|
|
private:
|
|
const leda::edge& dereference() const { return base; }
|
|
|
|
bool equal(const in_edge_iterator& other) const
|
|
{ return base == other.base; }
|
|
|
|
void increment() { base = g->in_succ(base); }
|
|
void decrement() { base = g->in_pred(base); }
|
|
|
|
leda::edge base;
|
|
const leda::GRAPH<vtype, etype>* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class vertex_iterator
|
|
: public iterator_facade<vertex_iterator,
|
|
leda::node,
|
|
bidirectional_traversal_tag,
|
|
const leda::node&,
|
|
const leda::node*>
|
|
{
|
|
public:
|
|
vertex_iterator(leda::node node = 0,
|
|
const leda::GRAPH<vtype, etype>* g = 0)
|
|
: base(node), g(g) {}
|
|
|
|
private:
|
|
const leda::node& dereference() const { return base; }
|
|
|
|
bool equal(const vertex_iterator& other) const
|
|
{ return base == other.base; }
|
|
|
|
void increment() { base = g->succ_node(base); }
|
|
void decrement() { base = g->pred_node(base); }
|
|
|
|
leda::node base;
|
|
const leda::GRAPH<vtype, etype>* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class edge_iterator
|
|
: public iterator_facade<edge_iterator,
|
|
leda::edge,
|
|
bidirectional_traversal_tag,
|
|
const leda::edge&,
|
|
const leda::edge*>
|
|
{
|
|
public:
|
|
edge_iterator(leda::edge edge = 0,
|
|
const leda::GRAPH<vtype, etype>* g = 0)
|
|
: base(edge), g(g) {}
|
|
|
|
private:
|
|
const leda::edge& dereference() const { return base; }
|
|
|
|
bool equal(const edge_iterator& other) const
|
|
{ return base == other.base; }
|
|
|
|
void increment() { base = g->succ_edge(base); }
|
|
void decrement() { base = g->pred_edge(base); }
|
|
|
|
leda::node base;
|
|
const leda::GRAPH<vtype, etype>* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
typedef directed_tag directed_category;
|
|
typedef allow_parallel_edge_tag edge_parallel_category; // not sure here
|
|
typedef leda_graph_traversal_category traversal_category;
|
|
typedef int vertices_size_type;
|
|
typedef int edges_size_type;
|
|
typedef int degree_size_type;
|
|
};
|
|
|
|
|
|
|
|
template<>
|
|
struct graph_traits<leda::graph> {
|
|
typedef leda::node vertex_descriptor;
|
|
typedef leda::edge edge_descriptor;
|
|
|
|
class adjacency_iterator
|
|
: public iterator_facade<adjacency_iterator,
|
|
leda::node,
|
|
bidirectional_traversal_tag,
|
|
leda::node,
|
|
const leda::node*>
|
|
{
|
|
public:
|
|
adjacency_iterator(leda::edge edge = 0,
|
|
const leda::graph* g = 0)
|
|
: base(edge), g(g) {}
|
|
|
|
private:
|
|
leda::node dereference() const { return leda::target(base); }
|
|
|
|
bool equal(const adjacency_iterator& other) const
|
|
{ return base == other.base; }
|
|
|
|
void increment() { base = g->adj_succ(base); }
|
|
void decrement() { base = g->adj_pred(base); }
|
|
|
|
leda::edge base;
|
|
const leda::graph* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class out_edge_iterator
|
|
: public iterator_facade<out_edge_iterator,
|
|
leda::edge,
|
|
bidirectional_traversal_tag,
|
|
const leda::edge&,
|
|
const leda::edge*>
|
|
{
|
|
public:
|
|
out_edge_iterator(leda::edge edge = 0,
|
|
const leda::graph* g = 0)
|
|
: base(edge), g(g) {}
|
|
|
|
private:
|
|
const leda::edge& dereference() const { return base; }
|
|
|
|
bool equal(const out_edge_iterator& other) const
|
|
{ return base == other.base; }
|
|
|
|
void increment() { base = g->adj_succ(base); }
|
|
void decrement() { base = g->adj_pred(base); }
|
|
|
|
leda::edge base;
|
|
const leda::graph* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class in_edge_iterator
|
|
: public iterator_facade<in_edge_iterator,
|
|
leda::edge,
|
|
bidirectional_traversal_tag,
|
|
const leda::edge&,
|
|
const leda::edge*>
|
|
{
|
|
public:
|
|
in_edge_iterator(leda::edge edge = 0,
|
|
const leda::graph* g = 0)
|
|
: base(edge), g(g) {}
|
|
|
|
private:
|
|
const leda::edge& dereference() const { return base; }
|
|
|
|
bool equal(const in_edge_iterator& other) const
|
|
{ return base == other.base; }
|
|
|
|
void increment() { base = g->in_succ(base); }
|
|
void decrement() { base = g->in_pred(base); }
|
|
|
|
leda::edge base;
|
|
const leda::graph* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class vertex_iterator
|
|
: public iterator_facade<vertex_iterator,
|
|
leda::node,
|
|
bidirectional_traversal_tag,
|
|
const leda::node&,
|
|
const leda::node*>
|
|
{
|
|
public:
|
|
vertex_iterator(leda::node node = 0,
|
|
const leda::graph* g = 0)
|
|
: base(node), g(g) {}
|
|
|
|
private:
|
|
const leda::node& dereference() const { return base; }
|
|
|
|
bool equal(const vertex_iterator& other) const
|
|
{ return base == other.base; }
|
|
|
|
void increment() { base = g->succ_node(base); }
|
|
void decrement() { base = g->pred_node(base); }
|
|
|
|
leda::node base;
|
|
const leda::graph* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
class edge_iterator
|
|
: public iterator_facade<edge_iterator,
|
|
leda::edge,
|
|
bidirectional_traversal_tag,
|
|
const leda::edge&,
|
|
const leda::edge*>
|
|
{
|
|
public:
|
|
edge_iterator(leda::edge edge = 0,
|
|
const leda::graph* g = 0)
|
|
: base(edge), g(g) {}
|
|
|
|
private:
|
|
const leda::edge& dereference() const { return base; }
|
|
|
|
bool equal(const edge_iterator& other) const
|
|
{ return base == other.base; }
|
|
|
|
void increment() { base = g->succ_edge(base); }
|
|
void decrement() { base = g->pred_edge(base); }
|
|
|
|
leda::edge base;
|
|
const leda::graph* g;
|
|
|
|
friend class iterator_core_access;
|
|
};
|
|
|
|
typedef directed_tag directed_category;
|
|
typedef allow_parallel_edge_tag edge_parallel_category; // not sure here
|
|
typedef leda_graph_traversal_category traversal_category;
|
|
typedef int vertices_size_type;
|
|
typedef int edges_size_type;
|
|
typedef int degree_size_type;
|
|
};
|
|
|
|
} // namespace boost
|
|
|
|
namespace boost {
|
|
|
|
//===========================================================================
|
|
// functions for GRAPH<vtype,etype>
|
|
|
|
template <class vtype, class etype>
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
|
|
source(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e,
|
|
const leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
return source(e);
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
|
|
target(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e,
|
|
const leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
return target(e);
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
inline std::pair<
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator,
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator >
|
|
vertices(const leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
typedef typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator
|
|
Iter;
|
|
return std::make_pair( Iter(g.first_node(),&g), Iter(0,&g) );
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
inline std::pair<
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_iterator,
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_iterator >
|
|
edges(const leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
typedef typename graph_traits< leda::GRAPH<vtype,etype> >::edge_iterator
|
|
Iter;
|
|
return std::make_pair( Iter(g.first_edge(),&g), Iter(0,&g) );
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
inline std::pair<
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator,
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator >
|
|
out_edges(
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
|
|
const leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
typedef typename graph_traits< leda::GRAPH<vtype,etype> >
|
|
::out_edge_iterator Iter;
|
|
return std::make_pair( Iter(g.first_adj_edge(u,0),&g), Iter(0,&g) );
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
inline std::pair<
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator,
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator >
|
|
in_edges(
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
|
|
const leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
typedef typename graph_traits< leda::GRAPH<vtype,etype> >
|
|
::in_edge_iterator Iter;
|
|
return std::make_pair( Iter(g.first_adj_edge(u,1),&g), Iter(0,&g) );
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
inline std::pair<
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator,
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator >
|
|
adjacent_vertices(
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
|
|
const leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
typedef typename graph_traits< leda::GRAPH<vtype,etype> >
|
|
::adjacency_iterator Iter;
|
|
return std::make_pair( Iter(g.first_adj_edge(u,0),&g), Iter(0,&g) );
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertices_size_type
|
|
num_vertices(const leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
return g.number_of_nodes();
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::edges_size_type
|
|
num_edges(const leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
return g.number_of_edges();
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
|
|
out_degree(
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
|
|
const leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
return g.outdeg(u);
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
|
|
in_degree(
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
|
|
const leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
return g.indeg(u);
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
|
|
degree(
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
|
|
const leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
return g.outdeg(u) + g.indeg(u);
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
|
|
add_vertex(leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
return g.new_node();
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
|
|
add_vertex(const vtype& vp, leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
return g.new_node(vp);
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
void clear_vertex(
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
|
|
leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator ei, ei_end;
|
|
for (boost::tie(ei, ei_end)=out_edges(u,g); ei!=ei_end; ei++)
|
|
remove_edge(*ei);
|
|
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator iei, iei_end;
|
|
for (boost::tie(iei, iei_end)=in_edges(u,g); iei!=iei_end; iei++)
|
|
remove_edge(*iei);
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
void remove_vertex(
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
|
|
leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
g.del_node(u);
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
std::pair<
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor,
|
|
bool>
|
|
add_edge(
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v,
|
|
leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
return std::make_pair(g.new_edge(u, v), true);
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
std::pair<
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor,
|
|
bool>
|
|
add_edge(
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v,
|
|
const etype& et,
|
|
leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
return std::make_pair(g.new_edge(u, v, et), true);
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
void
|
|
remove_edge(
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v,
|
|
leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator
|
|
i,iend;
|
|
for (boost::tie(i,iend) = out_edges(u,g); i != iend; ++i)
|
|
if (target(*i,g) == v)
|
|
g.del_edge(*i);
|
|
}
|
|
|
|
template <class vtype, class etype>
|
|
void
|
|
remove_edge(
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e,
|
|
leda::GRAPH<vtype,etype>& g)
|
|
{
|
|
g.del_edge(e);
|
|
}
|
|
|
|
//===========================================================================
|
|
// functions for graph (non-templated version)
|
|
|
|
graph_traits<leda::graph>::vertex_descriptor
|
|
source(graph_traits<leda::graph>::edge_descriptor e,
|
|
const leda::graph& g)
|
|
{
|
|
return source(e);
|
|
}
|
|
|
|
graph_traits<leda::graph>::vertex_descriptor
|
|
target(graph_traits<leda::graph>::edge_descriptor e,
|
|
const leda::graph& g)
|
|
{
|
|
return target(e);
|
|
}
|
|
|
|
inline std::pair<
|
|
graph_traits<leda::graph>::vertex_iterator,
|
|
graph_traits<leda::graph>::vertex_iterator >
|
|
vertices(const leda::graph& g)
|
|
{
|
|
typedef graph_traits<leda::graph>::vertex_iterator
|
|
Iter;
|
|
return std::make_pair( Iter(g.first_node(),&g), Iter(0,&g) );
|
|
}
|
|
|
|
inline std::pair<
|
|
graph_traits<leda::graph>::edge_iterator,
|
|
graph_traits<leda::graph>::edge_iterator >
|
|
edges(const leda::graph& g)
|
|
{
|
|
typedef graph_traits<leda::graph>::edge_iterator
|
|
Iter;
|
|
return std::make_pair( Iter(g.first_edge(),&g), Iter(0,&g) );
|
|
}
|
|
|
|
inline std::pair<
|
|
graph_traits<leda::graph>::out_edge_iterator,
|
|
graph_traits<leda::graph>::out_edge_iterator >
|
|
out_edges(
|
|
graph_traits<leda::graph>::vertex_descriptor u, const leda::graph& g)
|
|
{
|
|
typedef graph_traits<leda::graph>::out_edge_iterator Iter;
|
|
return std::make_pair( Iter(g.first_adj_edge(u),&g), Iter(0,&g) );
|
|
}
|
|
|
|
inline std::pair<
|
|
graph_traits<leda::graph>::in_edge_iterator,
|
|
graph_traits<leda::graph>::in_edge_iterator >
|
|
in_edges(
|
|
graph_traits<leda::graph>::vertex_descriptor u,
|
|
const leda::graph& g)
|
|
{
|
|
typedef graph_traits<leda::graph>
|
|
::in_edge_iterator Iter;
|
|
return std::make_pair( Iter(g.first_in_edge(u),&g), Iter(0,&g) );
|
|
}
|
|
|
|
inline std::pair<
|
|
graph_traits<leda::graph>::adjacency_iterator,
|
|
graph_traits<leda::graph>::adjacency_iterator >
|
|
adjacent_vertices(
|
|
graph_traits<leda::graph>::vertex_descriptor u,
|
|
const leda::graph& g)
|
|
{
|
|
typedef graph_traits<leda::graph>
|
|
::adjacency_iterator Iter;
|
|
return std::make_pair( Iter(g.first_adj_edge(u),&g), Iter(0,&g) );
|
|
}
|
|
|
|
graph_traits<leda::graph>::vertices_size_type
|
|
num_vertices(const leda::graph& g)
|
|
{
|
|
return g.number_of_nodes();
|
|
}
|
|
|
|
graph_traits<leda::graph>::edges_size_type
|
|
num_edges(const leda::graph& g)
|
|
{
|
|
return g.number_of_edges();
|
|
}
|
|
|
|
graph_traits<leda::graph>::degree_size_type
|
|
out_degree(
|
|
graph_traits<leda::graph>::vertex_descriptor u,
|
|
const leda::graph& g)
|
|
{
|
|
return g.outdeg(u);
|
|
}
|
|
|
|
graph_traits<leda::graph>::degree_size_type
|
|
in_degree(
|
|
graph_traits<leda::graph>::vertex_descriptor u,
|
|
const leda::graph& g)
|
|
{
|
|
return g.indeg(u);
|
|
}
|
|
|
|
graph_traits<leda::graph>::degree_size_type
|
|
degree(
|
|
graph_traits<leda::graph>::vertex_descriptor u,
|
|
const leda::graph& g)
|
|
{
|
|
return g.outdeg(u) + g.indeg(u);
|
|
}
|
|
|
|
graph_traits<leda::graph>::vertex_descriptor
|
|
add_vertex(leda::graph& g)
|
|
{
|
|
return g.new_node();
|
|
}
|
|
|
|
void
|
|
remove_edge(
|
|
graph_traits<leda::graph>::vertex_descriptor u,
|
|
graph_traits<leda::graph>::vertex_descriptor v,
|
|
leda::graph& g)
|
|
{
|
|
graph_traits<leda::graph>::out_edge_iterator
|
|
i,iend;
|
|
for (boost::tie(i,iend) = out_edges(u,g); i != iend; ++i)
|
|
if (target(*i,g) == v)
|
|
g.del_edge(*i);
|
|
}
|
|
|
|
void
|
|
remove_edge(
|
|
graph_traits<leda::graph>::edge_descriptor e,
|
|
leda::graph& g)
|
|
{
|
|
g.del_edge(e);
|
|
}
|
|
|
|
void clear_vertex(
|
|
graph_traits<leda::graph>::vertex_descriptor u,
|
|
leda::graph& g)
|
|
{
|
|
graph_traits<leda::graph>::out_edge_iterator ei, ei_end;
|
|
for (boost::tie(ei, ei_end)=out_edges(u,g); ei!=ei_end; ei++)
|
|
remove_edge(*ei, g);
|
|
|
|
graph_traits<leda::graph>::in_edge_iterator iei, iei_end;
|
|
for (boost::tie(iei, iei_end)=in_edges(u,g); iei!=iei_end; iei++)
|
|
remove_edge(*iei, g);
|
|
}
|
|
|
|
void remove_vertex(
|
|
graph_traits<leda::graph>::vertex_descriptor u,
|
|
leda::graph& g)
|
|
{
|
|
g.del_node(u);
|
|
}
|
|
|
|
std::pair<
|
|
graph_traits<leda::graph>::edge_descriptor,
|
|
bool>
|
|
add_edge(
|
|
graph_traits<leda::graph>::vertex_descriptor u,
|
|
graph_traits<leda::graph>::vertex_descriptor v,
|
|
leda::graph& g)
|
|
{
|
|
return std::make_pair(g.new_edge(u, v), true);
|
|
}
|
|
|
|
|
|
//===========================================================================
|
|
// property maps for GRAPH<vtype,etype>
|
|
|
|
class leda_graph_id_map
|
|
: public put_get_helper<int, leda_graph_id_map>
|
|
{
|
|
public:
|
|
typedef readable_property_map_tag category;
|
|
typedef int value_type;
|
|
typedef int reference;
|
|
typedef leda::node key_type;
|
|
leda_graph_id_map() { }
|
|
template <class T>
|
|
long operator[](T x) const { return x->id(); }
|
|
};
|
|
template <class vtype, class etype>
|
|
inline leda_graph_id_map
|
|
get(vertex_index_t, const leda::GRAPH<vtype, etype>& g) {
|
|
return leda_graph_id_map();
|
|
}
|
|
template <class vtype, class etype>
|
|
inline leda_graph_id_map
|
|
get(edge_index_t, const leda::GRAPH<vtype, etype>& g) {
|
|
return leda_graph_id_map();
|
|
}
|
|
|
|
template <class Tag>
|
|
struct leda_property_map { };
|
|
|
|
template <>
|
|
struct leda_property_map<vertex_index_t> {
|
|
template <class vtype, class etype>
|
|
struct bind_ {
|
|
typedef leda_graph_id_map type;
|
|
typedef leda_graph_id_map const_type;
|
|
};
|
|
};
|
|
template <>
|
|
struct leda_property_map<edge_index_t> {
|
|
template <class vtype, class etype>
|
|
struct bind_ {
|
|
typedef leda_graph_id_map type;
|
|
typedef leda_graph_id_map const_type;
|
|
};
|
|
};
|
|
|
|
|
|
template <class Data, class DataRef, class GraphPtr>
|
|
class leda_graph_data_map
|
|
: public put_get_helper<DataRef,
|
|
leda_graph_data_map<Data,DataRef,GraphPtr> >
|
|
{
|
|
public:
|
|
typedef Data value_type;
|
|
typedef DataRef reference;
|
|
typedef void key_type;
|
|
typedef lvalue_property_map_tag category;
|
|
leda_graph_data_map(GraphPtr g) : m_g(g) { }
|
|
template <class NodeOrEdge>
|
|
DataRef operator[](NodeOrEdge x) const { return (*m_g)[x]; }
|
|
protected:
|
|
GraphPtr m_g;
|
|
};
|
|
|
|
template <>
|
|
struct leda_property_map<vertex_all_t> {
|
|
template <class vtype, class etype>
|
|
struct bind_ {
|
|
typedef leda_graph_data_map<vtype, vtype&, leda::GRAPH<vtype, etype>*> type;
|
|
typedef leda_graph_data_map<vtype, const vtype&,
|
|
const leda::GRAPH<vtype, etype>*> const_type;
|
|
};
|
|
};
|
|
template <class vtype, class etype >
|
|
inline typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::type
|
|
get(vertex_all_t, leda::GRAPH<vtype, etype>& g) {
|
|
typedef typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::type
|
|
pmap_type;
|
|
return pmap_type(&g);
|
|
}
|
|
template <class vtype, class etype >
|
|
inline typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::const_type
|
|
get(vertex_all_t, const leda::GRAPH<vtype, etype>& g) {
|
|
typedef typename property_map< leda::GRAPH<vtype, etype>,
|
|
vertex_all_t>::const_type pmap_type;
|
|
return pmap_type(&g);
|
|
}
|
|
|
|
template <>
|
|
struct leda_property_map<edge_all_t> {
|
|
template <class vtype, class etype>
|
|
struct bind_ {
|
|
typedef leda_graph_data_map<etype, etype&, leda::GRAPH<vtype, etype>*> type;
|
|
typedef leda_graph_data_map<etype, const etype&,
|
|
const leda::GRAPH<vtype, etype>*> const_type;
|
|
};
|
|
};
|
|
template <class vtype, class etype >
|
|
inline typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::type
|
|
get(edge_all_t, leda::GRAPH<vtype, etype>& g) {
|
|
typedef typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::type
|
|
pmap_type;
|
|
return pmap_type(&g);
|
|
}
|
|
template <class vtype, class etype >
|
|
inline typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::const_type
|
|
get(edge_all_t, const leda::GRAPH<vtype, etype>& g) {
|
|
typedef typename property_map< leda::GRAPH<vtype, etype>,
|
|
edge_all_t>::const_type pmap_type;
|
|
return pmap_type(&g);
|
|
}
|
|
|
|
// property map interface to the LEDA node_array class
|
|
|
|
template <class E, class ERef, class NodeMapPtr>
|
|
class leda_node_property_map
|
|
: public put_get_helper<ERef, leda_node_property_map<E, ERef, NodeMapPtr> >
|
|
{
|
|
public:
|
|
typedef E value_type;
|
|
typedef ERef reference;
|
|
typedef leda::node key_type;
|
|
typedef lvalue_property_map_tag category;
|
|
leda_node_property_map(NodeMapPtr a) : m_array(a) { }
|
|
ERef operator[](leda::node n) const { return (*m_array)[n]; }
|
|
protected:
|
|
NodeMapPtr m_array;
|
|
};
|
|
template <class E>
|
|
leda_node_property_map<E, const E&, const leda::node_array<E>*>
|
|
make_leda_node_property_map(const leda::node_array<E>& a)
|
|
{
|
|
typedef leda_node_property_map<E, const E&, const leda::node_array<E>*>
|
|
pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
template <class E>
|
|
leda_node_property_map<E, E&, leda::node_array<E>*>
|
|
make_leda_node_property_map(leda::node_array<E>& a)
|
|
{
|
|
typedef leda_node_property_map<E, E&, leda::node_array<E>*> pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
|
|
template <class E>
|
|
leda_node_property_map<E, const E&, const leda::node_map<E>*>
|
|
make_leda_node_property_map(const leda::node_map<E>& a)
|
|
{
|
|
typedef leda_node_property_map<E,const E&,const leda::node_map<E>*>
|
|
pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
template <class E>
|
|
leda_node_property_map<E, E&, leda::node_map<E>*>
|
|
make_leda_node_property_map(leda::node_map<E>& a)
|
|
{
|
|
typedef leda_node_property_map<E, E&, leda::node_map<E>*> pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
|
|
// g++ 'enumeral_type' in template unification not implemented workaround
|
|
template <class vtype, class etype, class Tag>
|
|
struct property_map<leda::GRAPH<vtype, etype>, Tag> {
|
|
typedef typename
|
|
leda_property_map<Tag>::template bind_<vtype, etype> map_gen;
|
|
typedef typename map_gen::type type;
|
|
typedef typename map_gen::const_type const_type;
|
|
};
|
|
|
|
template <class vtype, class etype, class PropertyTag, class Key>
|
|
inline
|
|
typename boost::property_traits<
|
|
typename boost::property_map<leda::GRAPH<vtype, etype>,PropertyTag>::const_type
|
|
>::value_type
|
|
get(PropertyTag p, const leda::GRAPH<vtype, etype>& g, const Key& key) {
|
|
return get(get(p, g), key);
|
|
}
|
|
|
|
template <class vtype, class etype, class PropertyTag, class Key,class Value>
|
|
inline void
|
|
put(PropertyTag p, leda::GRAPH<vtype, etype>& g,
|
|
const Key& key, const Value& value)
|
|
{
|
|
typedef typename property_map<leda::GRAPH<vtype, etype>, PropertyTag>::type Map;
|
|
Map pmap = get(p, g);
|
|
put(pmap, key, value);
|
|
}
|
|
|
|
// property map interface to the LEDA edge_array class
|
|
|
|
template <class E, class ERef, class EdgeMapPtr>
|
|
class leda_edge_property_map
|
|
: public put_get_helper<ERef, leda_edge_property_map<E, ERef, EdgeMapPtr> >
|
|
{
|
|
public:
|
|
typedef E value_type;
|
|
typedef ERef reference;
|
|
typedef leda::edge key_type;
|
|
typedef lvalue_property_map_tag category;
|
|
leda_edge_property_map(EdgeMapPtr a) : m_array(a) { }
|
|
ERef operator[](leda::edge n) const { return (*m_array)[n]; }
|
|
protected:
|
|
EdgeMapPtr m_array;
|
|
};
|
|
template <class E>
|
|
leda_edge_property_map<E, const E&, const leda::edge_array<E>*>
|
|
make_leda_node_property_map(const leda::node_array<E>& a)
|
|
{
|
|
typedef leda_edge_property_map<E, const E&, const leda::node_array<E>*>
|
|
pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
template <class E>
|
|
leda_edge_property_map<E, E&, leda::edge_array<E>*>
|
|
make_leda_edge_property_map(leda::edge_array<E>& a)
|
|
{
|
|
typedef leda_edge_property_map<E, E&, leda::edge_array<E>*> pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
|
|
template <class E>
|
|
leda_edge_property_map<E, const E&, const leda::edge_map<E>*>
|
|
make_leda_edge_property_map(const leda::edge_map<E>& a)
|
|
{
|
|
typedef leda_edge_property_map<E,const E&,const leda::edge_map<E>*>
|
|
pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
template <class E>
|
|
leda_edge_property_map<E, E&, leda::edge_map<E>*>
|
|
make_leda_edge_property_map(leda::edge_map<E>& a)
|
|
{
|
|
typedef leda_edge_property_map<E, E&, leda::edge_map<E>*> pmap_type;
|
|
return pmap_type(&a);
|
|
}
|
|
|
|
} // namespace boost
|
|
|
|
#endif // BOOST_GRAPH_LEDA_HPP
|