mirror of
https://github.com/ecency/ecency-mobile.git
synced 2025-01-05 12:36:31 +03:00
377 lines
10 KiB
C++
377 lines
10 KiB
C++
/*
|
|
* Copyright 2011-present Facebook, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
// @author: Xin Liu <xliux@fb.com>
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <climits>
|
|
#include <cmath>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
#include <boost/noncopyable.hpp>
|
|
#include <boost/random.hpp>
|
|
#include <boost/type_traits.hpp>
|
|
#include <glog/logging.h>
|
|
|
|
#include <folly/Memory.h>
|
|
#include <folly/ThreadLocal.h>
|
|
#include <folly/synchronization/MicroSpinLock.h>
|
|
|
|
namespace folly {
|
|
namespace detail {
|
|
|
|
template <typename ValT, typename NodeT>
|
|
class csl_iterator;
|
|
|
|
template <typename T>
|
|
class SkipListNode : private boost::noncopyable {
|
|
enum : uint16_t {
|
|
IS_HEAD_NODE = 1,
|
|
MARKED_FOR_REMOVAL = (1 << 1),
|
|
FULLY_LINKED = (1 << 2),
|
|
};
|
|
|
|
public:
|
|
typedef T value_type;
|
|
|
|
template <
|
|
typename NodeAlloc,
|
|
typename U,
|
|
typename =
|
|
typename std::enable_if<std::is_convertible<U, T>::value>::type>
|
|
static SkipListNode*
|
|
create(NodeAlloc& alloc, int height, U&& data, bool isHead = false) {
|
|
DCHECK(height >= 1 && height < 64) << height;
|
|
|
|
size_t size =
|
|
sizeof(SkipListNode) + height * sizeof(std::atomic<SkipListNode*>);
|
|
auto storage = std::allocator_traits<NodeAlloc>::allocate(alloc, size);
|
|
// do placement new
|
|
return new (storage)
|
|
SkipListNode(uint8_t(height), std::forward<U>(data), isHead);
|
|
}
|
|
|
|
template <typename NodeAlloc>
|
|
static void destroy(NodeAlloc& alloc, SkipListNode* node) {
|
|
size_t size = sizeof(SkipListNode) +
|
|
node->height_ * sizeof(std::atomic<SkipListNode*>);
|
|
node->~SkipListNode();
|
|
std::allocator_traits<NodeAlloc>::deallocate(alloc, node, size);
|
|
}
|
|
|
|
template <typename NodeAlloc>
|
|
struct DestroyIsNoOp : StrictConjunction<
|
|
AllocatorHasTrivialDeallocate<NodeAlloc>,
|
|
boost::has_trivial_destructor<SkipListNode>> {};
|
|
|
|
// copy the head node to a new head node assuming lock acquired
|
|
SkipListNode* copyHead(SkipListNode* node) {
|
|
DCHECK(node != nullptr && height_ > node->height_);
|
|
setFlags(node->getFlags());
|
|
for (uint8_t i = 0; i < node->height_; ++i) {
|
|
setSkip(i, node->skip(i));
|
|
}
|
|
return this;
|
|
}
|
|
|
|
inline SkipListNode* skip(int layer) const {
|
|
DCHECK_LT(layer, height_);
|
|
return skip_[layer].load(std::memory_order_consume);
|
|
}
|
|
|
|
// next valid node as in the linked list
|
|
SkipListNode* next() {
|
|
SkipListNode* node;
|
|
for (node = skip(0); (node != nullptr && node->markedForRemoval());
|
|
node = node->skip(0)) {
|
|
}
|
|
return node;
|
|
}
|
|
|
|
void setSkip(uint8_t h, SkipListNode* next) {
|
|
DCHECK_LT(h, height_);
|
|
skip_[h].store(next, std::memory_order_release);
|
|
}
|
|
|
|
value_type& data() {
|
|
return data_;
|
|
}
|
|
const value_type& data() const {
|
|
return data_;
|
|
}
|
|
int maxLayer() const {
|
|
return height_ - 1;
|
|
}
|
|
int height() const {
|
|
return height_;
|
|
}
|
|
|
|
std::unique_lock<MicroSpinLock> acquireGuard() {
|
|
return std::unique_lock<MicroSpinLock>(spinLock_);
|
|
}
|
|
|
|
bool fullyLinked() const {
|
|
return getFlags() & FULLY_LINKED;
|
|
}
|
|
bool markedForRemoval() const {
|
|
return getFlags() & MARKED_FOR_REMOVAL;
|
|
}
|
|
bool isHeadNode() const {
|
|
return getFlags() & IS_HEAD_NODE;
|
|
}
|
|
|
|
void setIsHeadNode() {
|
|
setFlags(uint16_t(getFlags() | IS_HEAD_NODE));
|
|
}
|
|
void setFullyLinked() {
|
|
setFlags(uint16_t(getFlags() | FULLY_LINKED));
|
|
}
|
|
void setMarkedForRemoval() {
|
|
setFlags(uint16_t(getFlags() | MARKED_FOR_REMOVAL));
|
|
}
|
|
|
|
private:
|
|
// Note! this can only be called from create() as a placement new.
|
|
template <typename U>
|
|
SkipListNode(uint8_t height, U&& data, bool isHead)
|
|
: height_(height), data_(std::forward<U>(data)) {
|
|
spinLock_.init();
|
|
setFlags(0);
|
|
if (isHead) {
|
|
setIsHeadNode();
|
|
}
|
|
// need to explicitly init the dynamic atomic pointer array
|
|
for (uint8_t i = 0; i < height_; ++i) {
|
|
new (&skip_[i]) std::atomic<SkipListNode*>(nullptr);
|
|
}
|
|
}
|
|
|
|
~SkipListNode() {
|
|
for (uint8_t i = 0; i < height_; ++i) {
|
|
skip_[i].~atomic();
|
|
}
|
|
}
|
|
|
|
uint16_t getFlags() const {
|
|
return flags_.load(std::memory_order_consume);
|
|
}
|
|
void setFlags(uint16_t flags) {
|
|
flags_.store(flags, std::memory_order_release);
|
|
}
|
|
|
|
// TODO(xliu): on x86_64, it's possible to squeeze these into
|
|
// skip_[0] to maybe save 8 bytes depending on the data alignments.
|
|
// NOTE: currently this is x86_64 only anyway, due to the
|
|
// MicroSpinLock.
|
|
std::atomic<uint16_t> flags_;
|
|
const uint8_t height_;
|
|
MicroSpinLock spinLock_;
|
|
|
|
value_type data_;
|
|
|
|
std::atomic<SkipListNode*> skip_[0];
|
|
};
|
|
|
|
class SkipListRandomHeight {
|
|
enum { kMaxHeight = 64 };
|
|
|
|
public:
|
|
// make it a singleton.
|
|
static SkipListRandomHeight* instance() {
|
|
static SkipListRandomHeight instance_;
|
|
return &instance_;
|
|
}
|
|
|
|
int getHeight(int maxHeight) const {
|
|
DCHECK_LE(maxHeight, kMaxHeight) << "max height too big!";
|
|
double p = randomProb();
|
|
for (int i = 0; i < maxHeight; ++i) {
|
|
if (p < lookupTable_[i]) {
|
|
return i + 1;
|
|
}
|
|
}
|
|
return maxHeight;
|
|
}
|
|
|
|
size_t getSizeLimit(int height) const {
|
|
DCHECK_LT(height, kMaxHeight);
|
|
return sizeLimitTable_[height];
|
|
}
|
|
|
|
private:
|
|
SkipListRandomHeight() {
|
|
initLookupTable();
|
|
}
|
|
|
|
void initLookupTable() {
|
|
// set skip prob = 1/E
|
|
static const double kProbInv = exp(1);
|
|
static const double kProb = 1.0 / kProbInv;
|
|
static const size_t kMaxSizeLimit = std::numeric_limits<size_t>::max();
|
|
|
|
double sizeLimit = 1;
|
|
double p = lookupTable_[0] = (1 - kProb);
|
|
sizeLimitTable_[0] = 1;
|
|
for (int i = 1; i < kMaxHeight - 1; ++i) {
|
|
p *= kProb;
|
|
sizeLimit *= kProbInv;
|
|
lookupTable_[i] = lookupTable_[i - 1] + p;
|
|
sizeLimitTable_[i] = sizeLimit > kMaxSizeLimit
|
|
? kMaxSizeLimit
|
|
: static_cast<size_t>(sizeLimit);
|
|
}
|
|
lookupTable_[kMaxHeight - 1] = 1;
|
|
sizeLimitTable_[kMaxHeight - 1] = kMaxSizeLimit;
|
|
}
|
|
|
|
static double randomProb() {
|
|
static ThreadLocal<boost::lagged_fibonacci2281> rng_;
|
|
return (*rng_)();
|
|
}
|
|
|
|
double lookupTable_[kMaxHeight];
|
|
size_t sizeLimitTable_[kMaxHeight];
|
|
};
|
|
|
|
template <typename NodeType, typename NodeAlloc, typename = void>
|
|
class NodeRecycler;
|
|
|
|
template <typename NodeType, typename NodeAlloc>
|
|
class NodeRecycler<
|
|
NodeType,
|
|
NodeAlloc,
|
|
typename std::enable_if<
|
|
!NodeType::template DestroyIsNoOp<NodeAlloc>::value>::type> {
|
|
public:
|
|
explicit NodeRecycler(const NodeAlloc& alloc)
|
|
: refs_(0), dirty_(false), alloc_(alloc) {
|
|
lock_.init();
|
|
}
|
|
|
|
explicit NodeRecycler() : refs_(0), dirty_(false) {
|
|
lock_.init();
|
|
}
|
|
|
|
~NodeRecycler() {
|
|
CHECK_EQ(refs(), 0);
|
|
if (nodes_) {
|
|
for (auto& node : *nodes_) {
|
|
NodeType::destroy(alloc_, node);
|
|
}
|
|
}
|
|
}
|
|
|
|
void add(NodeType* node) {
|
|
std::lock_guard<MicroSpinLock> g(lock_);
|
|
if (nodes_.get() == nullptr) {
|
|
nodes_ = std::make_unique<std::vector<NodeType*>>(1, node);
|
|
} else {
|
|
nodes_->push_back(node);
|
|
}
|
|
DCHECK_GT(refs(), 0);
|
|
dirty_.store(true, std::memory_order_relaxed);
|
|
}
|
|
|
|
int addRef() {
|
|
return refs_.fetch_add(1, std::memory_order_relaxed);
|
|
}
|
|
|
|
int releaseRef() {
|
|
// We don't expect to clean the recycler immediately everytime it is OK
|
|
// to do so. Here, it is possible that multiple accessors all release at
|
|
// the same time but nobody would clean the recycler here. If this
|
|
// happens, the recycler will usually still get cleaned when
|
|
// such a race doesn't happen. The worst case is the recycler will
|
|
// eventually get deleted along with the skiplist.
|
|
if (LIKELY(!dirty_.load(std::memory_order_relaxed) || refs() > 1)) {
|
|
return refs_.fetch_add(-1, std::memory_order_relaxed);
|
|
}
|
|
|
|
std::unique_ptr<std::vector<NodeType*>> newNodes;
|
|
{
|
|
std::lock_guard<MicroSpinLock> g(lock_);
|
|
if (nodes_.get() == nullptr || refs() > 1) {
|
|
return refs_.fetch_add(-1, std::memory_order_relaxed);
|
|
}
|
|
// once refs_ reaches 1 and there is no other accessor, it is safe to
|
|
// remove all the current nodes in the recycler, as we already acquired
|
|
// the lock here so no more new nodes can be added, even though new
|
|
// accessors may be added after that.
|
|
newNodes.swap(nodes_);
|
|
dirty_.store(false, std::memory_order_relaxed);
|
|
}
|
|
|
|
// TODO(xliu) should we spawn a thread to do this when there are large
|
|
// number of nodes in the recycler?
|
|
for (auto& node : *newNodes) {
|
|
NodeType::destroy(alloc_, node);
|
|
}
|
|
|
|
// decrease the ref count at the very end, to minimize the
|
|
// chance of other threads acquiring lock_ to clear the deleted
|
|
// nodes again.
|
|
return refs_.fetch_add(-1, std::memory_order_relaxed);
|
|
}
|
|
|
|
NodeAlloc& alloc() {
|
|
return alloc_;
|
|
}
|
|
|
|
private:
|
|
int refs() const {
|
|
return refs_.load(std::memory_order_relaxed);
|
|
}
|
|
|
|
std::unique_ptr<std::vector<NodeType*>> nodes_;
|
|
std::atomic<int32_t> refs_; // current number of visitors to the list
|
|
std::atomic<bool> dirty_; // whether *nodes_ is non-empty
|
|
MicroSpinLock lock_; // protects access to *nodes_
|
|
NodeAlloc alloc_;
|
|
};
|
|
|
|
// In case of arena allocator, no recycling is necessary, and it's possible
|
|
// to save on ConcurrentSkipList size.
|
|
template <typename NodeType, typename NodeAlloc>
|
|
class NodeRecycler<
|
|
NodeType,
|
|
NodeAlloc,
|
|
typename std::enable_if<
|
|
NodeType::template DestroyIsNoOp<NodeAlloc>::value>::type> {
|
|
public:
|
|
explicit NodeRecycler(const NodeAlloc& alloc) : alloc_(alloc) {}
|
|
|
|
void addRef() {}
|
|
void releaseRef() {}
|
|
|
|
void add(NodeType* /* node */) {}
|
|
|
|
NodeAlloc& alloc() {
|
|
return alloc_;
|
|
}
|
|
|
|
private:
|
|
NodeAlloc alloc_;
|
|
};
|
|
|
|
} // namespace detail
|
|
} // namespace folly
|