mirror of
https://github.com/ecency/ecency-mobile.git
synced 2025-01-03 03:25:24 +03:00
704 lines
24 KiB
C++
704 lines
24 KiB
C++
/*
|
|
* Copyright 2016 Facebook, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
// SingletonVault - a library to manage the creation and destruction
|
|
// of interdependent singletons.
|
|
//
|
|
// Basic usage of this class is very simple; suppose you have a class
|
|
// called MyExpensiveService, and you only want to construct one (ie,
|
|
// it's a singleton), but you only want to construct it if it is used.
|
|
//
|
|
// In your .h file:
|
|
// class MyExpensiveService { ... };
|
|
//
|
|
// In your .cpp file:
|
|
// namespace { folly::Singleton<MyExpensiveService> the_singleton; }
|
|
//
|
|
// Code can access it via:
|
|
//
|
|
// MyExpensiveService* instance = Singleton<MyExpensiveService>::get();
|
|
// or
|
|
// std::weak_ptr<MyExpensiveService> instance =
|
|
// Singleton<MyExpensiveService>::get_weak();
|
|
//
|
|
// You also can directly access it by the variable defining the
|
|
// singleton rather than via get(), and even treat that variable like
|
|
// a smart pointer (dereferencing it or using the -> operator).
|
|
//
|
|
// Please note, however, that all non-weak_ptr interfaces are
|
|
// inherently subject to races with destruction. Use responsibly.
|
|
//
|
|
// The singleton will be created on demand. If the constructor for
|
|
// MyExpensiveService actually makes use of *another* Singleton, then
|
|
// the right thing will happen -- that other singleton will complete
|
|
// construction before get() returns. However, in the event of a
|
|
// circular dependency, a runtime error will occur.
|
|
//
|
|
// You can have multiple singletons of the same underlying type, but
|
|
// each must be given a unique tag. If no tag is specified - default tag is used
|
|
//
|
|
// namespace {
|
|
// struct Tag1 {};
|
|
// struct Tag2 {};
|
|
// folly::Singleton<MyExpensiveService> s_default;
|
|
// folly::Singleton<MyExpensiveService, Tag1> s1;
|
|
// folly::Singleton<MyExpensiveService, Tag2> s2;
|
|
// }
|
|
// ...
|
|
// MyExpensiveService* svc_default = s_default.get();
|
|
// MyExpensiveService* svc1 = s1.get();
|
|
// MyExpensiveService* svc2 = s2.get();
|
|
//
|
|
// By default, the singleton instance is constructed via new and
|
|
// deleted via delete, but this is configurable:
|
|
//
|
|
// namespace { folly::Singleton<MyExpensiveService> the_singleton(create,
|
|
// destroy); }
|
|
//
|
|
// Where create and destroy are functions, Singleton<T>::CreateFunc
|
|
// Singleton<T>::TeardownFunc.
|
|
//
|
|
// For example, if you need to pass arguments to your class's constructor:
|
|
// class X {
|
|
// public:
|
|
// X(int a1, std::string a2);
|
|
// // ...
|
|
// }
|
|
// Make your singleton like this:
|
|
// folly::Singleton<X> singleton_x([]() { return new X(42, "foo"); });
|
|
//
|
|
// The above examples detail a situation where an expensive singleton is loaded
|
|
// on-demand (thus only if needed). However if there is an expensive singleton
|
|
// that will likely be needed, and initialization takes a potentially long time,
|
|
// e.g. while initializing, parsing some files, talking to remote services,
|
|
// making uses of other singletons, and so on, the initialization of those can
|
|
// be scheduled up front, or "eagerly".
|
|
//
|
|
// In that case the singleton can be declared this way:
|
|
//
|
|
// namespace {
|
|
// auto the_singleton =
|
|
// folly::Singleton<MyExpensiveService>(/* optional create, destroy args */)
|
|
// .shouldEagerInit();
|
|
// }
|
|
//
|
|
// This way the singleton's instance is built at program initialization,
|
|
// if the program opted-in to that feature by calling "doEagerInit" or
|
|
// "doEagerInitVia" during its startup.
|
|
//
|
|
// What if you need to destroy all of your singletons? Say, some of
|
|
// your singletons manage threads, but you need to fork? Or your unit
|
|
// test wants to clean up all global state? Then you can call
|
|
// SingletonVault::singleton()->destroyInstances(), which invokes the
|
|
// TeardownFunc for each singleton, in the reverse order they were
|
|
// created. It is your responsibility to ensure your singletons can
|
|
// handle cases where the singletons they depend on go away, however.
|
|
// Singletons won't be recreated after destroyInstances call. If you
|
|
// want to re-enable singleton creation (say after fork was called) you
|
|
// should call reenableInstances.
|
|
|
|
#pragma once
|
|
#include <folly/Baton.h>
|
|
#include <folly/Exception.h>
|
|
#include <folly/Hash.h>
|
|
#include <folly/Memory.h>
|
|
#include <folly/RWSpinLock.h>
|
|
#include <folly/Demangle.h>
|
|
#include <folly/Executor.h>
|
|
#include <folly/experimental/ReadMostlySharedPtr.h>
|
|
#include <folly/detail/StaticSingletonManager.h>
|
|
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <condition_variable>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <typeindex>
|
|
#include <typeinfo>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
#include <glog/logging.h>
|
|
|
|
// use this guard to handleSingleton breaking change in 3rd party code
|
|
#ifndef FOLLY_SINGLETON_TRY_GET
|
|
#define FOLLY_SINGLETON_TRY_GET
|
|
#endif
|
|
|
|
namespace folly {
|
|
|
|
// For actual usage, please see the Singleton<T> class at the bottom
|
|
// of this file; that is what you will actually interact with.
|
|
|
|
// SingletonVault is the class that manages singleton instances. It
|
|
// is unaware of the underlying types of singletons, and simply
|
|
// manages lifecycles and invokes CreateFunc and TeardownFunc when
|
|
// appropriate. In general, you won't need to interact with the
|
|
// SingletonVault itself.
|
|
//
|
|
// A vault goes through a few stages of life:
|
|
//
|
|
// 1. Registration phase; singletons can be registered:
|
|
// a) Strict: no singleton can be created in this stage.
|
|
// b) Relaxed: singleton can be created (the default vault is Relaxed).
|
|
// 2. registrationComplete() has been called; singletons can no
|
|
// longer be registered, but they can be created.
|
|
// 3. A vault can return to stage 1 when destroyInstances is called.
|
|
//
|
|
// In general, you don't need to worry about any of the above; just
|
|
// ensure registrationComplete() is called near the top of your main()
|
|
// function, otherwise no singletons can be instantiated.
|
|
|
|
class SingletonVault;
|
|
|
|
namespace detail {
|
|
|
|
struct DefaultTag {};
|
|
|
|
// A TypeDescriptor is the unique handle for a given singleton. It is
|
|
// a combinaiton of the type and of the optional name, and is used as
|
|
// a key in unordered_maps.
|
|
class TypeDescriptor {
|
|
public:
|
|
TypeDescriptor(const std::type_info& ti,
|
|
const std::type_info& tag_ti)
|
|
: ti_(ti), tag_ti_(tag_ti) {
|
|
}
|
|
|
|
TypeDescriptor(const TypeDescriptor& other)
|
|
: ti_(other.ti_), tag_ti_(other.tag_ti_) {
|
|
}
|
|
|
|
TypeDescriptor& operator=(const TypeDescriptor& other) {
|
|
if (this != &other) {
|
|
ti_ = other.ti_;
|
|
tag_ti_ = other.tag_ti_;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
std::string name() const {
|
|
auto ret = demangle(ti_.name());
|
|
if (tag_ti_ != std::type_index(typeid(DefaultTag))) {
|
|
ret += "/";
|
|
ret += demangle(tag_ti_.name());
|
|
}
|
|
return ret.toStdString();
|
|
}
|
|
|
|
friend class TypeDescriptorHasher;
|
|
|
|
bool operator==(const TypeDescriptor& other) const {
|
|
return ti_ == other.ti_ && tag_ti_ == other.tag_ti_;
|
|
}
|
|
|
|
private:
|
|
std::type_index ti_;
|
|
std::type_index tag_ti_;
|
|
};
|
|
|
|
class TypeDescriptorHasher {
|
|
public:
|
|
size_t operator()(const TypeDescriptor& ti) const {
|
|
return folly::hash::hash_combine(ti.ti_, ti.tag_ti_);
|
|
}
|
|
};
|
|
|
|
// This interface is used by SingletonVault to interact with SingletonHolders.
|
|
// Having a non-template interface allows SingletonVault to keep a list of all
|
|
// SingletonHolders.
|
|
class SingletonHolderBase {
|
|
public:
|
|
explicit SingletonHolderBase(TypeDescriptor typeDesc) : type_(typeDesc) {}
|
|
virtual ~SingletonHolderBase() = default;
|
|
|
|
TypeDescriptor type() const {
|
|
return type_;
|
|
}
|
|
virtual bool hasLiveInstance() = 0;
|
|
virtual void createInstance() = 0;
|
|
virtual bool creationStarted() = 0;
|
|
virtual void preDestroyInstance(ReadMostlyMainPtrDeleter<>&) = 0;
|
|
virtual void destroyInstance() = 0;
|
|
|
|
private:
|
|
TypeDescriptor type_;
|
|
};
|
|
|
|
// An actual instance of a singleton, tracking the instance itself,
|
|
// its state as described above, and the create and teardown
|
|
// functions.
|
|
template <typename T>
|
|
struct SingletonHolder : public SingletonHolderBase {
|
|
public:
|
|
typedef std::function<void(T*)> TeardownFunc;
|
|
typedef std::function<T*(void)> CreateFunc;
|
|
|
|
template <typename Tag, typename VaultTag>
|
|
inline static SingletonHolder<T>& singleton();
|
|
|
|
inline T* get();
|
|
inline std::weak_ptr<T> get_weak();
|
|
inline std::shared_ptr<T> try_get();
|
|
inline folly::ReadMostlySharedPtr<T> try_get_fast();
|
|
|
|
void registerSingleton(CreateFunc c, TeardownFunc t);
|
|
void registerSingletonMock(CreateFunc c, TeardownFunc t);
|
|
virtual bool hasLiveInstance() override;
|
|
virtual void createInstance() override;
|
|
virtual bool creationStarted() override;
|
|
virtual void preDestroyInstance(ReadMostlyMainPtrDeleter<>&) override;
|
|
virtual void destroyInstance() override;
|
|
|
|
private:
|
|
SingletonHolder(TypeDescriptor type, SingletonVault& vault);
|
|
|
|
enum class SingletonHolderState {
|
|
NotRegistered,
|
|
Dead,
|
|
Living,
|
|
};
|
|
|
|
SingletonVault& vault_;
|
|
|
|
// mutex protects the entire entry during construction/destruction
|
|
std::mutex mutex_;
|
|
|
|
// State of the singleton entry. If state is Living, instance_ptr and
|
|
// instance_weak can be safely accessed w/o synchronization.
|
|
std::atomic<SingletonHolderState> state_{SingletonHolderState::NotRegistered};
|
|
|
|
// the thread creating the singleton (only valid while creating an object)
|
|
std::atomic<std::thread::id> creating_thread_;
|
|
|
|
// The singleton itself and related functions.
|
|
|
|
// holds a ReadMostlyMainPtr to singleton instance, set when state is changed
|
|
// from Dead to Living. Reset when state is changed from Living to Dead.
|
|
folly::ReadMostlyMainPtr<T> instance_;
|
|
// used to release all ReadMostlyMainPtrs at once
|
|
folly::ReadMostlySharedPtr<T> instance_copy_;
|
|
// weak_ptr to the singleton instance, set when state is changed from Dead
|
|
// to Living. We never write to this object after initialization, so it is
|
|
// safe to read it from different threads w/o synchronization if we know
|
|
// that state is set to Living
|
|
std::weak_ptr<T> instance_weak_;
|
|
// Fast equivalent of instance_weak_
|
|
folly::ReadMostlyWeakPtr<T> instance_weak_fast_;
|
|
// Time we wait on destroy_baton after releasing Singleton shared_ptr.
|
|
std::shared_ptr<folly::Baton<>> destroy_baton_;
|
|
T* instance_ptr_ = nullptr;
|
|
CreateFunc create_ = nullptr;
|
|
TeardownFunc teardown_ = nullptr;
|
|
|
|
std::shared_ptr<std::atomic<bool>> print_destructor_stack_trace_;
|
|
|
|
SingletonHolder(const SingletonHolder&) = delete;
|
|
SingletonHolder& operator=(const SingletonHolder&) = delete;
|
|
SingletonHolder& operator=(SingletonHolder&&) = delete;
|
|
SingletonHolder(SingletonHolder&&) = delete;
|
|
};
|
|
|
|
}
|
|
|
|
class SingletonVault {
|
|
public:
|
|
enum class Type {
|
|
Strict, // Singletons can't be created before registrationComplete()
|
|
Relaxed, // Singletons can be created before registrationComplete()
|
|
};
|
|
|
|
/**
|
|
* Clears all singletons in the given vault at ctor and dtor times.
|
|
* Useful for unit-tests that need to clear the world.
|
|
*
|
|
* This need can arise when a unit-test needs to swap out an object used by a
|
|
* singleton for a test-double, but the singleton needing its dependency to be
|
|
* swapped has a type or a tag local to some other translation unit and
|
|
* unavailable in the current translation unit.
|
|
*
|
|
* Other, better approaches to this need are "plz 2 refactor" ....
|
|
*/
|
|
struct ScopedExpunger {
|
|
SingletonVault* vault;
|
|
explicit ScopedExpunger(SingletonVault* v) : vault(v) { expunge(); }
|
|
~ScopedExpunger() { expunge(); }
|
|
void expunge() {
|
|
vault->destroyInstances();
|
|
vault->reenableInstances();
|
|
}
|
|
};
|
|
|
|
explicit SingletonVault(Type type = Type::Relaxed) : type_(type) {}
|
|
|
|
// Destructor is only called by unit tests to check destroyInstances.
|
|
~SingletonVault();
|
|
|
|
typedef std::function<void(void*)> TeardownFunc;
|
|
typedef std::function<void*(void)> CreateFunc;
|
|
|
|
// Ensure that Singleton has not been registered previously and that
|
|
// registration is not complete. If validations succeeds,
|
|
// register a singleton of a given type with the create and teardown
|
|
// functions.
|
|
void registerSingleton(detail::SingletonHolderBase* entry);
|
|
|
|
/**
|
|
* Called by `Singleton<T>.shouldEagerInit()` to ensure the instance
|
|
* is built when `doEagerInit[Via]` is called; see those methods
|
|
* for more info.
|
|
*/
|
|
void addEagerInitSingleton(detail::SingletonHolderBase* entry);
|
|
|
|
// Mark registration is complete; no more singletons can be
|
|
// registered at this point.
|
|
void registrationComplete();
|
|
|
|
/**
|
|
* Initialize all singletons which were marked as eager-initialized
|
|
* (using `shouldEagerInit()`). No return value. Propagates exceptions
|
|
* from constructors / create functions, as is the usual case when calling
|
|
* for example `Singleton<Foo>::get_weak()`.
|
|
*/
|
|
void doEagerInit();
|
|
|
|
/**
|
|
* Schedule eager singletons' initializations through the given executor.
|
|
* If baton ptr is not null, its `post` method is called after all
|
|
* early initialization has completed.
|
|
*
|
|
* If exceptions are thrown during initialization, this method will still
|
|
* `post` the baton to indicate completion. The exception will not propagate
|
|
* and future attempts to `try_get` or `get_weak` the failed singleton will
|
|
* retry initialization.
|
|
*
|
|
* Sample usage:
|
|
*
|
|
* wangle::IOThreadPoolExecutor executor(max_concurrency_level);
|
|
* folly::Baton<> done;
|
|
* doEagerInitVia(executor, &done);
|
|
* done.wait(); // or 'timed_wait', or spin with 'try_wait'
|
|
*
|
|
*/
|
|
void doEagerInitVia(Executor& exe, folly::Baton<>* done = nullptr);
|
|
|
|
// Destroy all singletons; when complete, the vault can't create
|
|
// singletons once again until reenableInstances() is called.
|
|
void destroyInstances();
|
|
|
|
// Enable re-creating singletons after destroyInstances() was called.
|
|
void reenableInstances();
|
|
|
|
// For testing; how many registered and living singletons we have.
|
|
size_t registeredSingletonCount() const {
|
|
RWSpinLock::ReadHolder rh(&mutex_);
|
|
|
|
return singletons_.size();
|
|
}
|
|
|
|
/**
|
|
* Flips to true if eager initialization was used, and has completed.
|
|
* Never set to true if "doEagerInit()" or "doEagerInitVia" never called.
|
|
*/
|
|
bool eagerInitComplete() const;
|
|
|
|
size_t livingSingletonCount() const {
|
|
RWSpinLock::ReadHolder rh(&mutex_);
|
|
|
|
size_t ret = 0;
|
|
for (const auto& p : singletons_) {
|
|
if (p.second->hasLiveInstance()) {
|
|
++ret;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// A well-known vault; you can actually have others, but this is the
|
|
// default.
|
|
static SingletonVault* singleton() {
|
|
return singleton<>();
|
|
}
|
|
|
|
// Gets singleton vault for any Tag. Non-default tag should be used in unit
|
|
// tests only.
|
|
template <typename VaultTag = detail::DefaultTag>
|
|
static SingletonVault* singleton() {
|
|
/* library-local */ static auto vault =
|
|
detail::createGlobal<SingletonVault, VaultTag>();
|
|
return vault;
|
|
}
|
|
|
|
typedef std::string(*StackTraceGetterPtr)();
|
|
|
|
static std::atomic<StackTraceGetterPtr>& stackTraceGetter() {
|
|
/* library-local */ static auto stackTraceGetterPtr = detail::
|
|
createGlobal<std::atomic<StackTraceGetterPtr>, SingletonVault>();
|
|
return *stackTraceGetterPtr;
|
|
}
|
|
|
|
void setType(Type type) {
|
|
type_ = type;
|
|
}
|
|
|
|
private:
|
|
template <typename T>
|
|
friend struct detail::SingletonHolder;
|
|
|
|
// The two stages of life for a vault, as mentioned in the class comment.
|
|
enum class SingletonVaultState {
|
|
Running,
|
|
Quiescing,
|
|
};
|
|
|
|
// Each singleton in the vault can be in two states: dead
|
|
// (registered but never created), living (CreateFunc returned an instance).
|
|
|
|
void stateCheck(SingletonVaultState expected,
|
|
const char* msg="Unexpected singleton state change") {
|
|
if (expected != state_) {
|
|
throw std::logic_error(msg);
|
|
}
|
|
}
|
|
|
|
// This method only matters if registrationComplete() is never called.
|
|
// Otherwise destroyInstances is scheduled to be executed atexit.
|
|
//
|
|
// Initializes static object, which calls destroyInstances on destruction.
|
|
// Used to have better deletion ordering with singleton not managed by
|
|
// folly::Singleton. The desruction will happen in the following order:
|
|
// 1. Singletons, not managed by folly::Singleton, which were created after
|
|
// any of the singletons managed by folly::Singleton was requested.
|
|
// 2. All singletons managed by folly::Singleton
|
|
// 3. Singletons, not managed by folly::Singleton, which were created before
|
|
// any of the singletons managed by folly::Singleton was requested.
|
|
static void scheduleDestroyInstances();
|
|
|
|
typedef std::unordered_map<detail::TypeDescriptor,
|
|
detail::SingletonHolderBase*,
|
|
detail::TypeDescriptorHasher> SingletonMap;
|
|
|
|
mutable folly::RWSpinLock mutex_;
|
|
SingletonMap singletons_;
|
|
std::unordered_set<detail::SingletonHolderBase*> eagerInitSingletons_;
|
|
std::vector<detail::TypeDescriptor> creation_order_;
|
|
SingletonVaultState state_{SingletonVaultState::Running};
|
|
bool registrationComplete_{false};
|
|
folly::RWSpinLock stateMutex_;
|
|
Type type_{Type::Relaxed};
|
|
};
|
|
|
|
// This is the wrapper class that most users actually interact with.
|
|
// It allows for simple access to registering and instantiating
|
|
// singletons. Create instances of this class in the global scope of
|
|
// type Singleton<T> to register your singleton for later access via
|
|
// Singleton<T>::try_get().
|
|
template <typename T,
|
|
typename Tag = detail::DefaultTag,
|
|
typename VaultTag = detail::DefaultTag /* for testing */>
|
|
class Singleton {
|
|
public:
|
|
typedef std::function<T*(void)> CreateFunc;
|
|
typedef std::function<void(T*)> TeardownFunc;
|
|
|
|
// Generally your program life cycle should be fine with calling
|
|
// get() repeatedly rather than saving the reference, and then not
|
|
// call get() during process shutdown.
|
|
FOLLY_DEPRECATED("Replaced by try_get")
|
|
static T* get() { return getEntry().get(); }
|
|
|
|
// If, however, you do need to hold a reference to the specific
|
|
// singleton, you can try to do so with a weak_ptr. Avoid this when
|
|
// possible but the inability to lock the weak pointer can be a
|
|
// signal that the vault has been destroyed.
|
|
FOLLY_DEPRECATED("Replaced by try_get")
|
|
static std::weak_ptr<T> get_weak() { return getEntry().get_weak(); }
|
|
|
|
// Preferred alternative to get_weak, it returns shared_ptr that can be
|
|
// stored; a singleton won't be destroyed unless shared_ptr is destroyed.
|
|
// Avoid holding these shared_ptrs beyond the scope of a function;
|
|
// don't put them in member variables, always use try_get() instead
|
|
//
|
|
// try_get() can return nullptr if the singleton was destroyed, caller is
|
|
// responsible for handling nullptr return
|
|
static std::shared_ptr<T> try_get() {
|
|
return getEntry().try_get();
|
|
}
|
|
|
|
static folly::ReadMostlySharedPtr<T> try_get_fast() {
|
|
return getEntry().try_get_fast();
|
|
}
|
|
|
|
explicit Singleton(std::nullptr_t /* _ */ = nullptr,
|
|
typename Singleton::TeardownFunc t = nullptr)
|
|
: Singleton([]() { return new T; }, std::move(t)) {}
|
|
|
|
explicit Singleton(typename Singleton::CreateFunc c,
|
|
typename Singleton::TeardownFunc t = nullptr) {
|
|
if (c == nullptr) {
|
|
throw std::logic_error(
|
|
"nullptr_t should be passed if you want T to be default constructed");
|
|
}
|
|
|
|
auto vault = SingletonVault::singleton<VaultTag>();
|
|
getEntry().registerSingleton(std::move(c), getTeardownFunc(std::move(t)));
|
|
vault->registerSingleton(&getEntry());
|
|
}
|
|
|
|
/**
|
|
* Should be instantiated as soon as "doEagerInit[Via]" is called.
|
|
* Singletons are usually lazy-loaded (built on-demand) but for those which
|
|
* are known to be needed, to avoid the potential lag for objects that take
|
|
* long to construct during runtime, there is an option to make sure these
|
|
* are built up-front.
|
|
*
|
|
* Use like:
|
|
* Singleton<Foo> gFooInstance = Singleton<Foo>(...).shouldEagerInit();
|
|
*
|
|
* Or alternately, define the singleton as usual, and say
|
|
* gFooInstance.shouldEagerInit();
|
|
*
|
|
* at some point prior to calling registrationComplete().
|
|
* Then doEagerInit() or doEagerInitVia(Executor*) can be called.
|
|
*/
|
|
Singleton& shouldEagerInit() {
|
|
auto vault = SingletonVault::singleton<VaultTag>();
|
|
vault->addEagerInitSingleton(&getEntry());
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
* Construct and inject a mock singleton which should be used only from tests.
|
|
* Unlike regular singletons which are initialized once per process lifetime,
|
|
* mock singletons live for the duration of a test. This means that one process
|
|
* running multiple tests can initialize and register the same singleton
|
|
* multiple times. This functionality should be used only from tests
|
|
* since it relaxes validation and performance in order to be able to perform
|
|
* the injection. The returned mock singleton is functionality identical to
|
|
* regular singletons.
|
|
*/
|
|
static void make_mock(std::nullptr_t /* c */ = nullptr,
|
|
typename Singleton<T>::TeardownFunc t = nullptr) {
|
|
make_mock([]() { return new T; }, t);
|
|
}
|
|
|
|
static void make_mock(CreateFunc c,
|
|
typename Singleton<T>::TeardownFunc t = nullptr) {
|
|
if (c == nullptr) {
|
|
throw std::logic_error(
|
|
"nullptr_t should be passed if you want T to be default constructed");
|
|
}
|
|
|
|
auto& entry = getEntry();
|
|
|
|
entry.registerSingletonMock(c, getTeardownFunc(t));
|
|
}
|
|
|
|
private:
|
|
inline static detail::SingletonHolder<T>& getEntry() {
|
|
return detail::SingletonHolder<T>::template singleton<Tag, VaultTag>();
|
|
}
|
|
|
|
// Construct TeardownFunc.
|
|
static typename detail::SingletonHolder<T>::TeardownFunc getTeardownFunc(
|
|
TeardownFunc t) {
|
|
if (t == nullptr) {
|
|
return [](T* v) { delete v; };
|
|
} else {
|
|
return t;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T, typename Tag = detail::DefaultTag>
|
|
class LeakySingleton {
|
|
public:
|
|
using CreateFunc = std::function<T*()>;
|
|
|
|
LeakySingleton() : LeakySingleton([] { return new T(); }) {}
|
|
|
|
explicit LeakySingleton(CreateFunc createFunc) {
|
|
auto& entry = entryInstance();
|
|
if (entry.state != State::NotRegistered) {
|
|
LOG(FATAL) << "Double registration of singletons of the same "
|
|
<< "underlying type; check for multiple definitions "
|
|
<< "of type folly::LeakySingleton<" + entry.type_.name() + ">";
|
|
}
|
|
entry.createFunc = createFunc;
|
|
entry.state = State::Dead;
|
|
}
|
|
|
|
static T& get() { return instance(); }
|
|
|
|
private:
|
|
enum class State { NotRegistered, Dead, Living };
|
|
|
|
struct Entry {
|
|
Entry() {}
|
|
Entry(const Entry&) = delete;
|
|
Entry& operator=(const Entry&) = delete;
|
|
|
|
std::atomic<State> state{State::NotRegistered};
|
|
T* ptr{nullptr};
|
|
CreateFunc createFunc;
|
|
std::mutex mutex;
|
|
detail::TypeDescriptor type_{typeid(T), typeid(Tag)};
|
|
};
|
|
|
|
static Entry& entryInstance() {
|
|
/* library-local */ static auto entry = detail::createGlobal<Entry, Tag>();
|
|
return *entry;
|
|
}
|
|
|
|
static T& instance() {
|
|
auto& entry = entryInstance();
|
|
if (UNLIKELY(entry.state != State::Living)) {
|
|
createInstance();
|
|
}
|
|
|
|
return *entry.ptr;
|
|
}
|
|
|
|
static void createInstance() {
|
|
auto& entry = entryInstance();
|
|
|
|
std::lock_guard<std::mutex> lg(entry.mutex);
|
|
if (entry.state == State::Living) {
|
|
return;
|
|
}
|
|
|
|
if (entry.state == State::NotRegistered) {
|
|
auto ptr = SingletonVault::stackTraceGetter().load();
|
|
LOG(FATAL) << "Creating instance for unregistered singleton: "
|
|
<< entry.type_.name() << "\n"
|
|
<< "Stacktrace:"
|
|
<< "\n" << (ptr ? (*ptr)() : "(not available)");
|
|
}
|
|
|
|
entry.ptr = entry.createFunc();
|
|
entry.state = State::Living;
|
|
}
|
|
};
|
|
}
|
|
|
|
#include <folly/Singleton-inl.h>
|