Idris2-boot/libs/base/Data/Morphisms.idr

91 lines
2.0 KiB
Idris
Raw Normal View History

2019-07-18 16:46:06 +03:00
module Data.Morphisms
public export
record Morphism a b where
constructor Mor
applyMor : a -> b
infixr 1 ~>
export
(~>) : Type -> Type -> Type
(~>) = Morphism
public export
record Endomorphism a where
constructor Endo
applyEndo : a -> a
public export
record Kleislimorphism (f : Type -> Type) a b where
constructor Kleisli
applyKleisli : a -> f b
export
Functor (Morphism r) where
map f (Mor a) = Mor $ f . a
export
Applicative (Morphism r) where
pure a = Mor $ const a
(Mor f) <*> (Mor a) = Mor $ \r => f r $ a r
export
Monad (Morphism r) where
(Mor h) >>= f = Mor $ \r => applyMor (f $ h r) r
export
Semigroup a => Semigroup (Morphism r a) where
f <+> g = Mor $ \r => (applyMor f) r <+> (applyMor g) r
export
Monoid a => Monoid (Morphism r a) where
neutral = Mor \r => neutral
export
Semigroup (Endomorphism a) where
(Endo f) <+> (Endo g) = Endo $ g . f
export
Monoid (Endomorphism a) where
neutral = Endo id
export
Functor f => Functor (Kleislimorphism f a) where
map f (Kleisli g) = Kleisli (map f . g)
export
Applicative f => Applicative (Kleislimorphism f a) where
pure a = Kleisli $ const $ pure a
(Kleisli f) <*> (Kleisli a) = Kleisli $ \r => f r <*> a r
export
Monad f => Monad (Kleislimorphism f a) where
(Kleisli f) >>= g = Kleisli $ \r => do
k1 <- f r
applyKleisli (g k1) r
-- Applicative is a bit too strong, but there is no suitable superclass
export
(Semigroup a, Applicative f) => Semigroup (Kleislimorphism f r a) where
f <+> g = Kleisli \r => (<+>) <$> (applyKleisli f) r <*> (applyKleisli g) r
export
(Monoid a, Applicative f) => Monoid (Kleislimorphism f r a) where
neutral = Kleisli \r => pure neutral
export
Cast (Endomorphism a) (Morphism a a) where
cast (Endo f) = Mor f
export
Cast (Morphism a a) (Endomorphism a) where
cast (Mor f) = Endo f
export
Cast (Morphism a (f b)) (Kleislimorphism f a b) where
cast (Mor f) = Kleisli f
export
Cast (Kleislimorphism f a b) (Morphism a (f b)) where
cast (Kleisli f) = Mor f