Idris2-boot/libs/base/Data/Nat.idr

395 lines
11 KiB
Idris
Raw Normal View History

2019-06-15 13:54:22 +03:00
module Data.Nat
export
Uninhabited (Z = S n) where
uninhabited Refl impossible
export
Uninhabited (S n = Z) where
uninhabited Refl impossible
public export
isZero : Nat -> Bool
isZero Z = True
isZero (S n) = False
public export
isSucc : Nat -> Bool
isSucc Z = False
isSucc (S n) = True
public export
data IsSucc : (n : Nat) -> Type where
ItIsSucc : IsSucc (S n)
export
Uninhabited (IsSucc Z) where
uninhabited ItIsSucc impossible
public export
isItSucc : (n : Nat) -> Dec (IsSucc n)
isItSucc Z = No absurd
isItSucc (S n) = Yes ItIsSucc
public export
minus : Nat -> Nat -> Nat
minus Z right = Z
minus left Z = left
minus (S left) (S right) = minus left right
public export
power : Nat -> Nat -> Nat
power base Z = S Z
power base (S exp) = base * (power base exp)
public export
hyper : Nat -> Nat -> Nat -> Nat
hyper Z a b = S b
hyper (S Z) a Z = a
hyper (S(S Z)) a Z = Z
hyper n a Z = S Z
hyper (S pn) a (S pb) = hyper pn a (hyper (S pn) a pb)
-- Comparisons
public export
data NotBothZero : (n, m : Nat) -> Type where
LeftIsNotZero : NotBothZero (S n) m
RightIsNotZero : NotBothZero n (S m)
public export
data LTE : (n, m : Nat) -> Type where
LTEZero : LTE Z right
LTESucc : LTE left right -> LTE (S left) (S right)
export
Uninhabited (LTE (S n) Z) where
uninhabited LTEZero impossible
public export
GTE : Nat -> Nat -> Type
GTE left right = LTE right left
public export
LT : Nat -> Nat -> Type
LT left right = LTE (S left) right
public export
GT : Nat -> Nat -> Type
GT left right = LT right left
export
succNotLTEzero : Not (LTE (S m) Z)
succNotLTEzero LTEZero impossible
export
fromLteSucc : LTE (S m) (S n) -> LTE m n
fromLteSucc (LTESucc x) = x
export
isLTE : (m, n : Nat) -> Dec (LTE m n)
isLTE Z n = Yes LTEZero
isLTE (S k) Z = No succNotLTEzero
isLTE (S k) (S j)
= case isLTE k j of
No contra => No (contra . fromLteSucc)
Yes prf => Yes (LTESucc prf)
export
lteRefl : {n : Nat} -> LTE n n
lteRefl {n = Z} = LTEZero
lteRefl {n = S k} = LTESucc lteRefl
export
lteSuccRight : LTE n m -> LTE n (S m)
lteSuccRight LTEZero = LTEZero
lteSuccRight (LTESucc x) = LTESucc (lteSuccRight x)
export
lteSuccLeft : LTE (S n) m -> LTE n m
lteSuccLeft (LTESucc x) = lteSuccRight x
export
lteTransitive : LTE n m -> LTE m p -> LTE n p
lteTransitive LTEZero y = LTEZero
lteTransitive (LTESucc x) (LTESucc y) = LTESucc (lteTransitive x y)
export
lteAddRight : (n : Nat) -> LTE n (n + m)
lteAddRight Z = LTEZero
lteAddRight (S k) {m} = LTESucc (lteAddRight {m} k)
export
notLTImpliesGTE : {a, b : _} -> Not (LT a b) -> GTE a b
notLTImpliesGTE {b = Z} _ = LTEZero
notLTImpliesGTE {a = Z} {b = S k} notLt = absurd (notLt (LTESucc LTEZero))
notLTImpliesGTE {a = S k} {b = S j} notLt = LTESucc (notLTImpliesGTE (notLt . LTESucc))
public export
lte : Nat -> Nat -> Bool
lte Z right = True
lte left Z = False
lte (S left) (S right) = lte left right
public export
gte : Nat -> Nat -> Bool
gte left right = lte right left
public export
lt : Nat -> Nat -> Bool
lt left right = lte (S left) right
public export
gt : Nat -> Nat -> Bool
gt left right = lt right left
public export
minimum : Nat -> Nat -> Nat
minimum Z m = Z
minimum (S n) Z = Z
minimum (S n) (S m) = S (minimum n m)
public export
maximum : Nat -> Nat -> Nat
maximum Z m = m
maximum (S n) Z = S n
maximum (S n) (S m) = S (maximum n m)
-- Proofs on S
export
eqSucc : (left : Nat) -> (right : Nat) -> (p : left = right) ->
S left = S right
eqSucc left _ Refl = Refl
export
succInjective : (left : Nat) -> (right : Nat) -> (p : S left = S right) ->
left = right
succInjective left _ Refl = Refl
export
SIsNotZ : (S x = Z) -> Void
SIsNotZ Refl impossible
export
modNatNZ : Nat -> (y: Nat) -> Not (y = Z) -> Nat
modNatNZ left Z p = void (p Refl)
modNatNZ left (S right) _ = mod' left left right
where
mod' : Nat -> Nat -> Nat -> Nat
mod' Z centre right = centre
mod' (S left) centre right =
if lte centre right then
centre
else
mod' left (minus centre (S right)) right
export
modNat : Nat -> Nat -> Nat
modNat left (S right) = modNatNZ left (S right) SIsNotZ
export
divNatNZ : Nat -> (y: Nat) -> Not (y = Z) -> Nat
divNatNZ left Z p = void (p Refl)
divNatNZ left (S right) _ = div' left left right
where
div' : Nat -> Nat -> Nat -> Nat
div' Z centre right = Z
div' (S left) centre right =
if lte centre right then
Z
else
S (div' left (minus centre (S right)) right)
export
divNat : Nat -> Nat -> Nat
divNat left (S right) = divNatNZ left (S right) SIsNotZ
export
divCeilNZ : Nat -> (y: Nat) -> Not (y = Z) -> Nat
divCeilNZ x y p = case (modNatNZ x y p) of
Z => divNatNZ x y p
S _ => S (divNatNZ x y p)
export
divCeil : Nat -> Nat -> Nat
divCeil x (S y) = divCeilNZ x (S y) SIsNotZ
export
gcd : (a: Nat) -> (b: Nat) -> {auto ok: NotBothZero a b} -> Nat
gcd a Z = a
gcd Z b = b
gcd a (S b) = gcd (S b) (modNatNZ a (S b) SIsNotZ)
export
lcm : Nat -> Nat -> Nat
lcm _ Z = Z
lcm Z _ = Z
lcm a (S b) = divNat (a * (S b)) (gcd a (S b))
-- Proofs on +
export
plusZeroLeftNeutral : (right : Nat) -> 0 + right = right
plusZeroLeftNeutral right = Refl
export
plusZeroRightNeutral : (left : Nat) -> left + 0 = left
plusZeroRightNeutral Z = Refl
plusZeroRightNeutral (S n) =
let inductiveHypothesis = plusZeroRightNeutral n in
rewrite inductiveHypothesis in Refl
export
plusSuccRightSucc : (left : Nat) -> (right : Nat) ->
S (left + right) = left + (S right)
plusSuccRightSucc Z right = Refl
plusSuccRightSucc (S left) right =
let inductiveHypothesis = plusSuccRightSucc left right in
rewrite inductiveHypothesis in Refl
export
plusCommutative : (left : Nat) -> (right : Nat) ->
left + right = right + left
plusCommutative Z right = rewrite plusZeroRightNeutral right in Refl
plusCommutative (S left) right =
let inductiveHypothesis = plusCommutative left right in
rewrite inductiveHypothesis in
rewrite plusSuccRightSucc right left in Refl
export
plusAssociative : (left : Nat) -> (centre : Nat) -> (right : Nat) ->
left + (centre + right) = (left + centre) + right
plusAssociative Z centre right = Refl
plusAssociative (S left) centre right =
let inductiveHypothesis = plusAssociative left centre right in
rewrite inductiveHypothesis in Refl
export
plusConstantRight : (left : Nat) -> (right : Nat) -> (c : Nat) ->
(p : left = right) -> left + c = right + c
plusConstantRight left _ c Refl = Refl
export
plusConstantLeft : (left : Nat) -> (right : Nat) -> (c : Nat) ->
(p : left = right) -> c + left = c + right
plusConstantLeft left _ c Refl = Refl
export
plusOneSucc : (right : Nat) -> 1 + right = S right
plusOneSucc n = Refl
export
plusLeftCancel : (left : Nat) -> (right : Nat) -> (right' : Nat) ->
(p : left + right = left + right') -> right = right'
plusLeftCancel Z right right' p = p
plusLeftCancel (S left) right right' p =
let inductiveHypothesis = plusLeftCancel left right right' in
inductiveHypothesis (succInjective _ _ p)
export
plusRightCancel : (left : Nat) -> (left' : Nat) -> (right : Nat) ->
(p : left + right = left' + right) -> left = left'
plusRightCancel left left' Z p = rewrite sym (plusZeroRightNeutral left) in
rewrite sym (plusZeroRightNeutral left') in
p
plusRightCancel left left' (S right) p =
plusRightCancel left left' right
(succInjective _ _ (rewrite plusSuccRightSucc left right in
rewrite plusSuccRightSucc left' right in p))
export
plusLeftLeftRightZero : (left : Nat) -> (right : Nat) ->
(p : left + right = left) -> right = Z
plusLeftLeftRightZero Z right p = p
plusLeftLeftRightZero (S left) right p =
plusLeftLeftRightZero left right (succInjective _ _ p)
-- Proofs on *
export
multZeroLeftZero : (right : Nat) -> Z * right = Z
multZeroLeftZero right = Refl
export
multZeroRightZero : (left : Nat) -> left * Z = Z
multZeroRightZero Z = Refl
multZeroRightZero (S left) = multZeroRightZero left
export
multRightSuccPlus : (left : Nat) -> (right : Nat) ->
left * (S right) = left + (left * right)
multRightSuccPlus Z right = Refl
multRightSuccPlus (S left) right =
let inductiveHypothesis = multRightSuccPlus left right in
rewrite inductiveHypothesis in
rewrite plusAssociative left right (left * right) in
rewrite plusAssociative right left (left * right) in
rewrite plusCommutative right left in
Refl
export
multLeftSuccPlus : (left : Nat) -> (right : Nat) ->
(S left) * right = right + (left * right)
multLeftSuccPlus left right = Refl
export
multCommutative : (left : Nat) -> (right : Nat) ->
left * right = right * left
multCommutative Z right = rewrite multZeroRightZero right in Refl
multCommutative (S left) right =
let inductiveHypothesis = multCommutative left right in
rewrite inductiveHypothesis in
rewrite multRightSuccPlus right left in
Refl
export
multDistributesOverPlusRight : (left : Nat) -> (centre : Nat) -> (right : Nat) ->
left * (centre + right) = (left * centre) + (left * right)
multDistributesOverPlusRight Z centre right = Refl
multDistributesOverPlusRight (S left) centre right =
let inductiveHypothesis = multDistributesOverPlusRight left centre right in
rewrite inductiveHypothesis in
rewrite plusAssociative (centre + (left * centre)) right (left * right) in
rewrite sym (plusAssociative centre (left * centre) right) in
rewrite plusCommutative (left * centre) right in
rewrite plusAssociative centre right (left * centre) in
rewrite plusAssociative (centre + right) (left * centre) (left * right) in
Refl
export
multDistributesOverPlusLeft : (left : Nat) -> (centre : Nat) -> (right : Nat) ->
(left + centre) * right = (left * right) + (centre * right)
multDistributesOverPlusLeft Z centre right = Refl
multDistributesOverPlusLeft (S left) centre right =
let inductiveHypothesis = multDistributesOverPlusLeft left centre right in
rewrite inductiveHypothesis in
rewrite plusAssociative right (left * right) (centre * right) in
Refl
export
multAssociative : (left : Nat) -> (centre : Nat) -> (right : Nat) ->
left * (centre * right) = (left * centre) * right
multAssociative Z centre right = Refl
multAssociative (S left) centre right =
let inductiveHypothesis = multAssociative left centre right in
rewrite inductiveHypothesis in
rewrite multDistributesOverPlusLeft centre (left * centre) right in
Refl
export
multOneLeftNeutral : (right : Nat) -> 1 * right = right
multOneLeftNeutral Z = Refl
multOneLeftNeutral (S right) =
let inductiveHypothesis = multOneLeftNeutral right in
rewrite inductiveHypothesis in
Refl
export
multOneRightNeutral : (left : Nat) -> left * 1 = left
multOneRightNeutral Z = Refl
multOneRightNeutral (S left) =
let inductiveHypothesis = multOneRightNeutral left in
rewrite inductiveHypothesis in
Refl