1
1
mirror of https://github.com/edwinb/Idris2-boot.git synced 2025-01-02 09:47:22 +03:00
Idris2-boot/tests/idris2/interface001/Stuff.idr

113 lines
1.9 KiB
Idris
Raw Normal View History

2019-06-24 19:35:00 +03:00
-- a mini prelude
module Stuff
public export
data Bool = True | False
public export
not : Bool -> Bool
not True = False
not False = True
public export
data Maybe a = Nothing | Just a
infixl 4 &&
public export
(&&) : Bool -> Bool -> Bool
(&&) True x = x
(&&) False x = False
public export
intToBool : Int -> Bool
intToBool 0 = False
intToBool x = True
public export
ifThenElse : Bool -> Lazy a -> Lazy a -> a
ifThenElse True t e = t
ifThenElse False t e = e
public export
data Nat = Z | S Nat
public export
fromInteger : Integer -> Nat
fromInteger x = ifThenElse (intToBool (prim__eq_Integer x 0))
2019-06-24 19:35:00 +03:00
Z (S (fromInteger (prim__sub_Integer x 1)))
public export
plus : Nat -> Nat -> Nat
plus Z y = y
plus (S k) y = S (plus k y)
infixr 5 ::
public export
data List a = Nil | (::) a (List a)
public export
data Equal : a -> b -> Type where
Refl : {0 x : a} -> Equal x x
infix 9 ===, ~=~
public export
(===) : (x : a) -> (y : a) -> Type
(===) = Equal
public export
(~=~) : (x : a) -> (y : b) -> Type
(~=~) = Equal
2019-06-24 19:35:00 +03:00
public export
data Unit = MkUnit
public export
data Pair : Type -> Type -> Type where
MkPair : {0 a, b : Type} -> (1 x : a) -> (1 y : b) -> Pair a b
public export
fst : {0 a, b : Type} -> (a, b) -> a
fst (x, y) = x
public export
snd : {0 a, b : Type} -> (a, b) -> b
snd (x, y) = y
%pair Pair fst snd
namespace DPair
public export
data DPair : (a : Type) -> (a -> Type) -> Type where
MkDPair : (x : a) -> prop x -> DPair a prop
fst : DPair a p -> a
fst (MkDPair x y) = x
snd : (x : DPair a p) -> p (fst x)
snd (MkDPair x y) = y
public export
data Unrestricted : Type -> Type where
Un : (x : a) -> Unrestricted a
public export
the : (a : Type) -> a -> a
the _ x = x
public export
id : a -> a
id x = x
public export
data Void : Type where
public export
data Dec : Type -> Type where
Yes : a -> Dec a
No : (a -> Void) -> Dec a