Turn lets to lambdas in hole environments

This works better when lifting lemmas, and ensures that the type of
everything will be shown and not normalised away
This commit is contained in:
Edwin Brady 2019-06-16 23:10:32 +01:00
parent 620ad8e706
commit f5a5d01274
7 changed files with 101 additions and 46 deletions

View File

@ -406,6 +406,9 @@ record Defs where
-- be interpreted however the specific code generator requires
toCompile : List Name
-- ^ Names which need to be compiled to run time case trees
userHoles : NameMap ()
-- ^ Metavariables the user still has to fill in. In practice, that's
-- everything with a user accessible name and a definition of Hole
export
clearDefs : Defs -> Core Defs
@ -418,7 +421,7 @@ initDefs : Core Defs
initDefs
= do gam <- initCtxt
pure (MkDefs gam [] ["Main"] defaults empty 100
empty empty empty [] [] 5381 [] [] [] [] [])
empty empty empty [] [] 5381 [] [] [] [] [] empty)
-- Label for context references
export
@ -446,12 +449,30 @@ initHash
= do defs <- get Ctxt
put Ctxt (record { ifaceHash = 5381 } defs)
export
addUserHole : {auto c : Ref Ctxt Defs} ->
Name -> Core ()
addUserHole n
= do defs <- get Ctxt
put Ctxt (record { userHoles $= insert n () } defs)
export
clearUserHole : {auto c : Ref Ctxt Defs} ->
Name -> Core ()
clearUserHole n
= do defs <- get Ctxt
put Ctxt (record { userHoles $= delete n } defs)
export
addDef : {auto c : Ref Ctxt Defs} ->
Name -> GlobalDef -> Core Int
addDef n def
= do defs <- get Ctxt
(idx, gam') <- addCtxt n def (gamma defs)
case definition def of
PMDef _ _ _ _ => clearUserHole n
_ => pure ()
put Ctxt (record { gamma = gam' } defs)
pure idx
@ -512,18 +533,18 @@ setLinearCheck i chk
export
setCtxt : {auto c : Ref Ctxt Defs} -> Context GlobalDef -> Core ()
setCtxt gam
= do defs <- get Ctxt
put Ctxt (record { gamma = gam } defs)
= do defs <- get Ctxt
put Ctxt (record { gamma = gam } defs)
export
resolveName : {auto c : Ref Ctxt Defs} ->
Name -> Core Int
Name -> Core Int
resolveName (Resolved idx) = pure idx
resolveName n
= do defs <- get Ctxt
(i, gam') <- getPosition n (gamma defs)
setCtxt gam'
pure i
= do defs <- get Ctxt
(i, gam') <- getPosition n (gamma defs)
setCtxt gam'
pure i
-- Call this before trying alternative elaborations, so that updates to the
-- context are put in the staging area rather than writing over the mutable
@ -531,54 +552,54 @@ resolveName n
-- Returns the old context (the one we'll go back to if the branch fails)
export
branch : {auto c : Ref Ctxt Defs} ->
Core Defs
Core Defs
branch
= do ctxt <- get Ctxt
gam' <- branchCtxt (gamma ctxt)
setCtxt gam'
pure ctxt
= do ctxt <- get Ctxt
gam' <- branchCtxt (gamma ctxt)
setCtxt gam'
pure ctxt
-- Call this after trying an elaboration to commit any changes to the mutable
-- array of definitions once we know they're correct. Only actually commits
-- when we're right back at the top level
export
commit : {auto c : Ref Ctxt Defs} ->
Core ()
Core ()
commit
= do defs <- get Ctxt
gam' <- commitCtxt (gamma defs)
setCtxt gam'
= do defs <- get Ctxt
gam' <- commitCtxt (gamma defs)
setCtxt gam'
export
depth : {auto c : Ref Ctxt Defs} ->
Core Nat
Core Nat
depth
= do defs <- get Ctxt
pure (branchDepth (gamma defs))
= do defs <- get Ctxt
pure (branchDepth (gamma defs))
-- Explicitly note that the name should be saved when writing out a .ttc
export
addToSave : {auto c : Ref Ctxt Defs} ->
Name -> Core ()
Name -> Core ()
addToSave n
= do defs <- get Ctxt
put Ctxt (record { toSave $= insert n () } defs)
= do defs <- get Ctxt
put Ctxt (record { toSave $= insert n () } defs)
-- Specific lookup functions
export
lookupExactBy : (GlobalDef -> a) -> Name -> Context GlobalDef ->
Core (Maybe a)
Core (Maybe a)
lookupExactBy fn n gam
= do Just gdef <- lookupCtxtExact n gam
| Nothing => pure Nothing
pure (Just (fn gdef))
= do Just gdef <- lookupCtxtExact n gam
| Nothing => pure Nothing
pure (Just (fn gdef))
export
lookupNameBy : (GlobalDef -> a) -> Name -> Context GlobalDef ->
Core (List (Name, Int, a))
Core (List (Name, Int, a))
lookupNameBy fn n gam
= do gdef <- lookupCtxtName n gam
pure (map (\ (n, i, gd) => (n, i, fn gd)) gdef)
= do gdef <- lookupCtxtName n gam
pure (map (\ (n, i, gd) => (n, i, fn gd)) gdef)
export
lookupDefExact : Name -> Context GlobalDef -> Core (Maybe Def)
@ -618,7 +639,7 @@ reducibleIn nspace n _ = True
export
setFlag : {auto c : Ref Ctxt Defs} ->
FC -> Name -> DefFlag -> Core ()
FC -> Name -> DefFlag -> Core ()
setFlag fc n fl
= do defs <- get Ctxt
Just def <- lookupCtxtExact n (gamma defs)

View File

@ -59,7 +59,7 @@ mutual
-- The assumption here is that hole types are abstracted over the entire
-- environment, so that they have the appropriate number of function
-- arguments and lets are still in the right place
-- arguments and there are no lets
updateHoleType : {auto c : Ref Ctxt Defs} ->
{auto u : Ref UST UState} ->
(useInHole : Bool) ->
@ -75,9 +75,6 @@ mutual
pure (Bind bfc nm (Pi c' e ty) scty)
else do scty <- updateHoleType useInHole var sc as
pure (Bind bfc nm (Pi c e ty) scty)
updateHoleType useInHole var (Bind bfc nm (Let c val ty) sc) as
= do scty <- updateHoleType useInHole var sc as
pure (Bind bfc nm (Let c val ty) scty)
updateHoleType useInHole var (Bind bfc nm (Pi c e ty) sc) (a :: as)
= do updateHoleUsage False var a
scty <- updateHoleType useInHole var sc as

View File

@ -41,6 +41,34 @@ getRigNeeded InType = Rig0 -- unrestricted usage in types
getRigNeeded (InLHS Rig0) = Rig0
getRigNeeded _ = Rig1
-- Make sure the types of holes have the references to solved holes normalised
-- away (since solved holes don't get written to .tti)
export
normaliseHoleTypes : {auto c : Ref Ctxt Defs} ->
{auto u : Ref UST UState} ->
Core ()
normaliseHoleTypes
= do ust <- get UST
let hs = keys (holes ust)
defs <- get Ctxt
traverse (normaliseH defs) hs
pure ()
where
updateType : Defs -> Int -> GlobalDef -> Core ()
updateType defs i def
= do ty' <- normaliseHoles defs [] (type def)
addDef (Resolved i) (record { type = ty' } def)
pure ()
normaliseH : Defs -> Int -> Core ()
normaliseH defs i
= case !(lookupCtxtExact (Resolved i) (gamma defs)) of
Just gdef =>
case definition gdef of
Hole _ _ => updateType defs i gdef
_ => pure ()
Nothing => pure ()
export
elabTermSub : {vars : _} ->
{auto c : Ref Ctxt Defs} ->
@ -108,7 +136,7 @@ elabTermSub {vars} defining mode opts nest env env' sub tm ty
-- Linearity checking looks in case blocks, so no
-- need to check here.
else pure chktm
normaliseHoleTypes
-- Put the current hole state back to what it was (minus anything
-- which has been solved in the meantime)
when (not incase) $

View File

@ -27,13 +27,22 @@ checkHole : {vars : _} ->
checkHole rig elabinfo nest env fc n_in (Just gexpty)
= do nm <- inCurrentNS (UN n_in)
expty <- getTerm gexpty
(idx, metaval) <- metaVarI fc rig env nm expty
-- Turn lets into lambda before making the hole so that they
-- get abstracted over in the hole (it's fine here, unlike other
-- holes, because we're not trying to unify it so it's okay if
-- applying the metavariable isn't a pattern form)
let env' = letToLam env
(idx, metaval) <- metaVarI fc rig env' nm expty
-- Record the LHS for this hole in the metadata
withCurrentLHS (Resolved idx)
addUserHole nm
pure (metaval, gexpty)
checkHole rig elabinfo nest env fc n_in exp
= do nmty <- genName "holeTy"
ty <- metaVar fc Rig0 env nmty (TType fc)
let env' = letToLam env
ty <- metaVar fc Rig0 env' nmty (TType fc)
nm <- inCurrentNS (UN n_in)
(idx, metaval) <- metaVarI fc rig env nm ty
(idx, metaval) <- metaVarI fc rig env' nm ty
withCurrentLHS (Resolved idx)
addUserHole nm
pure (metaval, gnf env ty)

View File

@ -1,8 +1,8 @@
Processing as TTImp
Written TTC
Yaffle> Main.foo : (%pi Rig0 Explicit Just m Main.Nat (%pi Rig0 Explicit Just a %type (%pi Rig0 Explicit Just {k:20} Main.Nat (%pi RigW Explicit Nothing ((Main.Vect m) a) (%pi RigW Explicit Nothing ((Main.Vect {k:20}) a) (%pi RigW Explicit Nothing a (%let Rig0 n Main.Nat (Main.S {k:20}) ((Main.Vect ((Main.plus {k:20}) m)) a))))))))
Yaffle> Main.foo : (%pi Rig0 Explicit Just m Main.Nat (%pi Rig0 Explicit Just a %type (%pi Rig0 Explicit Just {k:20} Main.Nat (%pi RigW Explicit Nothing ((Main.Vect m) a) (%pi RigW Explicit Nothing ((Main.Vect {k:20}) a) (%pi RigW Explicit Nothing a (%pi Rig0 Explicit Just n Main.Nat ((Main.Vect ((Main.plus {k:20}) m)) a))))))))
Yaffle> Bye for now!
Processing as TTC
Read TTC
Yaffle> Main.foo : (%pi Rig0 Explicit Just m Main.Nat (%pi Rig0 Explicit Just a %type (%pi Rig0 Explicit Just {k:20} Main.Nat (%pi RigW Explicit Nothing ((Main.Vect m) a) (%pi RigW Explicit Nothing ((Main.Vect {k:20}) a) (%pi RigW Explicit Nothing a (%let Rig0 n ? (Main.S {k:20}) ((Main.Vect ((Main.plus {k:20}) m)) a))))))))
Yaffle> Main.foo : (%pi Rig0 Explicit Just m Main.Nat (%pi Rig0 Explicit Just a %type (%pi Rig0 Explicit Just {k:20} Main.Nat (%pi RigW Explicit Nothing ((Main.Vect m) a) (%pi RigW Explicit Nothing ((Main.Vect {k:20}) a) (%pi RigW Explicit Nothing a (%pi Rig0 Explicit Just n Main.Nat ((Main.Vect ((Main.plus {k:20}) m)) a))))))))
Yaffle> Bye for now!

View File

@ -1,6 +1,6 @@
Processing as TTImp
Written TTC
Yaffle> Main.foo : (%pi Rig0 Explicit Just m Main.Nat (%pi Rig0 Explicit Just a %type (%pi Rig0 Explicit Just {k:14} Main.Nat (%pi RigW Explicit Nothing ((Main.Vect m) a) (%pi Rig0 Explicit Just ws ((Main.Vect {k:14}) a) (%pi Rig0 Explicit Just y a (%let Rig1 zs ((Main.Vect (Main.S {k:14})) a) ((((Main.Cons [Just k = {k:14}]) [Just a = a]) y) ws) (%pi RigW Explicit Nothing a (%let Rig0 n Main.Nat (Main.S (Main.S {k:14})) ((Main.Vect ((Main.plus (Main.S (Main.S {k:14}))) m)) a))))))))))
Yaffle> Main.bar : (%pi Rig0 Explicit Just m Main.Nat (%pi Rig0 Explicit Just a %type (%pi Rig0 Explicit Just n Main.Nat (%pi RigW Explicit Nothing ((Main.Vect m) a) (%pi Rig0 Explicit Just xs ((Main.Vect n) a) (%pi Rig0 Explicit Just m Main.Nat (%pi Rig0 Explicit Just a %type (%pi RigW Explicit Nothing ((Main.Vect m) a) (%pi Rig0 Explicit Just {k:41} Main.Nat (%pi Rig1 Explicit Just zs ((Main.Vect {k:41}) a) (%pi RigW Explicit Just x a (%let Rig0 xs ((Main.Vect (Main.S {k:41})) a) ((((Main.Cons [Just k = {k:41}]) [Just a = a]) x) zs) (%let Rig0 n Main.Nat (Main.S {k:41}) ((Main.Vect ((Main.plus (Main.S {k:41})) m)) a))))))))))))))
Yaffle> Main.baz : (%pi Rig0 Explicit Just m Main.Nat (%pi Rig0 Explicit Just a %type (%pi Rig0 Explicit Just n Main.Nat (%pi RigW Explicit Nothing ((Main.Vect m) a) (%pi Rig0 Explicit Just xs ((Main.Vect n) a) (%pi Rig0 Explicit Just m Main.Nat (%pi Rig0 Explicit Just a %type (%pi RigW Explicit Nothing ((Main.Vect m) a) (%pi Rig0 Explicit Just {k:69} Main.Nat (%pi Rig0 Explicit Just zs ((Main.Vect {k:69}) a) (%pi RigW Explicit Just x a (%let Rig0 xs ((Main.Vect (Main.S {k:69})) a) ((((Main.Cons [Just k = {k:69}]) [Just a = a]) x) zs) (%let Rig0 n Main.Nat (Main.S {k:69}) (%let Rig1 ts ((Main.Vect {k:69}) a) zs ((Main.Vect ((Main.plus (Main.S {k:69})) m)) a)))))))))))))))
Yaffle> Main.foo : (%pi Rig0 Explicit Just m Main.Nat (%pi Rig0 Explicit Just a %type (%pi Rig0 Explicit Just {k:14} Main.Nat (%pi RigW Explicit Nothing ((Main.Vect m) a) (%pi Rig1 Explicit Just ws ((Main.Vect {k:14}) a) (%pi RigW Explicit Nothing a (%pi Rig1 Explicit Just zs ((Main.Vect (Main.S {k:14})) a) (%pi RigW Explicit Nothing a (%pi Rig0 Explicit Just n Main.Nat ((Main.Vect ((Main.plus (Main.S (Main.S {k:14}))) m)) a))))))))))
Yaffle> Main.bar : (%pi Rig0 Explicit Just m Main.Nat (%pi Rig0 Explicit Just a %type (%pi Rig0 Explicit Just n Main.Nat (%pi RigW Explicit Nothing ((Main.Vect m) a) (%pi Rig0 Explicit Just xs ((Main.Vect n) a) (%pi Rig0 Explicit Just m Main.Nat (%pi Rig0 Explicit Just a %type (%pi RigW Explicit Nothing ((Main.Vect m) a) (%pi Rig0 Explicit Just {k:41} Main.Nat (%pi Rig1 Explicit Just zs ((Main.Vect {k:41}) a) (%pi RigW Explicit Nothing a (%pi Rig0 Explicit Just xs ((Main.Vect (Main.S {k:41})) a) (%pi Rig0 Explicit Just n Main.Nat ((Main.Vect ((Main.plus (Main.S {k:41})) m)) a))))))))))))))
Yaffle> Main.baz : (%pi Rig0 Explicit Just m Main.Nat (%pi Rig0 Explicit Just a %type (%pi Rig0 Explicit Just n Main.Nat (%pi RigW Explicit Nothing ((Main.Vect m) a) (%pi Rig0 Explicit Just xs ((Main.Vect n) a) (%pi Rig0 Explicit Just m Main.Nat (%pi Rig0 Explicit Just a %type (%pi RigW Explicit Nothing ((Main.Vect m) a) (%pi Rig0 Explicit Just {k:69} Main.Nat (%pi Rig0 Explicit Just zs ((Main.Vect {k:69}) a) (%pi RigW Explicit Nothing a (%pi Rig0 Explicit Just xs ((Main.Vect (Main.S {k:69})) a) (%pi Rig0 Explicit Just n Main.Nat (%pi Rig1 Explicit Just ts ((Main.Vect {k:69}) a) ((Main.Vect ((Main.plus (Main.S {k:69})) m)) a)))))))))))))))
Yaffle> Bye for now!

View File

@ -1,7 +1,7 @@
Processing as TTImp
Written TTC
Yaffle> \0 m : Main.Nat => \0 a : Type => \ys : (Main.Vect m[1] a[0]) => ys[0]
Yaffle> \0 m : Main.Nat => \0 a : Type => \0 {k:22} : Main.Nat => \ys : (Main.Vect m[2] a[1]) => \xs : (Main.Vect {k:22}[1] a[2]) => \x : a[3] => (Main.Cons (Main.plus {k:22}[3] m[5]) a[4] x[0] (Main.append m[5] a[4] {k:22}[3] xs[1] ys[2]))
Yaffle> \0 m : Main.Nat => \0 a : Type => \ys : (Main.Vect m[1] a[0]) => \0 n : Main.Nat => ys[1]
Yaffle> \0 m : Main.Nat => \0 a : Type => \0 {k:22} : Main.Nat => \ys : (Main.Vect m[2] a[1]) => \xs : (Main.Vect {k:22}[1] a[2]) => \x : a[3] => \0 n : Main.Nat => (Main.Cons (Main.plus {k:22}[4] m[6]) a[5] x[1] (Main.append m[6] a[5] {k:22}[4] xs[2] ys[3]))
Yaffle> [((Main.app2 (Main.Nil [Just a = _])) $y) = y, ((Main.app2 ((((Main.Cons [Just k = _]) [Just a = _]) $x) $z)) $y) = ((((Main.Cons [Just k = ((Main.plus {_:191}) m)]) [Just a = a]) x) (((((Main.app2 [Just m = m]) [Just a = a]) [Just n = {_:191}]) z) y))]
Yaffle> [((Main.zip (Main.Nil [Just a = _])) $y) = (Main.Nil [Just a = ((Main.Pair a) b)]), ((Main.zip ((((Main.Cons [Just k = _]) [Just a = _]) $x) $z)) ((((Main.Cons [Just k = _]) [Just a = _]) $y) $w)) = ((((Main.Cons [Just k = {_:298}]) [Just a = ((Main.Pair a) b)]) ((((Main.MkPair [Just b = b]) [Just a = a]) x) y)) (((((Main.zip [Just b = b]) [Just a = a]) [Just n = {_:298}]) z) w))]
Yaffle> [(((Main.zipWith $f) (Main.Nil [Just a = _])) $y) = (Main.Nil [Just a = c]), (((Main.zipWith $f) ((((Main.Cons [Just k = _]) [Just a = _]) $x) $z)) ((((Main.Cons [Just k = _]) [Just a = _]) $y) $w)) = ((((Main.Cons [Just k = {_:448}]) [Just a = c]) ((f x) y)) (((((((Main.zipWith [Just n = {_:448}]) [Just c = c]) [Just b = b]) [Just a = a]) f) z) w))]