module Prelude import public Builtin import public PrimIO {- The Prelude is minimal (since it is effectively part of the language specification, this seems to be desirable - we should, nevertheless, aim to provide a good selection of base libraries). A rule of thumb is that it should contain the basic functions required by almost any non-trivial program. As such, it should contain: - Anything the elaborator can desugar to (e.g. pairs, unit, =, laziness) - Basic types Bool, Nat, List, Dec, Maybe, Either - The most important utility functions: id, the, composition, etc - Interfaces for arithmetic and implementations for the primitives and basic types - Char and String manipulation - Show, Eq, Ord, and implementations for all types in the prelude - Interfaces and functions for basic proof (cong, Uninhabited, etc) -- - Semigroup, Monoid - Functor, Applicative, Monad and related functions - Foldable - Enum for range syntax - Console IO Everything else should be in the base libraries, and imported as required. In particular, proofs of Nat/List properties that almost never get used in practice would probably be better in base libraries. (These guidelines will probably get revised a few times.) -} -- Numerical operators infix 6 ==, /=, <, <=, >, >= infixl 7 <<, >> -- unused infixl 8 +, - infixl 9 *, / -- Boolean operators infixr 4 && infixr 5 || -- List and String operators infixr 7 ::, ++ -- Functor/Applicative/Monad/Algebra operators infixl 1 >>= infixr 2 <|> infixl 3 <*>, *>, <* infixr 4 <$> infixl 6 <+> -- Utility operators infixr 9 . infixr 0 $ infixl 9 `div`, `mod` ----------------------- -- UTILITY FUNCTIONS -- ----------------------- ||| Manually assign a type to an expression. ||| @ a the type to assign ||| @ x the element to get the type public export %inline the : (0 a : Type) -> (1 x : a) -> a the _ x = x ||| Identity function. public export %inline id : (1 x : a) -> a -- Hopefully linearity annotation won't -- break equality proofs involving id id x = x ||| Constant function. Ignores its second argument. public export %inline const : a -> b -> a const x = \value => x ||| Function composition. public export %inline (.) : (b -> c) -> (a -> b) -> a -> c (.) f g = \x => f (g x) ||| Takes in the first two arguments in reverse order. ||| @ f the function to flip public export flip : (f : a -> b -> c) -> b -> a -> c flip f x y = f y x ||| Function application. public export apply : (a -> b) -> a -> b apply f a = f a public export curry : ((a, b) -> c) -> a -> b -> c curry f a b = f (a, b) public export uncurry : (a -> b -> c) -> (a, b) -> c uncurry f (a, b) = f a b -- $ is compiled specially to shortcut any tricky unification issues, but if -- it did have a type this is what it would be, and it might be useful to -- use directly sometimes (e.g. in higher order functions) public export ($) : forall a, b . ((x : a) -> b x) -> (x : a) -> b x ($) f a = f a ------------------- -- PROOF HELPERS -- ------------------- ||| Equality is a congruence. public export cong : (f : t -> u) -> (1 p : a = b) -> f a = f b cong f Refl = Refl ||| A canonical proof that some type is empty. public export interface Uninhabited t where ||| If I have a t, I've had a contradiction. ||| @ t the uninhabited type uninhabited : t -> Void ||| The eliminator for the `Void` type. %extern public export void : (0 x : Void) -> a export Uninhabited Void where uninhabited = id ||| Use an absurd assumption to discharge a proof obligation. ||| @ t some empty type ||| @ a the goal type ||| @ h the contradictory hypothesis public export absurd : Uninhabited t => (h : t) -> a absurd h = void (uninhabited h) public export Not : Type -> Type Not x = x -> Void -------------- -- BOOLEANS -- -------------- ||| Boolean Data Type. public export data Bool = True | False ||| Boolean NOT. public export not : (1 b : Bool) -> Bool not True = False not False = True ||| Boolean AND only evaluates the second argument if the first is `True`. public export (&&) : (1 b : Bool) -> Lazy Bool -> Bool (&&) True x = x (&&) False x = False ||| Boolean OR only evaluates the second argument if the first is `False`. public export (||) : (1 b : Bool) -> Lazy Bool -> Bool (||) True x = True (||) False x = x %inline public export intToBool : Int -> Bool intToBool 0 = False intToBool x = True ------------------------ -- EQUALITY, ORDERING -- ------------------------ ||| The Eq interface defines inequality and equality. public export interface Eq ty where (==) : ty -> ty -> Bool (/=) : ty -> ty -> Bool x == y = not (x /= y) x /= y = not (x == y) public export Eq () where _ == _ = True public export Eq Bool where True == True = True False == False = True _ == _ = False public export Eq Int where x == y = intToBool (prim__eq_Int x y) public export Eq Integer where x == y = intToBool (prim__eq_Integer x y) public export Eq Double where x == y = intToBool (prim__eq_Double x y) public export Eq Char where x == y = intToBool (prim__eq_Char x y) public export Eq String where x == y = intToBool (prim__eq_String x y) public export Eq a => Eq b => Eq (a, b) where (x1, y1) == (x2, y2) = x1 == x2 && y1 == y2 public export data Ordering = LT | EQ | GT public export Eq Ordering where LT == LT = True EQ == EQ = True GT == GT = True _ == _ = False ||| The Ord interface defines comparison operations on ordered data types. public export interface Eq ty => Ord ty where compare : ty -> ty -> Ordering (<) : ty -> ty -> Bool (<) x y = compare x y == LT (>) : ty -> ty -> Bool (>) x y = compare x y == GT (<=) : ty -> ty -> Bool (<=) x y = compare x y /= GT (>=) : ty -> ty -> Bool (>=) x y = compare x y /= LT max : ty -> ty -> ty max x y = if x > y then x else y min : ty -> ty -> ty min x y = if (x < y) then x else y public export Ord () where compare _ _ = EQ public export Ord Bool where compare False False = EQ compare False True = LT compare True False = GT compare True True = EQ public export Ord Int where compare x y = if x < y then LT else if x == y then EQ else GT (<) x y = intToBool (prim__lt_Int x y) (<=) x y = intToBool (prim__lte_Int x y) (>) x y = intToBool (prim__gt_Int x y) (>=) x y = intToBool (prim__gte_Int x y) public export Ord Integer where compare x y = if x < y then LT else if x == y then EQ else GT (<) x y = intToBool (prim__lt_Integer x y) (<=) x y = intToBool (prim__lte_Integer x y) (>) x y = intToBool (prim__gt_Integer x y) (>=) x y = intToBool (prim__gte_Integer x y) public export Ord Double where compare x y = if x < y then LT else if x == y then EQ else GT (<) x y = intToBool (prim__lt_Double x y) (<=) x y = intToBool (prim__lte_Double x y) (>) x y = intToBool (prim__gt_Double x y) (>=) x y = intToBool (prim__gte_Double x y) public export Ord String where compare x y = if x < y then LT else if x == y then EQ else GT (<) x y = intToBool (prim__lt_String x y) (<=) x y = intToBool (prim__lte_String x y) (>) x y = intToBool (prim__gt_String x y) (>=) x y = intToBool (prim__gte_String x y) public export Ord Char where compare x y = if x < y then LT else if x == y then EQ else GT (<) x y = intToBool (prim__lt_Char x y) (<=) x y = intToBool (prim__lte_Char x y) (>) x y = intToBool (prim__gt_Char x y) (>=) x y = intToBool (prim__gte_Char x y) public export Ord a => Ord b => Ord (a, b) where compare (x1, y1) (x2, y2) = if x1 /= x2 then compare x1 x2 else compare y1 y2 ------------------------ -- NUMERIC INTERFACES -- ------------------------ %integerLit fromInteger ||| The Num interface defines basic numerical arithmetic. public export interface Num ty where (+) : ty -> ty -> ty (*) : ty -> ty -> ty ||| Conversion from Integer. fromInteger : Integer -> ty %allow_overloads fromInteger ||| The `Neg` interface defines operations on numbers which can be negative. public export interface Num ty => Neg ty where ||| The underlying of unary minus. `-5` desugars to `negate (fromInteger 5)`. negate : ty -> ty (-) : ty -> ty -> ty ||| Numbers for which the absolute value is defined should implement `Abs`. public export interface Num ty => Abs ty where ||| Absolute value. abs : ty -> ty public export interface Num ty => Fractional ty where (/) : ty -> ty -> ty recip : ty -> ty recip x = 1 / x public export interface Num ty => Integral ty where div : ty -> ty -> ty mod : ty -> ty -> ty ----- Instances for primitives -- Integer public export Num Integer where (+) = prim__add_Integer (*) = prim__mul_Integer fromInteger = id public export Neg Integer where negate x = prim__sub_Integer 0 x (-) = prim__sub_Integer public export Abs Integer where abs x = if x < 0 then -x else x public export Integral Integer where div x y = case y == 0 of False => prim__div_Integer x y mod x y = case y == 0 of False => prim__mod_Integer x y -- This allows us to pick integer as a default at the end of elaboration if -- all other possibilities fail. I don't plan to provide a nicer syntax for -- this... %defaulthint %inline public export defaultInteger : Num Integer defaultInteger = %search -- Int public export Num Int where (+) = prim__add_Int (*) = prim__mul_Int fromInteger = prim__cast_IntegerInt public export Neg Int where negate x = prim__sub_Int 0 x (-) = prim__sub_Int public export Abs Int where abs x = if x < 0 then -x else x public export Integral Int where div x y = case y == 0 of False => prim__div_Int x y mod x y = case y == 0 of False => prim__mod_Int x y -- Double public export Num Double where (+) = prim__add_Double (*) = prim__mul_Double fromInteger = prim__cast_IntegerDouble public export Neg Double where negate x = prim__negate_Double x (-) = prim__sub_Double public export Abs Double where abs x = if x < 0 then -x else x public export Fractional Double where (/) = prim__div_Double ------------- -- ALGEBRA -- ------------- ||| Sets equipped with a single binary operation that is associative. Must ||| satisfy the following laws: ||| ||| + Associativity of `<+>`: ||| forall a b c, a <+> (b <+> c) == (a <+> b) <+> c public export interface Semigroup ty where (<+>) : ty -> ty -> ty ||| Sets equipped with a single binary operation that is associative, along with ||| a neutral element for that binary operation. Must satisfy the following ||| laws: ||| ||| + Associativity of `<+>`: ||| forall a b c, a <+> (b <+> c) == (a <+> b) <+> c ||| + Neutral for `<+>`: ||| forall a, a <+> neutral == a ||| forall a, neutral <+> a == a public export interface Semigroup ty => Monoid ty where neutral : ty export shiftL : Int -> Int -> Int shiftL = prim__shl_Int export shiftR : Int -> Int -> Int shiftR = prim__shr_Int --------------------------------- -- FUNCTOR, APPLICATIVE, ALTERNATIVE, MONAD -- --------------------------------- ||| Functors allow a uniform action over a parameterised type. ||| @ f a parameterised type public export interface Functor f where ||| Apply a function across everything of type 'a' in a parameterised type ||| @ f the parameterised type ||| @ func the function to apply map : (func : a -> b) -> f a -> f b ||| An infix alias for `map`, applying a function across everything of type 'a' ||| in a parameterised type. ||| @ f the parameterised type ||| @ func the function to apply public export (<$>) : Functor f => (func : a -> b) -> f a -> f b (<$>) func x = map func x ||| Run something for effects, throwing away the return value. public export ignore : Functor f => f a -> f () ignore = map (const ()) public export interface Functor f => Applicative f where pure : a -> f a (<*>) : f (a -> b) -> f a -> f b public export (<*) : Applicative f => f a -> f b -> f a a <* b = map const a <*> b public export (*>) : Applicative f => f a -> f b -> f b a *> b = map (const id) a <*> b %allow_overloads pure %allow_overloads (<*) %allow_overloads (*>) public export interface Applicative f => Alternative f where empty : f a (<|>) : f a -> f a -> f a public export interface Applicative m => Monad m where ||| Also called `bind`. (>>=) : m a -> (a -> m b) -> m b ||| Also called `flatten` or mu. join : m (m a) -> m a -- default implementations (>>=) x f = join (f <$> x) join x = x >>= id %allow_overloads (>>=) ||| `guard a` is `pure ()` if `a` is `True` and `empty` if `a` is `False`. public export guard : Alternative f => Bool -> f () guard x = if x then pure () else empty ||| Conditionally execute an applicative expression. public export when : Applicative f => Bool -> Lazy (f ()) -> f () when True f = f when False f = pure () --------------------------- -- FOLDABLE, TRAVERSABLE -- --------------------------- ||| The `Foldable` interface describes how you can iterate over the elements in ||| a parameterised type and combine the elements together, using a provided ||| function, into a single result. ||| @ t The type of the 'Foldable' parameterised type. public export interface Foldable (t : Type -> Type) where ||| Successively combine the elements in a parameterised type using the ||| provided function, starting with the element that is in the final position ||| i.e. the right-most position. ||| @ func The function used to 'fold' an element into the accumulated result ||| @ init The starting value the results are being combined into ||| @ input The parameterised type foldr : (func : elem -> acc -> acc) -> (init : acc) -> (input : t elem) -> acc ||| The same as `foldr` but begins the folding from the element at the initial ||| position in the data structure i.e. the left-most position. ||| @ func The function used to 'fold' an element into the accumulated result ||| @ init The starting value the results are being combined into ||| @ input The parameterised type foldl : (func : acc -> elem -> acc) -> (init : acc) -> (input : t elem) -> acc foldl f z t = foldr (flip (.) . flip f) id t z ||| Combine each element of a structure into a monoid. public export concat : (Foldable t, Monoid a) => t a -> a concat = foldr (<+>) neutral ||| Combine into a monoid the collective results of applying a function to each ||| element of a structure. public export concatMap : (Foldable t, Monoid m) => (a -> m) -> t a -> m concatMap f = foldr ((<+>) . f) neutral ||| The conjunction of all elements of a structure containing lazy boolean ||| values. `and` short-circuits from left to right, evaluating until either an ||| element is `False` or no elements remain. public export and : Foldable t => t (Lazy Bool) -> Bool and = foldl (&&) True ||| The disjunction of all elements of a structure containing lazy boolean ||| values. `or` short-circuits from left to right, evaluating either until an ||| element is `True` or no elements remain. public export or : Foldable t => t (Lazy Bool) -> Bool or = foldl (||) False ||| The disjunction of the collective results of applying a predicate to all ||| elements of a structure. `any` short-circuits from left to right. public export any : Foldable t => (a -> Bool) -> t a -> Bool any p = foldl (\x,y => x || p y) False ||| The disjunction of the collective results of applying a predicate to all ||| elements of a structure. `all` short-circuits from left to right. public export all : Foldable t => (a -> Bool) -> t a -> Bool all p = foldl (\x,y => x && p y) True ||| Add together all the elements of a structure. public export sum : (Foldable t, Num a) => t a -> a sum = foldr (+) 0 ||| Multiply together all elements of a structure. public export product : (Foldable t, Num a) => t a -> a product = foldr (*) 1 ||| Map each element of a structure to a computation, evaluate those ||| computations and discard the results. public export traverse_ : (Foldable t, Applicative f) => (a -> f b) -> t a -> f () traverse_ f = foldr ((*>) . f) (pure ()) ||| Evaluate each computation in a structure and discard the results. public export sequence_ : (Foldable t, Applicative f) => t (f a) -> f () sequence_ = foldr (*>) (pure ()) ||| Like `traverse_` but with the arguments flipped. public export for_ : (Foldable t, Applicative f) => t a -> (a -> f b) -> f () for_ = flip traverse_ ||| Fold using Alternative. ||| ||| If you have a left-biased alternative operator `<|>`, then `choice` performs ||| left-biased choice from a list of alternatives, which means that it ||| evaluates to the left-most non-`empty` alternative. ||| ||| If the list is empty, or all values in it are `empty`, then it evaluates to ||| `empty`. ||| ||| Example: ||| ||| ``` ||| -- given a parser expression like: ||| expr = literal <|> keyword <|> funcall ||| ||| -- choice lets you write this as: ||| expr = choice [literal, keyword, funcall] ||| ``` ||| ||| Note: In Haskell, `choice` is called `asum`. public export choice : (Foldable t, Alternative f) => t (f a) -> f a choice = foldr (<|>) empty ||| A fused version of `choice` and `map`. public export choiceMap : (Foldable t, Alternative f) => (a -> f b) -> t a -> f b choiceMap f = foldr (\e, a => f e <|> a) empty public export interface (Functor t, Foldable t) => Traversable (t : Type -> Type) where ||| Map each element of a structure to a computation, evaluate those ||| computations and combine the results. traverse : Applicative f => (a -> f b) -> t a -> f (t b) ||| Evaluate each computation in a structure and collect the results. public export sequence : (Traversable t, Applicative f) => t (f a) -> f (t a) sequence = traverse id ||| Like `traverse` but with the arguments flipped. public export for : (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) for = flip traverse ----------- -- NATS --- ----------- ||| Natural numbers: unbounded, unsigned integers which can be pattern matched. public export data Nat = ||| Zero. Z ||| Successor. | S Nat %name Nat k, j, i public export integerToNat : Integer -> Nat integerToNat x = if intToBool (prim__lte_Integer x 0) then Z else S (assert_total (integerToNat (prim__sub_Integer x 1))) -- Define separately so we can spot the name when optimising Nats ||| Add two natural numbers. ||| @ x the number to case-split on ||| @ y the other numberpublic export public export plus : (1 x : Nat) -> (1 y : Nat) -> Nat plus Z y = y plus (S k) y = S (plus k y) ||| Subtract natural numbers. If the second number is larger than the first, ||| return 0. public export minus : (1 left : Nat) -> Nat -> Nat minus Z right = Z minus left Z = left minus (S left) (S right) = minus left right ||| Multiply natural numbers. public export mult : (1 x : Nat) -> Nat -> Nat mult Z y = Z mult (S k) y = plus y (mult k y) public export Num Nat where (+) = plus (*) = mult fromInteger x = integerToNat x public export Eq Nat where Z == Z = True S j == S k = j == k _ == _ = False public export Ord Nat where compare Z Z = EQ compare Z (S k) = LT compare (S k) Z = GT compare (S j) (S k) = compare j k public export natToInteger : Nat -> Integer natToInteger Z = 0 natToInteger (S k) = 1 + natToInteger k -- integer (+) may be non-linear in second -- argument ----------- -- PAIRS -- ----------- public export Functor (Pair a) where map f (x, y) = (x, f y) public export mapFst : (a -> c) -> (a, b) -> (c, b) mapFst f (x, y) = (f x, y) ----------- -- MAYBE -- ----------- ||| An optional value. This can be used to represent the possibility of ||| failure, where a function may return a value, or not. public export data Maybe : (ty : Type) -> Type where ||| No value stored Nothing : Maybe ty ||| A value of type `ty` is stored Just : (1 x : ty) -> Maybe ty public export maybe : Lazy b -> Lazy (a -> b) -> Maybe a -> b maybe n j Nothing = n maybe n j (Just x) = j x public export Eq a => Eq (Maybe a) where Nothing == Nothing = True Nothing == (Just _) = False (Just _) == Nothing = False (Just a) == (Just b) = a == b public export Ord a => Ord (Maybe a) where compare Nothing Nothing = EQ compare Nothing (Just _) = LT compare (Just _) Nothing = GT compare (Just a) (Just b) = compare a b public export Semigroup (Maybe a) where Nothing <+> m = m (Just x) <+> _ = Just x public export Monoid (Maybe a) where neutral = Nothing public export Functor Maybe where map f (Just x) = Just (f x) map f Nothing = Nothing public export Applicative Maybe where pure = Just Just f <*> Just a = Just (f a) _ <*> _ = Nothing public export Alternative Maybe where empty = Nothing (Just x) <|> _ = Just x Nothing <|> v = v public export Monad Maybe where Nothing >>= k = Nothing (Just x) >>= k = k x public export Foldable Maybe where foldr _ z Nothing = z foldr f z (Just x) = f x z public export Traversable Maybe where traverse f Nothing = pure Nothing traverse f (Just x) = (pure Just) <*> (f x) --------- -- DEC -- --------- ||| Decidability. A decidable property either holds or is a contradiction. public export data Dec : Type -> Type where ||| The case where the property holds. ||| @ prf the proof Yes : (prf : prop) -> Dec prop ||| The case where the property holding would be a contradiction. ||| @ contra a demonstration that prop would be a contradiction No : (contra : prop -> Void) -> Dec prop ------------ -- EITHER -- ------------ ||| A sum type. public export data Either : (a : Type) -> (b : Type) -> Type where ||| One possibility of the sum, conventionally used to represent errors. Left : forall a, b. (1 x : a) -> Either a b ||| The other possibility, conventionally used to represent success. Right : forall a, b. (1 x : b) -> Either a b ||| Simply-typed eliminator for Either. ||| @ f the action to take on Left ||| @ g the action to take on Right ||| @ e the sum to analyze public export either : (f : Lazy (a -> c)) -> (g : Lazy (b -> c)) -> (e : Either a b) -> c either l r (Left x) = l x either l r (Right x) = r x public export (Eq a, Eq b) => Eq (Either a b) where Left x == Left x' = x == x' Right x == Right x' = x == x' _ == _ = False public export Functor (Either e) where map f (Left x) = Left x map f (Right x) = Right (f x) public export Applicative (Either e) where pure = Right (Left a) <*> _ = Left a (Right f) <*> (Right r) = Right (f r) (Right _) <*> (Left l) = Left l public export Monad (Either e) where (Left n) >>= _ = Left n (Right r) >>= f = f r ----------- -- LISTS -- ----------- ||| Generic lists. public export data List a = ||| Empty list Nil ||| A non-empty list, consisting of a head element and the rest of the list. | (::) a (List a) %name List xs, ys, zs public export Eq a => Eq (List a) where [] == [] = True x :: xs == y :: ys = x == y && xs == ys _ == _ = False public export Ord a => Ord (List a) where compare [] [] = EQ compare [] (x :: xs) = LT compare (x :: xs) [] = GT compare (x :: xs) (y ::ys) = case compare x y of EQ => compare xs ys c => c namespace List public export (++) : (1 xs : List a) -> List a -> List a [] ++ ys = ys (x :: xs) ++ ys = x :: xs ++ ys public export Functor List where map f [] = [] map f (x :: xs) = f x :: map f xs public export Semigroup (List a) where (<+>) = (++) public export Monoid (List a) where neutral = [] public export Foldable List where foldr c n [] = n foldr c n (x::xs) = c x (foldr c n xs) foldl f q [] = q foldl f q (x::xs) = foldl f (f q x) xs public export Applicative List where pure x = [x] fs <*> vs = concatMap (\f => map f vs) fs public export Alternative List where empty = [] (<|>) = (++) public export Monad List where m >>= f = concatMap f m public export Traversable List where traverse f [] = pure [] traverse f (x::xs) = pure (::) <*> (f x) <*> (traverse f xs) ||| Check if something is a member of a list using the default Boolean equality. public export elem : Eq a => a -> List a -> Bool x `elem` [] = False x `elem` (y :: ys) = if x == y then True else x `elem` ys ------------- -- STREAMS -- ------------- namespace Stream ||| An infinite stream. public export data Stream : Type -> Type where (::) : a -> Inf (Stream a) -> Stream a public export Functor Stream where map f (x :: xs) = f x :: map f xs ||| The first element of an infinite stream. public export head : Stream a -> a head (x :: xs) = x ||| All but the first element. public export tail : Stream a -> Stream a tail (x :: xs) = xs ||| Take precisely n elements from the stream. ||| @ n how many elements to take ||| @ xs the stream public export take : (1 n : Nat) -> (xs : Stream a) -> List a take Z xs = [] take (S k) (x :: xs) = x :: take k xs ------------- -- STRINGS -- ------------- namespace Strings public export (++) : (1 x : String) -> (1 y : String) -> String x ++ y = prim__strAppend x y ||| Returns the length of the string. ||| ||| ```idris example ||| length "" ||| ``` ||| ```idris example ||| length "ABC" ||| ``` public export length : String -> Nat length str = fromInteger (prim__cast_IntInteger (prim__strLength str)) ||| Reverses the elements within a string. ||| ||| ```idris example ||| reverse "ABC" ||| ``` ||| ```idris example ||| reverse "" ||| ``` public export reverse : String -> String reverse = prim__strReverse ||| Returns a substring of a given string ||| ||| @ index The (zero based) index of the string to extract. If this is beyond ||| the end of the string, the function returns the empty string. ||| @ len The desired length of the substring. Truncated if this exceeds the ||| length of the input ||| @ subject The string to return a portion of public export substr : (index : Nat) -> (len : Nat) -> (subject : String) -> String substr s e = prim__strSubstr (prim__cast_IntegerInt (natToInteger s)) (prim__cast_IntegerInt (natToInteger e)) ||| Adds a character to the front of the specified string. ||| ||| ```idris example ||| strCons 'A' "B" ||| ``` ||| ```idris example ||| strCons 'A' "" ||| ``` public export strCons : Char -> String -> String strCons = prim__strCons public export strUncons : String -> Maybe (Char, String) strUncons "" = Nothing strUncons str = Just (prim__strHead str, prim__strTail str) ||| Turns a list of characters into a string. public export pack : List Char -> String pack [] = "" pack (x :: xs) = strCons x (pack xs) export fastPack : List Char -> String fastPack xs = unsafePerformIO (schemeCall String "string" (toFArgs xs)) where toFArgs : List Char -> FArgList toFArgs [] = [] toFArgs (x :: xs) = x :: toFArgs xs ||| Turns a string into a list of characters. ||| ||| ```idris example ||| unpack "ABC" ||| ``` public export unpack : String -> List Char unpack str = unpack' 0 (prim__cast_IntegerInt (natToInteger (length str))) str where unpack' : Int -> Int -> String -> List Char unpack' pos len str = if pos >= len then [] else (prim__strIndex str pos) :: unpack' (pos + 1) len str public export Semigroup String where (<+>) = (++) public export Monoid String where neutral = "" ---------------- -- CHARACTERS -- ---------------- ||| Returns true if the character is in the range [A-Z]. public export isUpper : Char -> Bool isUpper x = x >= 'A' && x <= 'Z' ||| Returns true if the character is in the range [a-z]. public export isLower : Char -> Bool isLower x = x >= 'a' && x <= 'z' ||| Returns true if the character is in the ranges [A-Z][a-z]. public export isAlpha : Char -> Bool isAlpha x = isUpper x || isLower x ||| Returns true if the character is in the range [0-9]. public export isDigit : Char -> Bool isDigit x = (x >= '0' && x <= '9') ||| Returns true if the character is in the ranges [A-Z][a-z][0-9]. public export isAlphaNum : Char -> Bool isAlphaNum x = isDigit x || isAlpha x ||| Returns true if the character is a whitespace character. public export isSpace : Char -> Bool isSpace x = x == ' ' || x == '\t' || x == '\r' || x == '\n' || x == '\f' || x == '\v' || x == '\xa0' ||| Returns true if the character represents a new line. public export isNL : Char -> Bool isNL x = x == '\r' || x == '\n' ||| Convert a letter to the corresponding upper-case letter, if any. ||| Non-letters are ignored. public export toUpper : Char -> Char toUpper x = if (isLower x) then prim__cast_IntChar (prim__cast_CharInt x - 32) else x ||| Convert a letter to the corresponding lower-case letter, if any. ||| Non-letters are ignored. public export toLower : Char -> Char toLower x = if (isUpper x) then prim__cast_IntChar (prim__cast_CharInt x + 32) else x ||| Returns true if the character is a hexadecimal digit i.e. in the range ||| [0-9][a-f][A-F]. public export isHexDigit : Char -> Bool isHexDigit x = elem (toUpper x) hexChars where hexChars : List Char hexChars = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'] ||| Returns true if the character is an octal digit. public export isOctDigit : Char -> Bool isOctDigit x = (x >= '0' && x <= '7') ||| Returns true if the character is a control character. public export isControl : Char -> Bool isControl x = (x >= '\x0000' && x <= '\x001f') || (x >= '\x007f' && x <= '\x009f') ||| Convert the number to its backend dependent (usually Unicode) Char ||| equivalent. public export chr : Int -> Char chr = prim__cast_IntChar ||| Return the backend dependent (usually Unicode) numerical equivalent of the Char. public export ord : Char -> Int ord = prim__cast_CharInt ---------- -- SHOW -- ---------- ||| The precedence of an Idris operator or syntactic context. public export data Prec = Open | Equal | Dollar | Backtick | User Nat | PrefixMinus | App ||| Gives the constructor index of the Prec as a helper for writing ||| implementations. public export precCon : Prec -> Integer precCon Open = 0 precCon Equal = 1 precCon Dollar = 2 precCon Backtick = 3 precCon (User n) = 4 precCon PrefixMinus = 5 precCon App = 6 export Eq Prec where (==) (User m) (User n) = m == n (==) x y = precCon x == precCon y export Ord Prec where compare (User m) (User n) = compare m n compare x y = compare (precCon x) (precCon y) ||| Things that have a canonical `String` representation. public export interface Show ty where ||| Convert a value to its `String` representation. ||| @ x the value to convert show : (x : ty) -> String show x = showPrec Open x ||| Convert a value to its `String` representation in a certain precedence ||| context. ||| ||| A value should produce parentheses around itself if and only if the given ||| precedence context is greater than or equal to the precedence of the ||| outermost operation represented in the produced `String`. *This is ||| different from Haskell*, which requires it to be strictly greater. `Open` ||| should thus always produce *no* outermost parens, `App` should always ||| produce outermost parens except on atomic values and those that provide ||| their own bracketing, like `Pair` and `List`. ||| @ d the precedence context. ||| @ x the value to convert showPrec : (d : Prec) -> (x : ty) -> String showPrec _ x = show x ||| Surround a `String` with parentheses depending on a condition. ||| @ b whether to add parentheses showParens : (1 b : Bool) -> String -> String showParens False s = s showParens True s = "(" ++ s ++ ")" ||| A helper for the common case of showing a non-infix constructor with at ||| least one argument, for use with `showArg`. ||| ||| Apply `showCon` to the precedence context, the constructor name, and the ||| args shown with `showArg` and concatenated. Example: ||| ``` ||| data Ann a = MkAnn String a ||| ||| Show a => Show (Ann a) where ||| showPrec d (MkAnn s x) = showCon d "MkAnn" $ showArg s ++ showArg x ||| ``` export showCon : (d : Prec) -> (conName : String) -> (shownArgs : String) -> String showCon d conName shownArgs = showParens (d >= App) (conName ++ shownArgs) ||| A helper for the common case of showing a non-infix constructor with at ||| least one argument, for use with `showCon`. ||| ||| This adds a space to the front so the results can be directly concatenated. ||| See `showCon` for details and an example. export showArg : Show a => (x : a) -> String showArg x = " " ++ showPrec App x firstCharIs : (Char -> Bool) -> String -> Bool firstCharIs p "" = False firstCharIs p str = p (assert_total (prim__strHead str)) primNumShow : (a -> String) -> Prec -> a -> String primNumShow f d x = let str = f x in showParens (d >= PrefixMinus && firstCharIs (== '-') str) str export Show Int where showPrec = primNumShow prim__cast_IntString export Show Integer where showPrec = primNumShow prim__cast_IntegerString export Show Double where showPrec = primNumShow prim__cast_DoubleString protectEsc : (Char -> Bool) -> String -> String -> String protectEsc p f s = f ++ (if firstCharIs p s then "\\&" else "") ++ s showLitChar : Char -> String -> String showLitChar '\a' = ("\\a" ++) showLitChar '\b' = ("\\b" ++) showLitChar '\f' = ("\\f" ++) showLitChar '\n' = ("\\n" ++) showLitChar '\r' = ("\\r" ++) showLitChar '\t' = ("\\t" ++) showLitChar '\v' = ("\\v" ++) showLitChar '\SO' = protectEsc (== 'H') "\\SO" showLitChar '\DEL' = ("\\DEL" ++) showLitChar '\\' = ("\\\\" ++) showLitChar c = case getAt (fromInteger (prim__cast_CharInteger c)) asciiTab of Just k => strCons '\\' . (k ++) Nothing => if (c > '\DEL') then strCons '\\' . protectEsc isDigit (show (prim__cast_CharInt c)) else strCons c where asciiTab : List String asciiTab = ["NUL", "SOH", "STX", "ETX", "EOT", "ENQ", "ACK", "BEL", "BS", "HT", "LF", "VT", "FF", "CR", "SO", "SI", "DLE", "DC1", "DC2", "DC3", "DC4", "NAK", "SYN", "ETB", "CAN", "EM", "SUB", "ESC", "FS", "GS", "RS", "US"] getAt : Nat -> List String -> Maybe String getAt Z (x :: xs) = Just x getAt (S k) (x :: xs) = getAt k xs getAt _ [] = Nothing showLitString : List Char -> String -> String showLitString [] = id showLitString ('"'::cs) = ("\\\"" ++) . showLitString cs showLitString (c ::cs) = (showLitChar c) . showLitString cs export Show Char where show '\'' = "'\\''" show c = strCons '\'' (showLitChar c "'") export Show String where show cs = strCons '"' (showLitString (unpack cs) "\"") export Show Nat where show n = show (the Integer (natToInteger n)) export Show Bool where show True = "True" show False = "False" export Show () where show () = "()" export (Show a, Show b) => Show (a, b) where show (x, y) = "(" ++ show x ++ ", " ++ show y ++ ")" export (Show a, {y : a} -> Show (p y)) => Show (DPair a p) where show (y ** prf) = "(" ++ show y ++ " ** " ++ show prf ++ ")" export Show a => Show (List a) where show xs = "[" ++ show' "" xs ++ "]" where show' : String -> List a -> String show' acc [] = acc show' acc [x] = acc ++ show x show' acc (x :: xs) = show' (acc ++ show x ++ ", ") xs export Show a => Show (Maybe a) where showPrec d Nothing = "Nothing" showPrec d (Just x) = showCon d "Just" (showArg x) -------- -- IO -- -------- public export Functor IO where map f io = io_bind io (\b => io_pure (f b)) public export Applicative IO where pure x = io_pure x f <*> a = io_bind f (\f' => io_bind a (\a' => io_pure (f' a'))) %inline public export Monad IO where b >>= k = io_bind b k ||| Output something showable to stdout, without a trailing newline. export print : Show a => a -> IO () print x = putStr $ show x ||| Output something showable to stdout, with a trailing newline. export printLn : Show a => a -> IO () printLn x = putStrLn $ show x ----------------------- -- DOUBLE PRIMITIVES -- ----------------------- public export pi : Double pi = 3.14159265358979323846 public export euler : Double euler = 2.7182818284590452354 public export exp : Double -> Double exp x = prim__doubleExp x public export log : Double -> Double log x = prim__doubleLog x public export pow : Double -> Double -> Double pow x y = exp (y * log x) public export sin : Double -> Double sin x = prim__doubleSin x public export cos : Double -> Double cos x = prim__doubleCos x public export tan : Double -> Double tan x = prim__doubleTan x public export asin : Double -> Double asin x = prim__doubleASin x public export acos : Double -> Double acos x = prim__doubleACos x public export atan : Double -> Double atan x = prim__doubleATan x public export sinh : Double -> Double sinh x = (exp x - exp (-x)) / 2 public export cosh : Double -> Double cosh x = (exp x + exp (-x)) / 2 public export tanh : Double -> Double tanh x = sinh x / cosh x public export sqrt : Double -> Double sqrt x = prim__doubleSqrt x public export floor : Double -> Double floor x = prim__doubleFloor x public export ceiling : Double -> Double ceiling x = prim__doubleCeiling x ----------- -- CASTS -- ----------- -- Casts between primitives only here. They might be lossy. ||| Interface for transforming an instance of a data type to another type. public export interface Cast from to where ||| Perform a (potentially lossy!) cast operation. ||| @ orig The original type cast : (orig : from) -> to -- To String export Cast Int String where cast = prim__cast_IntString export Cast Integer String where cast = prim__cast_IntegerString export Cast Char String where cast = prim__cast_CharString export Cast Double String where cast = prim__cast_DoubleString -- To Integer export Cast Int Integer where cast = prim__cast_IntInteger export Cast Char Integer where cast = prim__cast_CharInteger export Cast Double Integer where cast = prim__cast_DoubleInteger export Cast String Integer where cast = prim__cast_StringInteger export Cast Nat Integer where cast = natToInteger -- To Int export Cast Integer Int where cast = prim__cast_IntegerInt export Cast Char Int where cast = prim__cast_CharInt export Cast Double Int where cast = prim__cast_DoubleInt export Cast String Int where cast = prim__cast_StringInt export Cast Nat Int where cast = fromInteger . natToInteger -- To Char export Cast Int Char where cast = prim__cast_IntChar -- To Double export Cast Int Double where cast = prim__cast_IntDouble export Cast Integer Double where cast = prim__cast_IntegerDouble export Cast String Double where cast = prim__cast_StringDouble export Cast Nat Double where cast = prim__cast_IntegerDouble . natToInteger ------------ -- RANGES -- ------------ public export countFrom : n -> (n -> n) -> Stream n countFrom start diff = start :: countFrom (diff start) diff -- this and takeBefore are for range syntax, and not exported here since -- they're partial. They are exported from Data.Stream instead. partial takeUntil : (n -> Bool) -> Stream n -> List n takeUntil p (x :: xs) = if p x then [x] else x :: takeUntil p xs partial takeBefore : (n -> Bool) -> Stream n -> List n takeBefore p (x :: xs) = if p x then [] else x :: takeBefore p xs public export interface Range a where rangeFromTo : a -> a -> List a rangeFromThenTo : a -> a -> a -> List a rangeFrom : a -> Stream a rangeFromThen : a -> a -> Stream a -- Idris 1 went to great lengths to prove that these were total. I don't really -- think it's worth going to those lengths! Let's keep it simple and assert. export Range Nat where rangeFromTo x y = if y > x then assert_total $ takeUntil (>= y) (countFrom x S) else if x > y then assert_total $ takeUntil (<= y) (countFrom x (\n => minus n 1)) else [x] rangeFromThenTo x y z = if y > x then (if z > x then assert_total $ takeBefore (> z) (countFrom x (plus (minus y x))) else []) else (if x == y then (if x == z then [x] else []) else assert_total $ takeBefore (< z) (countFrom x (\n => minus n (minus x y)))) rangeFrom x = countFrom x S rangeFromThen x y = if y > x then countFrom x (plus (minus y x)) else countFrom x (\n => minus n (minus x y)) export (Integral a, Ord a, Neg a) => Range a where rangeFromTo x y = if y > x then assert_total $ takeUntil (>= y) (countFrom x (+1)) else if x > y then assert_total $ takeUntil (<= y) (countFrom x (\x => x-1)) else [x] rangeFromThenTo x y z = if (z - x) > (z - y) then -- go up assert_total $ takeBefore (> z) (countFrom x (+ (y-x))) else if (z - x) < (z - y) then -- go down assert_total $ takeBefore (< z) (countFrom x (\n => n - (x - y))) else -- meaningless if x == y && y == z then [x] else [] rangeFrom x = countFrom x (1+) rangeFromThen x y = if y > x then countFrom x (+ (y - x)) else countFrom x (\n => n - (x - y))