module Data.Fin import Data.Maybe import Data.Nat import Decidable.Equality ||| Numbers strictly less than some bound. The name comes from "finite sets". ||| ||| It's probably not a good idea to use `Fin` for arithmetic, and they will be ||| exceedingly inefficient at run time. ||| @ n the upper bound public export data Fin : (n : Nat) -> Type where FZ : Fin (S k) FS : Fin k -> Fin (S k) export implementation Uninhabited (Fin Z) where uninhabited FZ impossible uninhabited (FS f) impossible export FSInjective : (m : Fin k) -> (n : Fin k) -> FS m = FS n -> m = n FSInjective left _ Refl = Refl export implementation Eq (Fin n) where (==) FZ FZ = True (==) (FS k) (FS k') = k == k' (==) _ _ = False ||| There are no elements of `Fin Z` export FinZAbsurd : Fin Z -> Void FinZAbsurd FZ impossible export FinZElim : Fin Z -> a FinZElim x = void (FinZAbsurd x) ||| Convert a Fin to a Nat public export finToNat : Fin n -> Nat finToNat FZ = Z finToNat (FS k) = S (finToNat k) ||| `finToNat` is injective export finToNatInjective : (fm : Fin k) -> (fn : Fin k) -> (finToNat fm) = (finToNat fn) -> fm = fn finToNatInjective (FS m) FZ Refl impossible finToNatInjective FZ (FS n) Refl impossible finToNatInjective (FS m) (FS n) prf = cong FS (finToNatInjective m n (succInjective (finToNat m) (finToNat n) prf)) finToNatInjective FZ FZ Refl = Refl export implementation Cast (Fin n) Nat where cast x = finToNat x ||| Convert a Fin to an Integer public export finToInteger : Fin n -> Integer finToInteger FZ = 0 finToInteger (FS k) = 1 + finToInteger k export implementation Cast (Fin n) Integer where cast x = finToInteger x ||| Weaken the bound on a Fin by 1 public export weaken : Fin n -> Fin (S n) weaken FZ = FZ weaken (FS k) = FS (weaken k) ||| Weaken the bound on a Fin by some amount public export weakenN : (n : Nat) -> Fin m -> Fin (m + n) weakenN n FZ = FZ weakenN n (FS f) = FS (weakenN n f) ||| Attempt to tighten the bound on a Fin. ||| Return `Left` if the bound could not be tightened, or `Right` if it could. export strengthen : Fin (S n) -> Either (Fin (S n)) (Fin n) strengthen {n = S k} FZ = Right FZ strengthen {n = S k} (FS i) with (strengthen i) strengthen (FS i) | Left x = Left (FS x) strengthen (FS i) | Right x = Right (FS x) strengthen f = Left f ||| Add some natural number to a Fin, extending the bound accordingly ||| @ n the previous bound ||| @ m the number to increase the Fin by public export shift : (m : Nat) -> Fin n -> Fin (m + n) shift Z f = f shift {n=n} (S m) f = FS {k = (m + n)} (shift m f) ||| The largest element of some Fin type public export last : {n : _} -> Fin (S n) last {n=Z} = FZ last {n=S _} = FS last export total FSinjective : {f : Fin n} -> {f' : Fin n} -> (FS f = FS f') -> f = f' FSinjective Refl = Refl export implementation Ord (Fin n) where compare FZ FZ = EQ compare FZ (FS _) = LT compare (FS _) FZ = GT compare (FS x) (FS y) = compare x y -- Construct a Fin from an integer literal which must fit in the given Fin public export natToFin : Nat -> (n : Nat) -> Maybe (Fin n) natToFin Z (S j) = Just FZ natToFin (S k) (S j) = case natToFin k j of Just k' => Just (FS k') Nothing => Nothing natToFin _ _ = Nothing ||| Convert an `Integer` to a `Fin`, provided the integer is within bounds. ||| @n The upper bound of the Fin public export integerToFin : Integer -> (n : Nat) -> Maybe (Fin n) integerToFin x Z = Nothing -- make sure 'n' is concrete, to save reduction! integerToFin x n = if x >= 0 then natToFin (fromInteger x) n else Nothing ||| Allow overloading of Integer literals for Fin. ||| @ x the Integer that the user typed ||| @ prf an automatically-constructed proof that `x` is in bounds export fromInteger : (x : Integer) -> {n : Nat} -> {auto prf : (IsJust (integerToFin x n))} -> Fin n fromInteger {n} x {prf} with (integerToFin x n) fromInteger {n} x {prf = ItIsJust} | Just y = y ||| Convert an Integer to a Fin in the required bounds/ ||| This is essentially a composition of `mod` and `fromInteger` export restrict : (n : Nat) -> Integer -> Fin (S n) restrict n val = let val' = assert_total (abs (mod val (cast (S n)))) in -- reasoning about primitives, so we need the -- 'believe_me'. It's fine because val' must be -- in the right range fromInteger {n = S n} val' {prf = believe_me {a=IsJust (Just val')} ItIsJust} -------------------------------------------------------------------------------- -- DecEq -------------------------------------------------------------------------------- export total FZNotFS : {f : Fin n} -> FZ {k = n} = FS f -> Void FZNotFS Refl impossible export implementation DecEq (Fin n) where decEq FZ FZ = Yes Refl decEq FZ (FS f) = No FZNotFS decEq (FS f) FZ = No $ negEqSym FZNotFS decEq (FS f) (FS f') = case decEq f f' of Yes p => Yes $ cong FS p No p => No $ \h => p $ FSinjective {f = f} {f' = f'} h