import Data.Vect import Data.Nat my_filter : (a -> Bool) -> Vect n a -> (p ** Vect p a) my_filter p [] = ( _ ** [] ) my_filter p (x :: xs) with (filter p xs) my_filter p (x :: xs) | ( _ ** xs' ) = if (p x) then ( _ ** x :: xs' ) else ( _ ** xs' ) foo : Int -> Int -> Bool foo n m with (n + 1) foo _ m | 2 with (m + 1) foo _ _ | 2 | 3 = True foo _ _ | 2 | _ = False foo _ _ | _ = False data Parity : Nat -> Type where Even : {n : _} -> Parity (n + n) Odd : {n : _} ->Parity (S (n + n)) -- parity : (n : Nat) -> Parity n -- parity Z = Even {n = Z} -- parity (S Z) = Odd {n = Z} -- parity (S (S k)) with (parity k) -- parity (S (S (j + j))) | Even -- = rewrite plusSuccRightSucc j j in Even {n = S j} -- parity (S (S (S (j + j)))) | Odd -- = rewrite plusSuccRightSucc j j in Odd {n = S j} helpEven : (j : Nat) -> Parity (S j + S j) -> Parity (S (S (plus j j))) helpEven j p = rewrite plusSuccRightSucc j j in p helpOdd : (j : Nat) -> Parity (S (S (j + S j))) -> Parity (S (S (S (j + j)))) helpOdd j p = rewrite plusSuccRightSucc j j in p parity : (n:Nat) -> Parity n parity Z = Even {n=Z} parity (S Z) = Odd {n=Z} parity (S (S k)) with (parity k) parity (S (S (j + j))) | Even = helpEven j (Even {n = S j}) parity (S (S (S (j + j)))) | Odd = helpOdd j (Odd {n = S j}) natToBin : Nat -> List Bool natToBin Z = Nil natToBin k with (parity k) natToBin (j + j) | Even = False :: natToBin j natToBin (S (j + j)) | Odd = True :: natToBin j