mirror of
https://github.com/edwinb/Idris2-boot.git
synced 2025-01-04 02:34:24 +03:00
c84e2b5cb7
Since it's the empty type...
1443 lines
31 KiB
Idris
1443 lines
31 KiB
Idris
module Prelude
|
|
|
|
import public Builtin
|
|
import public PrimIO
|
|
|
|
{-
|
|
The Prelude is minimal (since it is effectively part of the language
|
|
specification, this seems to be desirable - we should, nevertheless, aim to
|
|
provide a good selection of base libraries). A rule of thumb is that it should
|
|
contain the basic functions required by almost any non-trivial program.
|
|
|
|
As such, it should contain:
|
|
|
|
- Anything the elaborator can desugar to (e.g. pairs, unit, =, laziness)
|
|
- Basic types Bool, Nat, List, Dec, Maybe, Either
|
|
- The most important utility functions: id, the, composition, etc
|
|
- Interfaces for arithmetic and implementations for the primitives and
|
|
basic types
|
|
- Char and String manipulation
|
|
- Show, Eq, Ord, and implementations for all types in the prelude
|
|
- Interfaces and functions for basic proof (cong, Uninhabited, etc) --
|
|
- Semigroup, Monoid
|
|
- Functor, Applicative, Monad and related functions
|
|
- Foldable
|
|
- [TODO: Enum for range syntax]
|
|
- Console IO
|
|
|
|
Everything else should be in the base libraries, and imported as required.
|
|
In particular, proofs of Nat/List properties that almost never get used in
|
|
practice would probably be better in base libraries.
|
|
|
|
(These guidelines will probably get revised a few times.)
|
|
-}
|
|
|
|
-- Numerical operators
|
|
infix 6 ==, /=, <, <=, >, >=
|
|
infixl 7 <<, >> -- unused
|
|
infixl 8 +, -
|
|
infixl 9 *, /
|
|
|
|
-- Boolean operators
|
|
infixr 4 &&
|
|
infixr 5 ||
|
|
|
|
-- List and String operators
|
|
infixr 7 ::, ++
|
|
|
|
-- Functor/Applicative/Monad/Algebra operators
|
|
infixl 1 >>=
|
|
infixr 2 <|>
|
|
infixl 3 <*>, *>, <*
|
|
infixr 4 <$>
|
|
infixl 6 <+>
|
|
|
|
-- Utility operators
|
|
infixr 9 .
|
|
infixr 0 $
|
|
|
|
infixl 9 `div`, `mod`
|
|
|
|
-----------------------
|
|
-- UTILITY FUNCTIONS --
|
|
-----------------------
|
|
|
|
public export %inline
|
|
the : (0 a : Type) -> (1 x : a) -> a
|
|
the _ x = x
|
|
|
|
public export %inline
|
|
id : (1 x : a) -> a -- Hopefully linearity annotation won't
|
|
-- break equality proofs involving id
|
|
id x = x
|
|
|
|
public export %inline
|
|
const : a -> b -> a
|
|
const x = \value => x
|
|
|
|
public export %inline
|
|
(.) : (b -> c) -> (a -> b) -> a -> c
|
|
(.) f g = \x => f (g x)
|
|
|
|
public export
|
|
flip : (f : a -> b -> c) -> b -> a -> c
|
|
flip f x y = f y x
|
|
|
|
public export
|
|
apply : (a -> b) -> a -> b
|
|
apply f a = f a
|
|
|
|
public export
|
|
curry : ((a, b) -> c) -> a -> b -> c
|
|
curry f a b = f (a, b)
|
|
|
|
public export
|
|
uncurry : (a -> b -> c) -> (a, b) -> c
|
|
uncurry f (a, b) = f a b
|
|
|
|
-- $ is compiled specially to shortcut any tricky unification issues, but if
|
|
-- it did have a type this is what it would be, and it might be useful to
|
|
-- use directly sometimes (e.g. in higher order functions)
|
|
public export
|
|
($) : forall a, b . ((x : a) -> b x) -> (x : a) -> b x
|
|
($) f a = f a
|
|
|
|
-------------------
|
|
-- PROOF HELPERS --
|
|
-------------------
|
|
|
|
public export
|
|
cong : (f : t -> u) -> (1 p : a = b) -> f a = f b
|
|
cong f Refl = Refl
|
|
|
|
public export
|
|
interface Uninhabited t where
|
|
uninhabited : t -> Void
|
|
|
|
%extern
|
|
public export
|
|
void : (0 x : Void) -> a
|
|
|
|
export
|
|
Uninhabited Void where
|
|
uninhabited = id
|
|
|
|
public export
|
|
absurd : Uninhabited t => (h : t) -> a
|
|
absurd h = void (uninhabited h)
|
|
|
|
public export
|
|
Not : Type -> Type
|
|
Not x = x -> Void
|
|
|
|
--------------
|
|
-- BOOLEANS --
|
|
--------------
|
|
|
|
public export
|
|
data Bool = True | False
|
|
|
|
public export
|
|
not : (1 b : Bool) -> Bool
|
|
not True = False
|
|
not False = True
|
|
|
|
public export
|
|
(&&) : (1 b : Bool) -> Lazy Bool -> Bool
|
|
(&&) True x = x
|
|
(&&) False x = False
|
|
|
|
public export
|
|
(||) : (1 b : Bool) -> Lazy Bool -> Bool
|
|
(||) True x = True
|
|
(||) False x = x
|
|
|
|
%inline
|
|
public export
|
|
intToBool : Int -> Bool
|
|
intToBool 0 = False
|
|
intToBool x = True
|
|
|
|
------------------------
|
|
-- EQUALITY, ORDERING --
|
|
------------------------
|
|
|
|
public export
|
|
interface Eq ty where
|
|
(==) : ty -> ty -> Bool
|
|
(/=) : ty -> ty -> Bool
|
|
|
|
x == y = not (x /= y)
|
|
x /= y = not (x == y)
|
|
|
|
public export
|
|
Eq () where
|
|
_ == _ = True
|
|
|
|
public export
|
|
Eq Bool where
|
|
True == True = True
|
|
False == False = True
|
|
_ == _ = False
|
|
|
|
public export
|
|
Eq Int where
|
|
x == y = intToBool (prim__eq_Int x y)
|
|
|
|
public export
|
|
Eq Integer where
|
|
x == y = intToBool (prim__eq_Integer x y)
|
|
|
|
public export
|
|
Eq Double where
|
|
x == y = intToBool (prim__eq_Double x y)
|
|
|
|
public export
|
|
Eq Char where
|
|
x == y = intToBool (prim__eq_Char x y)
|
|
|
|
public export
|
|
Eq String where
|
|
x == y = intToBool (prim__eq_String x y)
|
|
|
|
public export
|
|
Eq a => Eq b => Eq (a, b) where
|
|
(x1, y1) == (x2, y2) = x1 == x2 && y1 == y2
|
|
|
|
public export
|
|
data Ordering = LT | EQ | GT
|
|
|
|
public export
|
|
Eq Ordering where
|
|
LT == LT = True
|
|
EQ == EQ = True
|
|
GT == GT = True
|
|
_ == _ = False
|
|
|
|
public export
|
|
interface Eq ty => Ord ty where
|
|
compare : ty -> ty -> Ordering
|
|
|
|
(<) : ty -> ty -> Bool
|
|
(<) x y = compare x y == LT
|
|
|
|
(>) : ty -> ty -> Bool
|
|
(>) x y = compare x y == GT
|
|
|
|
(<=) : ty -> ty -> Bool
|
|
(<=) x y = compare x y /= GT
|
|
|
|
(>=) : ty -> ty -> Bool
|
|
(>=) x y = compare x y /= LT
|
|
|
|
max : ty -> ty -> ty
|
|
max x y = if x > y then x else y
|
|
|
|
min : ty -> ty -> ty
|
|
min x y = if (x < y) then x else y
|
|
|
|
public export
|
|
Ord () where
|
|
compare _ _ = EQ
|
|
|
|
public export
|
|
Ord Bool where
|
|
compare False False = EQ
|
|
compare False True = LT
|
|
compare True False = GT
|
|
compare True True = EQ
|
|
|
|
public export
|
|
Ord Int where
|
|
compare x y = if x < y then LT else if x == y then EQ else GT
|
|
|
|
(<) x y = intToBool (prim__lt_Int x y)
|
|
(<=) x y = intToBool (prim__lte_Int x y)
|
|
(>) x y = intToBool (prim__gt_Int x y)
|
|
(>=) x y = intToBool (prim__gte_Int x y)
|
|
|
|
public export
|
|
Ord Integer where
|
|
compare x y = if x < y then LT else if x == y then EQ else GT
|
|
|
|
(<) x y = intToBool (prim__lt_Integer x y)
|
|
(<=) x y = intToBool (prim__lte_Integer x y)
|
|
(>) x y = intToBool (prim__gt_Integer x y)
|
|
(>=) x y = intToBool (prim__gte_Integer x y)
|
|
|
|
public export
|
|
Ord Double where
|
|
compare x y = if x < y then LT else if x == y then EQ else GT
|
|
|
|
(<) x y = intToBool (prim__lt_Double x y)
|
|
(<=) x y = intToBool (prim__lte_Double x y)
|
|
(>) x y = intToBool (prim__gt_Double x y)
|
|
(>=) x y = intToBool (prim__gte_Double x y)
|
|
|
|
public export
|
|
Ord String where
|
|
compare x y = if x < y then LT else if x == y then EQ else GT
|
|
|
|
(<) x y = intToBool (prim__lt_String x y)
|
|
(<=) x y = intToBool (prim__lte_String x y)
|
|
(>) x y = intToBool (prim__gt_String x y)
|
|
(>=) x y = intToBool (prim__gte_String x y)
|
|
|
|
public export
|
|
Ord Char where
|
|
compare x y = if x < y then LT else if x == y then EQ else GT
|
|
|
|
(<) x y = intToBool (prim__lt_Char x y)
|
|
(<=) x y = intToBool (prim__lte_Char x y)
|
|
(>) x y = intToBool (prim__gt_Char x y)
|
|
(>=) x y = intToBool (prim__gte_Char x y)
|
|
|
|
public export
|
|
Ord a => Ord b => Ord (a, b) where
|
|
compare (x1, y1) (x2, y2)
|
|
= if x1 /= x2 then compare x1 x2
|
|
else compare y1 y2
|
|
|
|
------------------------
|
|
-- NUMERIC INTERFACES --
|
|
------------------------
|
|
|
|
%integerLit fromInteger
|
|
|
|
public export
|
|
interface Num ty where
|
|
(+) : ty -> ty -> ty
|
|
(*) : ty -> ty -> ty
|
|
fromInteger : Integer -> ty
|
|
|
|
%allow_overloads fromInteger
|
|
|
|
public export
|
|
interface Num ty => Neg ty where
|
|
negate : ty -> ty
|
|
(-) : ty -> ty -> ty
|
|
|
|
public export
|
|
interface Num ty => Abs ty where
|
|
abs : ty -> ty
|
|
|
|
public export
|
|
interface Num ty => Fractional ty where
|
|
(/) : ty -> ty -> ty
|
|
recip : ty -> ty
|
|
|
|
recip x = 1 / x
|
|
|
|
public export
|
|
interface Num ty => Integral ty where
|
|
div : ty -> ty -> ty
|
|
mod : ty -> ty -> ty
|
|
|
|
----- instances for primitives
|
|
-- Integer
|
|
|
|
public export
|
|
Num Integer where
|
|
(+) = prim__add_Integer
|
|
(*) = prim__mul_Integer
|
|
fromInteger = id
|
|
|
|
public export
|
|
Neg Integer where
|
|
negate x = prim__sub_Integer 0 x
|
|
(-) = prim__sub_Integer
|
|
|
|
public export
|
|
Abs Integer where
|
|
abs x = if x < 0 then -x else x
|
|
|
|
public export
|
|
Integral Integer where
|
|
div x y
|
|
= case y == 0 of
|
|
False => prim__div_Integer x y
|
|
mod x y
|
|
= case y == 0 of
|
|
False => prim__mod_Integer x y
|
|
|
|
-- This allows us to pick integer as a default at the end of elaboration if
|
|
-- all other possibilities fail. I don't plan to provide a nicer syntax for
|
|
-- this...
|
|
%defaulthint
|
|
public export
|
|
defaultInteger : Num Integer
|
|
defaultInteger = %search
|
|
|
|
-- Int
|
|
|
|
public export
|
|
Num Int where
|
|
(+) = prim__add_Int
|
|
(*) = prim__mul_Int
|
|
fromInteger = prim__cast_IntegerInt
|
|
|
|
public export
|
|
Neg Int where
|
|
negate x = prim__sub_Int 0 x
|
|
(-) = prim__sub_Int
|
|
|
|
public export
|
|
Abs Int where
|
|
abs x = if x < 0 then -x else x
|
|
|
|
public export
|
|
Integral Int where
|
|
div x y
|
|
= case y == 0 of
|
|
False => prim__div_Int x y
|
|
mod x y
|
|
= case y == 0 of
|
|
False => prim__mod_Int x y
|
|
|
|
-- Double
|
|
|
|
public export
|
|
Num Double where
|
|
(+) = prim__add_Double
|
|
(*) = prim__mul_Double
|
|
fromInteger = prim__cast_IntegerDouble
|
|
|
|
public export
|
|
Neg Double where
|
|
negate x = prim__negate_Double x
|
|
(-) = prim__sub_Double
|
|
|
|
public export
|
|
Abs Double where
|
|
abs x = if x < 0 then -x else x
|
|
|
|
public export
|
|
Fractional Double where
|
|
(/) = prim__div_Double
|
|
|
|
-------------
|
|
-- ALGEBRA --
|
|
-------------
|
|
|
|
public export
|
|
interface Semigroup ty where
|
|
(<+>) : ty -> ty -> ty
|
|
|
|
public export
|
|
interface Semigroup ty => Monoid ty where
|
|
neutral : ty
|
|
|
|
export
|
|
shiftL : Int -> Int -> Int
|
|
shiftL = prim__shl_Int
|
|
|
|
export
|
|
shiftR : Int -> Int -> Int
|
|
shiftR = prim__shr_Int
|
|
|
|
---------------------------------
|
|
-- FUNCTOR, APPLICATIVE, ALTERNATIVE, MONAD --
|
|
---------------------------------
|
|
|
|
public export
|
|
interface Functor f where
|
|
map : (a -> b) -> f a -> f b
|
|
|
|
public export
|
|
(<$>) : Functor f => (func : a -> b) -> f a -> f b
|
|
(<$>) func x = map func x
|
|
|
|
public export
|
|
ignore : Functor f => f a -> f ()
|
|
ignore = map (const ())
|
|
|
|
public export
|
|
interface Functor f => Applicative f where
|
|
pure : a -> f a
|
|
(<*>) : f (a -> b) -> f a -> f b
|
|
|
|
public export
|
|
(<*) : Applicative f => f a -> f b -> f a
|
|
a <* b = map const a <*> b
|
|
|
|
public export
|
|
(*>) : Applicative f => f a -> f b -> f b
|
|
a *> b = map (const id) a <*> b
|
|
|
|
%allow_overloads pure
|
|
%allow_overloads (<*)
|
|
%allow_overloads (*>)
|
|
|
|
public export
|
|
interface Applicative f => Alternative f where
|
|
empty : f a
|
|
(<|>) : f a -> f a -> f a
|
|
|
|
public export
|
|
interface Applicative m => Monad m where
|
|
(>>=) : m a -> (a -> m b) -> m b
|
|
join : m (m a) -> m a
|
|
|
|
-- default implementations
|
|
(>>=) x f = join (f <$> x)
|
|
join x = x >>= id
|
|
|
|
%allow_overloads (>>=)
|
|
|
|
public export
|
|
guard : Alternative f => Bool -> f ()
|
|
guard x = if x then pure () else empty
|
|
|
|
public export
|
|
when : Applicative f => Bool -> Lazy (f ()) -> f ()
|
|
when True f = f
|
|
when False f = pure ()
|
|
|
|
---------------------------
|
|
-- FOLDABLE, TRAVERSABLE --
|
|
---------------------------
|
|
|
|
public export
|
|
interface Foldable (t : Type -> Type) where
|
|
foldr : (func : elem -> acc -> acc) -> (init : acc) -> (input : t elem) -> acc
|
|
foldl : (func : acc -> elem -> acc) -> (init : acc) -> (input : t elem) -> acc
|
|
foldl f z t = foldr (flip (.) . flip f) id t z
|
|
|
|
public export
|
|
concat : (Foldable t, Monoid a) => t a -> a
|
|
concat = foldr (<+>) neutral
|
|
|
|
public export
|
|
concatMap : (Foldable t, Monoid m) => (a -> m) -> t a -> m
|
|
concatMap f = foldr ((<+>) . f) neutral
|
|
|
|
public export
|
|
and : Foldable t => t (Lazy Bool) -> Bool
|
|
and = foldl (&&) True
|
|
|
|
public export
|
|
or : Foldable t => t (Lazy Bool) -> Bool
|
|
or = foldl (||) False
|
|
|
|
public export
|
|
any : Foldable t => (a -> Bool) -> t a -> Bool
|
|
any p = foldl (\x,y => x || p y) False
|
|
|
|
public export
|
|
all : Foldable t => (a -> Bool) -> t a -> Bool
|
|
all p = foldl (\x,y => x && p y) True
|
|
|
|
public export
|
|
sum : (Foldable t, Num a) => t a -> a
|
|
sum = foldr (+) 0
|
|
|
|
public export
|
|
product : (Foldable t, Num a) => t a -> a
|
|
product = foldr (*) 1
|
|
|
|
public export
|
|
traverse_ : (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
|
|
traverse_ f = foldr ((*>) . f) (pure ())
|
|
|
|
||| Evaluate each computation in a structure and discard the results
|
|
public export
|
|
sequence_ : (Foldable t, Applicative f) => t (f a) -> f ()
|
|
sequence_ = foldr (*>) (pure ())
|
|
|
|
||| Like `traverse_` but with the arguments flipped
|
|
public export
|
|
for_ : (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
|
|
for_ = flip traverse_
|
|
|
|
||| Fold using Alternative
|
|
|||
|
|
||| If you have a left-biased alternative operator `<|>`, then `choice`
|
|
||| performs left-biased choice from a list of alternatives, which means that
|
|
||| it evaluates to the left-most non-`empty` alternative.
|
|
|||
|
|
||| If the list is empty, or all values in it are `empty`, then it
|
|
||| evaluates to `empty`.
|
|
|||
|
|
||| Example:
|
|
|||
|
|
||| ```
|
|
||| -- given a parser expression like:
|
|
||| expr = literal <|> keyword <|> funcall
|
|
|||
|
|
||| -- choice lets you write this as:
|
|
||| expr = choice [literal, keyword, funcall]
|
|
||| ```
|
|
|||
|
|
||| Note: In Haskell, `choice` is called `asum`.
|
|
public export
|
|
choice : (Foldable t, Alternative f) => t (f a) -> f a
|
|
choice = foldr (<|>) empty
|
|
|
|
||| A fused version of `choice` and `map`.
|
|
public export
|
|
choiceMap : (Foldable t, Alternative f) => (a -> f b) -> t a -> f b
|
|
choiceMap f = foldr (\e, a => f e <|> a) empty
|
|
|
|
public export
|
|
interface (Functor t, Foldable t) => Traversable (t : Type -> Type) where
|
|
||| Map each element of a structure to a computation, evaluate those
|
|
||| computations and combine the results.
|
|
traverse : Applicative f => (a -> f b) -> t a -> f (t b)
|
|
|
|
||| Evaluate each computation in a structure and collect the results
|
|
public export
|
|
sequence : (Traversable t, Applicative f) => t (f a) -> f (t a)
|
|
sequence = traverse id
|
|
|
|
||| Like `traverse` but with the arguments flipped
|
|
public export
|
|
for : (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
|
|
for = flip traverse
|
|
|
|
-----------
|
|
-- NATS ---
|
|
-----------
|
|
|
|
public export
|
|
data Nat = Z | S Nat
|
|
|
|
%name Nat k, j, i
|
|
|
|
public export
|
|
integerToNat : Integer -> Nat
|
|
integerToNat x
|
|
= if intToBool (prim__lte_Integer x 0)
|
|
then Z
|
|
else S (assert_total (integerToNat (prim__sub_Integer x 1)))
|
|
|
|
-- Define separately so we can spot the name when optimising Nats
|
|
public export
|
|
plus : (1 x : Nat) -> (1 y : Nat) -> Nat
|
|
plus Z y = y
|
|
plus (S k) y = S (plus k y)
|
|
|
|
public export
|
|
minus : (1 left : Nat) -> Nat -> Nat
|
|
minus Z right = Z
|
|
minus left Z = left
|
|
minus (S left) (S right) = minus left right
|
|
|
|
public export
|
|
mult : (1 x : Nat) -> Nat -> Nat
|
|
mult Z y = Z
|
|
mult (S k) y = plus y (mult k y)
|
|
|
|
public export
|
|
Num Nat where
|
|
(+) = plus
|
|
(*) = mult
|
|
|
|
fromInteger x = integerToNat x
|
|
|
|
public export
|
|
Eq Nat where
|
|
Z == Z = True
|
|
S j == S k = j == k
|
|
_ == _ = False
|
|
|
|
public export
|
|
Ord Nat where
|
|
compare Z Z = EQ
|
|
compare Z (S k) = LT
|
|
compare (S k) Z = GT
|
|
compare (S j) (S k) = compare j k
|
|
|
|
public export
|
|
natToInteger : Nat -> Integer
|
|
natToInteger Z = 0
|
|
natToInteger (S k) = 1 + natToInteger k
|
|
-- integer (+) may be non-linear in second
|
|
-- argument
|
|
|
|
|
|
-----------
|
|
-- PAIRS --
|
|
-----------
|
|
|
|
public export
|
|
Functor (Pair a) where
|
|
map f (x, y) = (x, f y)
|
|
|
|
public export
|
|
mapFst : (a -> c) -> (a, b) -> (c, b)
|
|
mapFst f (x, y) = (f x, y)
|
|
|
|
-----------
|
|
-- MAYBE --
|
|
-----------
|
|
|
|
public export
|
|
data Maybe : (ty : Type) -> Type where
|
|
Nothing : Maybe ty
|
|
Just : (1 x : ty) -> Maybe ty
|
|
|
|
public export
|
|
maybe : Lazy b -> Lazy (a -> b) -> Maybe a -> b
|
|
maybe n j Nothing = n
|
|
maybe n j (Just x) = j x
|
|
|
|
public export
|
|
Eq a => Eq (Maybe a) where
|
|
Nothing == Nothing = True
|
|
Nothing == (Just _) = False
|
|
(Just _) == Nothing = False
|
|
(Just a) == (Just b) = a == b
|
|
|
|
public export
|
|
Ord a => Ord (Maybe a) where
|
|
compare Nothing Nothing = EQ
|
|
compare Nothing (Just _) = LT
|
|
compare (Just _) Nothing = GT
|
|
compare (Just a) (Just b) = compare a b
|
|
|
|
public export
|
|
Semigroup (Maybe a) where
|
|
Nothing <+> m = m
|
|
(Just x) <+> _ = Just x
|
|
|
|
public export
|
|
Monoid (Maybe a) where
|
|
neutral = Nothing
|
|
|
|
public export
|
|
Functor Maybe where
|
|
map f (Just x) = Just (f x)
|
|
map f Nothing = Nothing
|
|
|
|
public export
|
|
Applicative Maybe where
|
|
pure = Just
|
|
|
|
Just f <*> Just a = Just (f a)
|
|
_ <*> _ = Nothing
|
|
|
|
public export
|
|
Alternative Maybe where
|
|
empty = Nothing
|
|
|
|
(Just x) <|> _ = Just x
|
|
Nothing <|> v = v
|
|
|
|
public export
|
|
Monad Maybe where
|
|
Nothing >>= k = Nothing
|
|
(Just x) >>= k = k x
|
|
|
|
public export
|
|
Foldable Maybe where
|
|
foldr _ z Nothing = z
|
|
foldr f z (Just x) = f x z
|
|
|
|
public export
|
|
Traversable Maybe where
|
|
traverse f Nothing = pure Nothing
|
|
traverse f (Just x) = (pure Just) <*> (f x)
|
|
|
|
---------
|
|
-- DEC --
|
|
---------
|
|
|
|
public export
|
|
data Dec : Type -> Type where
|
|
Yes : (prf : prop) -> Dec prop
|
|
No : (contra : prop -> Void) -> Dec prop
|
|
|
|
------------
|
|
-- EITHER --
|
|
------------
|
|
|
|
public export
|
|
data Either : (a : Type) -> (b : Type) -> Type where
|
|
Left : forall a, b. (1 x : a) -> Either a b
|
|
Right : forall a, b. (1 x : b) -> Either a b
|
|
|
|
public export
|
|
either : Lazy (a -> c) -> Lazy (b -> c) -> Either a b -> c
|
|
either l r (Left x) = l x
|
|
either l r (Right x) = r x
|
|
|
|
public export
|
|
(Eq a, Eq b) => Eq (Either a b) where
|
|
Left x == Left x' = x == x'
|
|
Right x == Right x' = x == x'
|
|
_ == _ = False
|
|
|
|
public export
|
|
Functor (Either e) where
|
|
map f (Left x) = Left x
|
|
map f (Right x) = Right (f x)
|
|
|
|
public export
|
|
Applicative (Either e) where
|
|
pure = Right
|
|
|
|
(Left a) <*> _ = Left a
|
|
(Right f) <*> (Right r) = Right (f r)
|
|
(Right _) <*> (Left l) = Left l
|
|
|
|
public export
|
|
Monad (Either e) where
|
|
(Left n) >>= _ = Left n
|
|
(Right r) >>= f = f r
|
|
|
|
-----------
|
|
-- LISTS --
|
|
-----------
|
|
|
|
public export
|
|
data List a = Nil | (::) a (List a)
|
|
|
|
%name List xs, ys, zs
|
|
|
|
public export
|
|
Eq a => Eq (List a) where
|
|
[] == [] = True
|
|
x :: xs == y :: ys = x == y && xs == ys
|
|
_ == _ = False
|
|
|
|
public export
|
|
Ord a => Ord (List a) where
|
|
compare [] [] = EQ
|
|
compare [] (x :: xs) = LT
|
|
compare (x :: xs) [] = GT
|
|
compare (x :: xs) (y ::ys)
|
|
= case compare x y of
|
|
EQ => compare xs ys
|
|
c => c
|
|
|
|
namespace List
|
|
public export
|
|
(++) : (1 xs : List a) -> List a -> List a
|
|
[] ++ ys = ys
|
|
(x :: xs) ++ ys = x :: xs ++ ys
|
|
|
|
public export
|
|
Functor List where
|
|
map f [] = []
|
|
map f (x :: xs) = f x :: map f xs
|
|
|
|
public export
|
|
Semigroup (List a) where
|
|
(<+>) = (++)
|
|
|
|
public export
|
|
Monoid (List a) where
|
|
neutral = []
|
|
|
|
public export
|
|
Foldable List where
|
|
foldr c n [] = n
|
|
foldr c n (x::xs) = c x (foldr c n xs)
|
|
|
|
foldl f q [] = q
|
|
foldl f q (x::xs) = foldl f (f q x) xs
|
|
|
|
public export
|
|
Applicative List where
|
|
pure x = [x]
|
|
fs <*> vs = concatMap (\f => map f vs) fs
|
|
|
|
public export
|
|
Alternative List where
|
|
empty = []
|
|
(<|>) = (++)
|
|
|
|
public export
|
|
Monad List where
|
|
m >>= f = concatMap f m
|
|
|
|
public export
|
|
Traversable List where
|
|
traverse f [] = pure []
|
|
traverse f (x::xs) = pure (::) <*> (f x) <*> (traverse f xs)
|
|
|
|
public export
|
|
elem : Eq a => a -> List a -> Bool
|
|
x `elem` [] = False
|
|
x `elem` (y :: ys) = if x == y then True else x `elem` ys
|
|
|
|
-------------
|
|
-- STREAMS --
|
|
-------------
|
|
|
|
namespace Stream
|
|
public export
|
|
data Stream : Type -> Type where
|
|
(::) : a -> Inf (Stream a) -> Stream a
|
|
|
|
public export
|
|
Functor Stream where
|
|
map f (x :: xs) = f x :: map f xs
|
|
|
|
public export
|
|
head : Stream a -> a
|
|
head (x :: xs) = x
|
|
|
|
public export
|
|
tail : Stream a -> Stream a
|
|
tail (x :: xs) = xs
|
|
|
|
public export
|
|
take : (1 n : Nat) -> Stream a -> List a
|
|
take Z xs = []
|
|
take (S k) (x :: xs) = x :: take k xs
|
|
|
|
-------------
|
|
-- STRINGS --
|
|
-------------
|
|
|
|
namespace Strings
|
|
public export
|
|
(++) : (1 x : String) -> (1 y : String) -> String
|
|
x ++ y = prim__strAppend x y
|
|
|
|
public export
|
|
length : String -> Nat
|
|
length str = fromInteger (prim__cast_IntInteger (prim__strLength str))
|
|
|
|
public export
|
|
reverse : String -> String
|
|
reverse = prim__strReverse
|
|
|
|
public export
|
|
substr : Nat -> Nat -> String -> String
|
|
substr s e = prim__strSubstr (prim__cast_IntegerInt (natToInteger s))
|
|
(prim__cast_IntegerInt (natToInteger e))
|
|
|
|
public export
|
|
strCons : Char -> String -> String
|
|
strCons = prim__strCons
|
|
|
|
public export
|
|
strUncons : String -> Maybe (Char, String)
|
|
strUncons "" = Nothing
|
|
strUncons str = Just (prim__strHead str, prim__strTail str)
|
|
|
|
public export
|
|
pack : List Char -> String
|
|
pack [] = ""
|
|
pack (x :: xs) = strCons x (pack xs)
|
|
|
|
export
|
|
fastPack : List Char -> String
|
|
fastPack xs
|
|
= unsafePerformIO (schemeCall String "string" (toFArgs xs))
|
|
where
|
|
toFArgs : List Char -> FArgList
|
|
toFArgs [] = []
|
|
toFArgs (x :: xs) = x :: toFArgs xs
|
|
|
|
public export
|
|
unpack : String -> List Char
|
|
unpack str = unpack' 0 (prim__cast_IntegerInt (natToInteger (length str))) str
|
|
where
|
|
unpack' : Int -> Int -> String -> List Char
|
|
unpack' pos len str
|
|
= if pos >= len
|
|
then []
|
|
else (prim__strIndex str pos) :: unpack' (pos + 1) len str
|
|
|
|
|
|
public export
|
|
Semigroup String where
|
|
(<+>) = (++)
|
|
|
|
public export
|
|
Monoid String where
|
|
neutral = ""
|
|
|
|
----------------
|
|
-- CHARACTERS --
|
|
----------------
|
|
public export
|
|
isUpper : Char -> Bool
|
|
isUpper x = x >= 'A' && x <= 'Z'
|
|
|
|
public export
|
|
isLower : Char -> Bool
|
|
isLower x = x >= 'a' && x <= 'z'
|
|
|
|
public export
|
|
isAlpha : Char -> Bool
|
|
isAlpha x = isUpper x || isLower x
|
|
|
|
public export
|
|
isDigit : Char -> Bool
|
|
isDigit x = (x >= '0' && x <= '9')
|
|
|
|
public export
|
|
isAlphaNum : Char -> Bool
|
|
isAlphaNum x = isDigit x || isAlpha x
|
|
|
|
public export
|
|
isSpace : Char -> Bool
|
|
isSpace x
|
|
= x == ' ' || x == '\t' || x == '\r' ||
|
|
x == '\n' || x == '\f' || x == '\v' ||
|
|
x == '\xa0'
|
|
|
|
public export
|
|
isNL : Char -> Bool
|
|
isNL x = x == '\r' || x == '\n'
|
|
|
|
public export
|
|
toUpper : Char -> Char
|
|
toUpper x
|
|
= if (isLower x)
|
|
then prim__cast_IntChar (prim__cast_CharInt x - 32)
|
|
else x
|
|
|
|
public export
|
|
toLower : Char -> Char
|
|
toLower x
|
|
= if (isUpper x)
|
|
then prim__cast_IntChar (prim__cast_CharInt x + 32)
|
|
else x
|
|
|
|
public export
|
|
isHexDigit : Char -> Bool
|
|
isHexDigit x = elem (toUpper x) hexChars where
|
|
hexChars : List Char
|
|
hexChars
|
|
= ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
|
|
'A', 'B', 'C', 'D', 'E', 'F']
|
|
|
|
public export
|
|
isOctDigit : Char -> Bool
|
|
isOctDigit x = (x >= '0' && x <= '7')
|
|
|
|
public export
|
|
isControl : Char -> Bool
|
|
isControl x
|
|
= (x >= '\x0000' && x <= '\x001f')
|
|
|| (x >= '\x007f' && x <= '\x009f')
|
|
|
|
----------
|
|
-- SHOW --
|
|
----------
|
|
|
|
public export
|
|
data Prec = Open | Equal | Dollar | Backtick | User Nat | PrefixMinus | App
|
|
|
|
public export
|
|
precCon : Prec -> Integer
|
|
precCon Open = 0
|
|
precCon Equal = 1
|
|
precCon Dollar = 2
|
|
precCon Backtick = 3
|
|
precCon (User n) = 4
|
|
precCon PrefixMinus = 5
|
|
precCon App = 6
|
|
|
|
export
|
|
Eq Prec where
|
|
(==) (User m) (User n) = m == n
|
|
(==) x y = precCon x == precCon y
|
|
|
|
export
|
|
Ord Prec where
|
|
compare (User m) (User n) = compare m n
|
|
compare x y = compare (precCon x) (precCon y)
|
|
|
|
public export
|
|
interface Show ty where
|
|
show : (x : ty) -> String
|
|
show x = showPrec Open x
|
|
|
|
showPrec : (d : Prec) -> (x : ty) -> String
|
|
showPrec _ x = show x
|
|
|
|
showParens : (1 b : Bool) -> String -> String
|
|
showParens False s = s
|
|
showParens True s = "(" ++ s ++ ")"
|
|
|
|
export
|
|
showCon : (d : Prec) -> (conName : String) -> (shownArgs : String) -> String
|
|
showCon d conName shownArgs = showParens (d >= App) (conName ++ shownArgs)
|
|
|
|
export
|
|
showArg : Show a => (x : a) -> String
|
|
showArg x = " " ++ showPrec App x
|
|
|
|
firstCharIs : (Char -> Bool) -> String -> Bool
|
|
firstCharIs p "" = False
|
|
firstCharIs p str = p (assert_total (prim__strHead str))
|
|
|
|
primNumShow : (a -> String) -> Prec -> a -> String
|
|
primNumShow f d x = let str = f x in showParens (d >= PrefixMinus && firstCharIs (== '-') str) str
|
|
|
|
export
|
|
Show Int where
|
|
showPrec = primNumShow prim__cast_IntString
|
|
|
|
export
|
|
Show Integer where
|
|
showPrec = primNumShow prim__cast_IntegerString
|
|
|
|
export
|
|
Show Double where
|
|
showPrec = primNumShow prim__cast_DoubleString
|
|
|
|
protectEsc : (Char -> Bool) -> String -> String -> String
|
|
protectEsc p f s = f ++ (if firstCharIs p s then "\\&" else "") ++ s
|
|
|
|
showLitChar : Char -> String -> String
|
|
showLitChar '\a' = ("\\a" ++)
|
|
showLitChar '\b' = ("\\b" ++)
|
|
showLitChar '\f' = ("\\f" ++)
|
|
showLitChar '\n' = ("\\n" ++)
|
|
showLitChar '\r' = ("\\r" ++)
|
|
showLitChar '\t' = ("\\t" ++)
|
|
showLitChar '\v' = ("\\v" ++)
|
|
showLitChar '\SO' = protectEsc (== 'H') "\\SO"
|
|
showLitChar '\DEL' = ("\\DEL" ++)
|
|
showLitChar '\\' = ("\\\\" ++)
|
|
showLitChar c
|
|
= case getAt (fromInteger (prim__cast_CharInteger c)) asciiTab of
|
|
Just k => strCons '\\' . (k ++)
|
|
Nothing => if (c > '\DEL')
|
|
then strCons '\\' . protectEsc isDigit (show (prim__cast_CharInt c))
|
|
else strCons c
|
|
where
|
|
asciiTab : List String
|
|
asciiTab
|
|
= ["NUL", "SOH", "STX", "ETX", "EOT", "ENQ", "ACK", "BEL",
|
|
"BS", "HT", "LF", "VT", "FF", "CR", "SO", "SI",
|
|
"DLE", "DC1", "DC2", "DC3", "DC4", "NAK", "SYN", "ETB",
|
|
"CAN", "EM", "SUB", "ESC", "FS", "GS", "RS", "US"]
|
|
|
|
getAt : Nat -> List String -> Maybe String
|
|
getAt Z (x :: xs) = Just x
|
|
getAt (S k) (x :: xs) = getAt k xs
|
|
getAt _ [] = Nothing
|
|
|
|
showLitString : List Char -> String -> String
|
|
showLitString [] = id
|
|
showLitString ('"'::cs) = ("\\\"" ++) . showLitString cs
|
|
showLitString (c ::cs) = (showLitChar c) . showLitString cs
|
|
|
|
export
|
|
Show Char where
|
|
show '\'' = "'\\''"
|
|
show c = strCons '\'' (showLitChar c "'")
|
|
|
|
export
|
|
Show String where
|
|
show cs = strCons '"' (showLitString (unpack cs) "\"")
|
|
|
|
export
|
|
Show Nat where
|
|
show n = show (the Integer (natToInteger n))
|
|
|
|
export
|
|
Show Bool where
|
|
show True = "True"
|
|
show False = "False"
|
|
|
|
export
|
|
Show () where
|
|
show () = "()"
|
|
|
|
export
|
|
(Show a, Show b) => Show (a, b) where
|
|
show (x, y) = "(" ++ show x ++ ", " ++ show y ++ ")"
|
|
|
|
export
|
|
(Show a, {y : a} -> Show (p y)) => Show (DPair a p) where
|
|
show (y ** prf) = "(" ++ show y ++ " ** " ++ show prf ++ ")"
|
|
|
|
export
|
|
Show a => Show (List a) where
|
|
show xs = "[" ++ show' "" xs ++ "]"
|
|
where
|
|
show' : String -> List a -> String
|
|
show' acc [] = acc
|
|
show' acc [x] = acc ++ show x
|
|
show' acc (x :: xs) = show' (acc ++ show x ++ ", ") xs
|
|
|
|
export
|
|
Show a => Show (Maybe a) where
|
|
showPrec d Nothing = "Nothing"
|
|
showPrec d (Just x) = showCon d "Just" (showArg x)
|
|
|
|
--------
|
|
-- IO --
|
|
--------
|
|
|
|
public export
|
|
Functor IO where
|
|
map f io = io_bind io (\b => io_pure (f b))
|
|
|
|
public export
|
|
Applicative IO where
|
|
pure x = io_pure x
|
|
f <*> a
|
|
= io_bind f (\f' =>
|
|
io_bind a (\a' =>
|
|
io_pure (f' a')))
|
|
|
|
public export
|
|
Monad IO where
|
|
b >>= k = io_bind b k
|
|
|
|
export
|
|
print : Show a => a -> IO ()
|
|
print x = putStr $ show x
|
|
|
|
export
|
|
printLn : Show a => a -> IO ()
|
|
printLn x = putStrLn $ show x
|
|
|
|
-----------------------
|
|
-- DOUBLE PRIMITIVES --
|
|
-----------------------
|
|
|
|
public export
|
|
pi : Double
|
|
pi = 3.14159265358979323846
|
|
|
|
public export
|
|
euler : Double
|
|
euler = 2.7182818284590452354
|
|
|
|
public export
|
|
exp : Double -> Double
|
|
exp x = prim__doubleExp x
|
|
|
|
public export
|
|
log : Double -> Double
|
|
log x = prim__doubleLog x
|
|
|
|
public export
|
|
pow : Double -> Double -> Double
|
|
pow x y = exp (y * log x)
|
|
|
|
public export
|
|
sin : Double -> Double
|
|
sin x = prim__doubleSin x
|
|
|
|
public export
|
|
cos : Double -> Double
|
|
cos x = prim__doubleCos x
|
|
|
|
public export
|
|
tan : Double -> Double
|
|
tan x = prim__doubleTan x
|
|
|
|
public export
|
|
asin : Double -> Double
|
|
asin x = prim__doubleASin x
|
|
|
|
public export
|
|
acos : Double -> Double
|
|
acos x = prim__doubleACos x
|
|
|
|
public export
|
|
atan : Double -> Double
|
|
atan x = prim__doubleATan x
|
|
|
|
public export
|
|
sinh : Double -> Double
|
|
sinh x = (exp x - exp (-x)) / 2
|
|
|
|
public export
|
|
cosh : Double -> Double
|
|
cosh x = (exp x + exp (-x)) / 2
|
|
|
|
public export
|
|
tanh : Double -> Double
|
|
tanh x = sinh x / cosh x
|
|
|
|
public export
|
|
sqrt : Double -> Double
|
|
sqrt x = prim__doubleSqrt x
|
|
|
|
public export
|
|
floor : Double -> Double
|
|
floor x = prim__doubleFloor x
|
|
|
|
public export
|
|
ceiling : Double -> Double
|
|
ceiling x = prim__doubleCeiling x
|
|
|
|
-----------
|
|
-- CASTS --
|
|
-----------
|
|
|
|
-- Casts between primitives only here. They might be lossy.
|
|
|
|
-- To String
|
|
|
|
public export
|
|
interface Cast from to where
|
|
cast : from -> to
|
|
|
|
export
|
|
Cast Int String where
|
|
cast = prim__cast_IntString
|
|
|
|
export
|
|
Cast Integer String where
|
|
cast = prim__cast_IntegerString
|
|
|
|
export
|
|
Cast Char String where
|
|
cast = prim__cast_CharString
|
|
|
|
export
|
|
Cast Double String where
|
|
cast = prim__cast_DoubleString
|
|
|
|
-- To Integer
|
|
|
|
export
|
|
Cast Int Integer where
|
|
cast = prim__cast_IntInteger
|
|
|
|
export
|
|
Cast Char Integer where
|
|
cast = prim__cast_CharInteger
|
|
|
|
export
|
|
Cast Double Integer where
|
|
cast = prim__cast_DoubleInteger
|
|
|
|
export
|
|
Cast String Integer where
|
|
cast = prim__cast_StringInteger
|
|
|
|
export
|
|
Cast Nat Integer where
|
|
cast = natToInteger
|
|
|
|
-- To Int
|
|
|
|
export
|
|
Cast Integer Int where
|
|
cast = prim__cast_IntegerInt
|
|
|
|
export
|
|
Cast Char Int where
|
|
cast = prim__cast_CharInt
|
|
|
|
export
|
|
Cast Double Int where
|
|
cast = prim__cast_DoubleInt
|
|
|
|
export
|
|
Cast String Int where
|
|
cast = prim__cast_StringInt
|
|
|
|
export
|
|
Cast Nat Int where
|
|
cast = fromInteger . natToInteger
|
|
|
|
-- To Char
|
|
|
|
export
|
|
Cast Int Char where
|
|
cast = prim__cast_IntChar
|
|
|
|
-- To Double
|
|
|
|
export
|
|
Cast Int Double where
|
|
cast = prim__cast_IntDouble
|
|
|
|
export
|
|
Cast Integer Double where
|
|
cast = prim__cast_IntegerDouble
|
|
|
|
export
|
|
Cast String Double where
|
|
cast = prim__cast_StringDouble
|
|
|
|
export
|
|
Cast Nat Double where
|
|
cast = prim__cast_IntegerDouble . natToInteger
|
|
|
|
------------
|
|
-- RANGES --
|
|
------------
|
|
|
|
public export
|
|
countFrom : n -> (n -> n) -> Stream n
|
|
countFrom start diff = start :: countFrom (diff start) diff
|
|
|
|
public export
|
|
partial
|
|
takeUntil : (n -> Bool) -> Stream n -> List n
|
|
takeUntil p (x :: xs)
|
|
= if p x
|
|
then [x]
|
|
else x :: takeUntil p xs
|
|
|
|
partial
|
|
takeBefore : (n -> Bool) -> Stream n -> List n
|
|
takeBefore p (x :: xs)
|
|
= if p x
|
|
then []
|
|
else x :: takeBefore p xs
|
|
|
|
public export
|
|
interface Range a where
|
|
rangeFromTo : a -> a -> List a
|
|
rangeFromThenTo : a -> a -> a -> List a
|
|
|
|
rangeFrom : a -> Stream a
|
|
rangeFromThen : a -> a -> Stream a
|
|
|
|
-- Idris 1 went to great lengths to prove that these were total. I don't really
|
|
-- think it's worth going to those lengths! Let's keep it simple and assert.
|
|
export
|
|
Range Nat where
|
|
rangeFromTo x y
|
|
= if y > x
|
|
then assert_total $ takeUntil (>= y) (countFrom x S)
|
|
else if x > y
|
|
then assert_total $ takeUntil (<= y) (countFrom x (\n => minus n 1))
|
|
else [x]
|
|
rangeFromThenTo x y z
|
|
= if y > x
|
|
then (if z > x
|
|
then assert_total $ takeBefore (> z) (countFrom x (plus (minus y x)))
|
|
else [])
|
|
else (if x == y
|
|
then (if x == z then [x] else [])
|
|
else assert_total $ takeBefore (< z) (countFrom x (\n => minus n (minus x y))))
|
|
rangeFrom x = countFrom x S
|
|
rangeFromThen x y
|
|
= if y > x
|
|
then countFrom x (plus (minus y x))
|
|
else countFrom x (\n => minus n (minus x y))
|
|
|
|
export
|
|
(Integral a, Ord a, Neg a) => Range a where
|
|
rangeFromTo x y
|
|
= if y > x
|
|
then assert_total $ takeUntil (>= y) (countFrom x (+1))
|
|
else if x > y
|
|
then assert_total $ takeUntil (<= y) (countFrom x (\x => x-1))
|
|
else [x]
|
|
rangeFromThenTo x y z
|
|
= if (z - x) > (z - y)
|
|
then -- go up
|
|
assert_total $ takeBefore (> z) (countFrom x (+ (y-x)))
|
|
else if (z - x) < (z - y)
|
|
then -- go down
|
|
assert_total $ takeBefore (< z) (countFrom x (\n => n - (x - y)))
|
|
else -- meaningless
|
|
if x == y && y == z
|
|
then [x] else []
|
|
rangeFrom x = countFrom x (1+)
|
|
rangeFromThen x y
|
|
= if y > x
|
|
then countFrom x (+ (y - x))
|
|
else countFrom x (\n => n - (x - y))
|
|
|