Idris2-boot/sample/Interp.yaff
Edwin Brady bc26d74f9b Deal with unresolved constraints
Well-typed interpreter example now works (added in samples)
2019-04-20 22:00:58 +01:00

75 lines
2.3 KiB
Plaintext

data Nat : Type where
Z : Nat
S : Nat -> Nat
plus : Nat -> Nat -> Nat
plus Z $y = y
plus (S $k) $y = S (plus k y)
data Vect : Nat -> Type -> Type where
Nil : Vect Z $a
Cons : $a -> Vect $k $a -> Vect (S $k) $a
append : Vect $n $a -> Vect $m $a -> Vect (plus $n $m) $a
append Nil $ys = ys
append (Cons $x $xs) $ys = Cons x (append xs ys)
data Fin : Nat -> Type where
FZ : Fin (S $k)
FS : Fin $k -> Fin (S $k)
lookup : Fin $k -> Vect $k $ty -> $ty
lookup FZ (Cons $t $ts) = t;
lookup (FS $i) (Cons $t $ts) = lookup i ts;
-- As a larger example, we'll implement the well-typed interpreter.
-- So we'll need to represent the types of our expression language:
data Ty : Type where
Base : Type -> Ty
Arrow : Ty -> Ty -> Ty
-- Ty can be translated to a host language type
interpTy : Ty -> Type
interpTy (Base $t) = t
interpTy (Arrow $s $t) = (argTy : interpTy s) -> interpTy t
data HasType : Fin $k -> Ty -> Vect $k Ty -> Type where
Stop : HasType FZ $t (Cons $t $gam)
Pop : HasType $i $t $gam -> HasType (FS $i) $t (Cons $u $gam)
-- Expressions in our language, indexed by their contexts and types:
data Lang : Vect $k Ty -> Ty -> Type where
Var : HasType $i $t $gam -> Lang $gam $t
Val : (x : interpTy $a) -> Lang $gam $a
Lam : (scope : Lang (Cons $s $gam) $t) -> Lang $gam (Arrow $s $t)
App : Lang $gam (Arrow $s $t) -> Lang $gam $s -> Lang $gam $t;
Op : (interpTy $a -> interpTy $b -> interpTy $c) ->
Lang $gam $a -> Lang $gam $b -> Lang $gam $c
data Env : Vect $n Ty -> Type where
ENil : Env Nil
ECons : (x : interpTy $a) -> Env $xs -> Env (Cons $a $xs)
-- Find a value in an environment
lookupEnv : HasType $i $t $gam -> Env $gam -> interpTy $t
lookupEnv Stop (ECons $x $xs) = x
lookupEnv (Pop $var) (ECons $x $env) = lookupEnv var env
interp : Env $gam -> Lang $gam $t -> interpTy $t
interp $env (Var $i) = lookupEnv i env
interp $env (Val $x) = x
interp $env (App $f $a) = interp env f (interp env a)
interp $env (Lam {s = $s} $scope)
= \var => interp (ECons var env) scope
interp $env (Op $fn $x $y) = fn (interp env x) (interp env y)
testAdd : Lang $gam (Arrow (Base Nat) (Arrow (Base Nat) (Base Nat)))
testAdd = Lam (Lam (Op plus (Var Stop) (Var (Pop Stop))))
main : Nat
main = interp ENil testAdd (S (S Z)) (S (S Z))