Cleaning codebase + initial texture support (https://github.com/enso-org/ide/pull/110)

Original commit: 1b37638dfb
This commit is contained in:
Wojciech Daniło 2020-01-15 15:47:44 +01:00 committed by GitHub
parent 1b6094a126
commit d9d4b8b702
102 changed files with 4271 additions and 2058 deletions

View File

@ -7,6 +7,7 @@ members = [
"lib/core/msdf-sys",
"lib/data",
"lib/eval-tt",
"lib/logger",
"lib/optics",
"lib/prelude",
"lib/code-builder",
@ -15,16 +16,16 @@ members = [
]
[profile.dev]
opt-level = 1
opt-level = 3
lto = false
debug = true
[profile.release]
opt-level = 3
lto = true
# TODO: consider if we need it here. See discussion here: https://github.com/luna/basegl/pull/105
debug = true
debug = false
[profile.bench]
opt-level = 3
lto = true
debug = false

View File

@ -1,21 +1,661 @@
The MIT License
GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (c) 2019 Luna Team, Inc. http://luna-lang.org
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
Preamble
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<https://www.gnu.org/licenses/>.

View File

@ -61,6 +61,13 @@ please use the `npm run prod-server` command.
**Please remember to disable the cache in your browser during development!**
### Minimizing the WASM binary size.
After building the project you can use the `scripts/minimize_wasm.sh` to optimize
the binary and compress it by using `gzip`. After the script is complete, the
final size is printed to stdout. Please note that in order to run the script, the
[Binaryen](https://github.com/WebAssembly/binaryen) toolkit has to be installed
on your system.
### Running tests
The sources use both unit tests and web test, which are run in a browser and
produce visual results. To run them, use the `scripts/test.sh` script and follow

View File

@ -25,6 +25,6 @@ module.exports = {
},
performance: {
hints: 'error',
maxAssetSize: 3.8 * mb,
maxAssetSize: 4.0 * mb,
},
};

View File

@ -8,35 +8,37 @@ edition = "2018"
crate-type = ["rlib", "cdylib"]
[features]
default = ["no_unboxed_callbacks"]
default = ["statistics", "no_unboxed_callbacks"]
statistics = []
no_unboxed_callbacks = []
[dependencies]
data = { version = "0.1.0" , path = "../data" }
basegl-prelude = { version = "0.1.0" , path = "../prelude" }
eval-tt = { version = "0.1.0" , path = "../eval-tt" }
optics = { version = "0.1.0" , path = "../optics" }
basegl-system-web = { version = "0.1.0" , path = "../system/web" }
basegl-core-embedded-fonts = { version = "0.1.0" , path = "embedded-fonts" }
basegl-core-msdf-sys = { version = "0.1.0" , path = "msdf-sys" }
shapely = { version = "0.1.0" , path = "../shapely/impl" }
basegl-prelude = { version = "0.1.0" , path = "../prelude" }
basegl-system-web = { version = "0.1.0" , path = "../system/web" }
code-builder = { version = "0.1.0" , path = "../code-builder" }
wasm-bindgen = { version = "^0.2" , features = ["nightly"] }
js-sys = { version = "0.3.28" }
failure = { version = "0.1.5" }
derive_more = { version = "0.15.0" }
shrinkwraprs = { version = "0.3.0" }
itertools = { version = "0.8" }
nalgebra = { version = "0.19.0" }
data = { version = "0.1.0" , path = "../data" }
eval-tt = { version = "0.1.0" , path = "../eval-tt" }
logger = { version = "0.1.0" , path = "../logger" }
optics = { version = "0.1.0" , path = "../optics" }
shapely = { version = "0.1.0" , path = "../shapely/impl" }
bit_field = { version = "0.10.0" }
paste = { version = "0.1.6" }
enum_dispatch = { version = "0.2.0" }
typenum = { version = "1.11.2" }
rustc-hash = { version = "1.0.1" }
console_error_panic_hook = { version = "0.1.6" }
num_enum = { version = "0.4.2" }
smallvec = { version = "1.0.0" }
enum_dispatch = { version = "0.2.0" }
failure = { version = "0.1.5" }
Inflector = { version = "0.11.4" }
itertools = { version = "0.8" }
js-sys = { version = "0.3.28" }
nalgebra = { version = "0.19.0" }
num_enum = { version = "0.4.2" }
paste = { version = "0.1.6" }
rustc-hash = { version = "1.0.1" }
shrinkwraprs = { version = "0.3.0" }
smallvec = { version = "1.0.0" }
typenum = { version = "1.11.2" }
wasm-bindgen = { version = "^0.2" , features = ["nightly"] }
[dependencies.web-sys]
version = "0.3.4"
@ -50,7 +52,10 @@ features = [
'HtmlCanvasElement',
'HtmlCollection',
'HtmlElement',
'HtmlImageElement',
'Location',
'Node',
'Url',
'WebGlBuffer',
'WebGlProgram',
'WebGlRenderingContext',

View File

@ -8,7 +8,6 @@ use crate::prelude::*;
use crate::animation::animator::Animator;
use crate::animation::animator::fixed_step::IntervalCounter;
use crate::math::utils::linear_interpolation;
use crate::animation::position::HasPosition;
use crate::system::web::animation_frame_loop::AnimationFrameLoop;
@ -20,6 +19,7 @@ use nalgebra::zero;
// ====================
// === PhysicsForce ===
// ====================
/// A trait for implementing 3 dimensional forces.
pub trait PhysicsForce {
fn force(&self, kinematics:&KinematicsProperties) -> Vector3<f32>;
@ -291,3 +291,19 @@ fn simulate(properties:&mut PhysicsProperties, delta_ms:f32) -> Vector3<f32> {
});
properties.kinematics().position()
}
// =============
// === Utils ===
// =============
use nalgebra::clamp;
use std::ops::Mul;
use std::ops::Add;
pub fn linear_interpolation<T>(a:T, b:T, t:f32) -> T
where T : Mul<f32, Output = T> + Add<T, Output = T> {
let t = clamp(t, 0.0, 1.0);
a * (1.0 - t) + b * t
}

View File

@ -1,6 +1,4 @@
#![allow(missing_docs)]
//! Root module for all control abstractions, like event loops or event systems.
pub mod callback;
pub mod mouse_manager;
pub mod io;

View File

@ -8,6 +8,18 @@ use crate::prelude::*;
// === Callback ===
// ================
/// Immutable callback type.
pub trait CallbackFn = Fn() + 'static;
/// Immutable callback object.
pub type Callback = Box<dyn CallbackFn>;
/// Callback object smart constructor.
#[allow(non_snake_case)]
pub fn Callback<F:CallbackFn>(f:F) -> Callback {
Box::new(f)
}
/// Callback accepted by the `CallbackRegistry`.
pub trait CallbackMut = FnMut() + 'static;

View File

@ -0,0 +1,3 @@
//! Root module for all Input / Output events and devices.
pub mod mouse;

View File

@ -1,4 +1,6 @@
use crate::display::render::css3d::DOMContainer;
#![allow(missing_docs)]
use crate::system::web::dom::DOMContainer;
use crate::system::web::dyn_into;
use crate::system::web::Result;
use crate::system::web::Error;

View File

@ -4,3 +4,5 @@ pub mod container;
pub mod dirty;
pub mod function;
pub mod seq;
pub use data::opt_vec::OptVec;

View File

@ -9,8 +9,6 @@
use crate::prelude::*;
use crate::data::function::callback::*;
use crate::system::web::group;
use crate::system::web::Logger;
use rustc_hash::FxHashSet;
use std::hash::Hash;
use std::mem;
@ -70,17 +68,17 @@ use traits::*;
/// implements public API for working with dirty flags.
#[derive(Derivative)]
#[derivative(Debug(bound="T:Debug"))]
pub struct DirtyFlag<T,OnSet> {
pub struct DirtyFlag<T,OnMut> {
pub data : T,
on_set : Callback<OnSet>,
on_set : Function<OnMut>,
logger : Logger,
}
// === Basics ===
impl<OnSet,T:Default> DirtyFlag<T,OnSet> {
pub fn new(logger: Logger, on_set:Callback<OnSet>) -> Self {
impl<OnMut,T:Default> DirtyFlag<T,OnMut> {
pub fn new(logger: Logger, on_set: Function<OnMut>) -> Self {
let data = default();
Self {data,on_set,logger}
}
@ -93,36 +91,36 @@ impl<OnSet,T:Default> DirtyFlag<T,OnSet> {
// === Arguments ===
impl<T:HasArg,OnSet>
HasArg for DirtyFlag<T,OnSet> {
impl<T:HasArg,OnMut>
HasArg for DirtyFlag<T,OnMut> {
type Arg = Arg<T>;
}
// === Global Operations ===
impl<T:HasCheckAll,OnSet>
HasCheckAll for DirtyFlag<T,OnSet> {
impl<T:HasCheckAll,OnMut>
HasCheckAll for DirtyFlag<T,OnMut> {
fn check_all(&self) -> bool { self.data.check_all() }
}
impl<T:HasUnsetAll,OnSet>
HasUnsetAll for DirtyFlag<T,OnSet> {
impl<T:HasUnsetAll,OnMut>
HasUnsetAll for DirtyFlag<T,OnMut> {
fn unset_all(&mut self) { self.data.unset_all() }
}
// === Check ===
impl<T:DirtyFlagOps0,OnSet>
HasCheck0 for DirtyFlag<T,OnSet> {
impl<T:DirtyFlagOps0,OnMut>
HasCheck0 for DirtyFlag<T,OnMut> {
fn check(&self) -> bool {
self.data.check()
}
}
impl<T:DirtyFlagOps1,OnSet>
HasCheck1 for DirtyFlag<T,OnSet> {
impl<T:DirtyFlagOps1,OnMut>
HasCheck1 for DirtyFlag<T,OnMut> {
fn check(&self, arg: &Self::Arg) -> bool {
self.data.check(arg)
}
@ -131,8 +129,8 @@ HasCheck1 for DirtyFlag<T,OnSet> {
// === Set ===
impl<T:DirtyFlagOps0,OnSet:Callback0>
HasSet0 for DirtyFlag<T,OnSet> {
impl<T:DirtyFlagOps0,OnMut:Function0>
HasSet0 for DirtyFlag<T,OnMut> {
fn set(&mut self) {
let is_set = self.data.check_all();
if !is_set {
@ -144,14 +142,14 @@ HasSet0 for DirtyFlag<T,OnSet> {
}
}
impl<T:DirtyFlagOps1,OnSet:Callback0>
HasSet1 for DirtyFlag<T,OnSet> {
impl<T:DirtyFlagOps1,OnMut:Function0>
HasSet1 for DirtyFlag<T,OnMut> {
fn set(&mut self, arg: Self::Arg) {
let first_set = !self.check_all();
let is_set = self.data.check(&arg);
if !is_set {
self.data.set(arg);
group!(self.logger, format!("Setting to {}.", self.data), {
group!(self.logger, "Setting to {self.data}.", {
if first_set { self.on_set.call() }
})
}
@ -161,19 +159,19 @@ HasSet1 for DirtyFlag<T,OnSet> {
// === Unset ===
impl<T:HasUnset0,OnSet>
HasUnset0 for DirtyFlag<T,OnSet> {
impl<T:HasUnset0,OnMut>
HasUnset0 for DirtyFlag<T,OnMut> {
fn unset(&mut self) {
self.logger.info("Unsetting.");
info!(self.logger, "Unsetting.");
self.data.unset()
}
}
impl<T:HasUnset1,OnSet>
HasUnset1 for DirtyFlag<T,OnSet>
impl<T:HasUnset1,OnMut>
HasUnset1 for DirtyFlag<T,OnMut>
where Arg<T>:Display {
fn unset(&mut self, arg: &Self::Arg) {
self.logger.info(|| format!("Unsetting {}.", arg));
info!(self.logger, "Unsetting {arg}.");
self.data.unset(arg)
}
}
@ -191,17 +189,17 @@ HasUnset1 for DirtyFlag<T,OnSet>
#[derive(Derivative)]
#[derivative(Debug(bound="T:Debug"))]
#[derivative(Clone(bound=""))]
pub struct SharedDirtyFlag<T,OnSet> {
rc: Rc<RefCell<DirtyFlag<T,OnSet>>>
pub struct SharedDirtyFlag<T,OnMut> {
rc: Rc<RefCell<DirtyFlag<T,OnMut>>>
}
// === API ===
impl<T:Default,OnSet>
SharedDirtyFlag<T,OnSet> {
pub fn new(logger: Logger, on_set: OnSet) -> Self {
let callback = Callback(on_set);
impl<T:Default,OnMut>
SharedDirtyFlag<T,OnMut> {
pub fn new(logger:Logger, on_set:OnMut) -> Self {
let callback = Function(on_set);
let rc = Rc::new(RefCell::new(DirtyFlag::new(logger,callback)));
Self { rc }
}
@ -211,23 +209,23 @@ SharedDirtyFlag<T,OnSet> {
}
}
impl<T,OnSet>
SharedDirtyFlag<T,OnSet> {
impl<T,OnMut>
SharedDirtyFlag<T,OnMut> {
pub fn clone_ref(&self) -> Self {
self.clone()
}
}
impl<T,OnSet>
SharedDirtyFlag<T,OnSet> {
pub fn set_callback(&self, on_set:OnSet) {
self.rc.borrow_mut().on_set = Callback(on_set);
impl<T,OnMut>
SharedDirtyFlag<T,OnMut> {
pub fn set_callback(&self, on_set:OnMut) {
self.rc.borrow_mut().on_set = Function(on_set);
}
}
impl<T,OnSet>
From<Rc<RefCell<DirtyFlag<T,OnSet>>>> for SharedDirtyFlag<T,OnSet> {
fn from(rc: Rc<RefCell<DirtyFlag<T,OnSet>>>) -> Self {
impl<T,OnMut>
From<Rc<RefCell<DirtyFlag<T,OnMut>>>> for SharedDirtyFlag<T,OnMut> {
fn from(rc: Rc<RefCell<DirtyFlag<T,OnMut>>>) -> Self {
Self {rc}
}
}
@ -235,22 +233,22 @@ From<Rc<RefCell<DirtyFlag<T,OnSet>>>> for SharedDirtyFlag<T,OnSet> {
// === Arg ===
impl<T:HasArg,OnSet> HasArg for SharedDirtyFlag<T,OnSet> {
impl<T:HasArg,OnMut> HasArg for SharedDirtyFlag<T,OnMut> {
type Arg = Arg<T>;
}
// === Global Operations ===
impl<T:HasUnsetAll,OnSet>
SharedHasUnsetAll for SharedDirtyFlag<T,OnSet> {
impl<T:HasUnsetAll,OnMut>
SharedHasUnsetAll for SharedDirtyFlag<T,OnMut> {
fn unset_all(&self) {
self.rc.borrow_mut().unset_all()
}
}
impl<T:HasCheckAll,OnSet>
HasCheckAll for SharedDirtyFlag<T,OnSet> {
impl<T:HasCheckAll,OnMut>
HasCheckAll for SharedDirtyFlag<T,OnMut> {
fn check_all(&self) -> bool {
self.rc.borrow().check_all()
}
@ -258,39 +256,39 @@ HasCheckAll for SharedDirtyFlag<T,OnSet> {
// === Check ===
impl<T:DirtyFlagOps0,OnSet>
HasCheck0 for SharedDirtyFlag<T,OnSet> {
impl<T:DirtyFlagOps0,OnMut>
HasCheck0 for SharedDirtyFlag<T,OnMut> {
fn check (&self) -> bool { self.rc.borrow().check() }
}
impl<T:DirtyFlagOps1,OnSet>
HasCheck1 for SharedDirtyFlag<T,OnSet> {
impl<T:DirtyFlagOps1,OnMut>
HasCheck1 for SharedDirtyFlag<T,OnMut> {
fn check (&self, arg:&Arg<T>) -> bool { self.rc.borrow().check(arg) }
}
// === Set ===
impl<T:DirtyFlagOps0,OnSet:Callback0>
SharedHasSet0 for SharedDirtyFlag<T,OnSet> {
impl<T:DirtyFlagOps0,OnMut:Function0>
SharedHasSet0 for SharedDirtyFlag<T,OnMut> {
fn set (&self) { self.rc.borrow_mut().set() }
}
impl<T:DirtyFlagOps1,OnSet:Callback0>
SharedHasSet1 for SharedDirtyFlag<T,OnSet> {
impl<T:DirtyFlagOps1,OnMut:Function0>
SharedHasSet1 for SharedDirtyFlag<T,OnMut> {
fn set (&self, arg: Arg<T>) { self.rc.borrow_mut().set(arg) }
}
// === Unset ===
impl<T:HasUnset0,OnSet>
SharedHasUnset0 for SharedDirtyFlag<T,OnSet> {
impl<T:HasUnset0,OnMut>
SharedHasUnset0 for SharedDirtyFlag<T,OnMut> {
fn unset(&self) {
self.rc.borrow_mut().unset()
}
}
impl<T:HasUnset1,OnSet>
SharedHasUnset1 for SharedDirtyFlag<T,OnSet> where Arg<T>:Display {
impl<T:HasUnset1,OnMut>
SharedHasUnset1 for SharedDirtyFlag<T,OnMut> where Arg<T>:Display {
fn unset(&self, arg:&Self::Arg) {
self.rc.borrow_mut().unset(arg)
}
@ -309,9 +307,9 @@ SharedHasUnset1 for SharedDirtyFlag<T,OnSet> where Arg<T>:Display {
/// The on / off dirty flag. If you need a simple dirty / clean switch, this one
/// is the right choice.
pub type Bool <OnSet=()> = DirtyFlag <BoolData,OnSet>;
pub type SharedBool <OnSet=()> = SharedDirtyFlag <BoolData,OnSet>;
pub trait BoolCtx <OnSet> = where OnSet: Callback0;
pub type Bool <OnMut=()> = DirtyFlag <BoolData,OnMut>;
pub type SharedBool <OnMut=()> = SharedDirtyFlag <BoolData,OnMut>;
pub trait BoolCtx <OnMut> = where OnMut:Function0;
#[derive(Debug,Display,Default)]
pub struct BoolData { is_dirty: bool }
@ -330,9 +328,9 @@ impl HasUnset0 for BoolData { fn unset (&mut self) { self.is_dirty
/// Dirty flag which keeps information about a range of dirty items. It does not track items
/// separately, nor you are allowed to keep multiple ranges in it. Just a single value range.
pub type Range <Ix,OnSet> = DirtyFlag <RangeData<Ix>,OnSet>;
pub type SharedRange <Ix,OnSet> = SharedDirtyFlag <RangeData<Ix>,OnSet>;
pub trait RangeCtx <OnSet> = where OnSet: Callback0;
pub type Range <Ix,OnMut> = DirtyFlag <RangeData<Ix>,OnMut>;
pub type SharedRange <Ix,OnMut> = SharedDirtyFlag <RangeData<Ix>,OnMut>;
pub trait RangeCtx <OnMut> = where OnMut:Function0;
pub trait RangeIx = PartialOrd + Copy + Debug;
#[derive(Debug,Default)]
@ -384,9 +382,9 @@ impl<Ix:RangeIx> Display for RangeData<Ix> {
/// counterpart. Please note that it uses `FxHashSet` under the hood, so there
/// are no guarantees regarding attack-proof hashing algorithm here.
pub type Set <Ix,OnSet=()> = DirtyFlag <SetData<Ix>,OnSet>;
pub type SharedSet <Ix,OnSet=()> = SharedDirtyFlag <SetData<Ix>,OnSet>;
pub trait SetCtx <OnSet> = where OnSet: Callback0;
pub type Set <Ix,OnMut=()> = DirtyFlag <SetData<Ix>,OnMut>;
pub type SharedSet <Ix,OnMut=()> = SharedDirtyFlag <SetData<Ix>,OnMut>;
pub trait SetCtx <OnMut> = where OnMut:Function0;
pub trait SetItem = Eq + Hash + Debug;
#[derive(Derivative,Shrinkwrap)]
@ -442,16 +440,16 @@ use bit_field::BitField as BF;
/// items must be a plain enumerator implementing `Into<usize>`. The data is
/// stored as an efficient `BitField` under the hood.
pub type Enum <Prim,T,OnSet> = DirtyFlag <EnumData<Prim,T>,OnSet>;
pub type SharedEnum <Prim,T,OnSet> = SharedDirtyFlag <EnumData<Prim,T>,OnSet>;
pub trait EnumCtx <OnSet> = where OnSet: Callback0;
pub type Enum <Prim,T,OnMut> = DirtyFlag <EnumData<Prim,T>,OnMut>;
pub type SharedEnum <Prim,T,OnMut> = SharedDirtyFlag <EnumData<Prim,T>,OnMut>;
pub trait EnumCtx <OnMut> = where OnMut:Function0;
pub trait EnumBase = Default + PartialEq + Copy + BF;
pub trait EnumElem = Copy+Into<usize>;
/// Dirty flag which keeps dirty indexes in a `BitField` under the hood.
pub type BitField <Prim,OnSet> = Enum <Prim,usize,OnSet>;
pub type SharedBitField <Prim,OnSet> = SharedEnum <Prim,usize,OnSet>;
pub type BitField <Prim,OnMut> = Enum <Prim,usize,OnMut>;
pub type SharedBitField <Prim,OnMut> = SharedEnum <Prim,usize,OnMut>;
#[derive(Derivative)]
#[derivative(Debug(bound="Prim:Debug"))]

View File

@ -3,6 +3,4 @@
#[warn(missing_docs)]
pub mod callback;
#[warn(missing_docs)]
pub mod closure;
#[warn(missing_docs)]
pub mod nop;
pub mod procedure;

View File

@ -4,48 +4,17 @@ use crate::prelude::*;
use std::fmt;
// =================================================================================================
// =================================================================================================
// =================================================================================================
// TODO
//
// We should refactor the whole file as soon as this gets resolved:
// https://github.com/rust-lang/rust/issues/65918
//
// Then, we will be able to use unboxed closures (see the closure.rs file) and there would not be
// a need anymore for the closures to be in `WithPhantom<Rc<dyn Fn(...)>,P>` type. It dereferences
// to the first type param, however, `Rc<dyn Fn(...)>` does not implement `Fn` trait (as its
// superclasses could not be implemented). We are using `Rc` to be able to clone the closure.
// We could use `Box` instead but cloning boxed dyn closures is hard. Using unboxed closures will
// solve all of these.
//
// After the error is solved we could define a NOP type which implements the Fn* traits and use it
// instead of `()` when necessary. Then we would be able to use `Fn(...)` whenever we use
// `CallbackN(...)`.
// =================================================================================================
// =================================================================================================
// =================================================================================================
// =====================
// === Callback Type ===
// =====================
// =============
// === Types ===
// =============
pub type NoCallback = ();
#[derive(Shrinkwrap)]
#[shrinkwrap(mutable)]
pub struct Callback<Func>(pub Func);
pub struct Function<Func>(pub Func);
//impl<Func> Default for Callback<Func> {
// fn default() -> Self {
// Callback(NOP::nop())
// }
//}
impl<Func> Debug for Callback<Func> {
impl<Func> Debug for Function<Func> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Callback")
}
@ -53,38 +22,22 @@ impl<Func> Debug for Callback<Func> {
// ==========================
// === Callback Interface ===
// ==========================
// =================
// === Instances ===
// =================
pub trait Callback0: 'static {
pub trait Function0 {
fn call(&mut self);
}
pub trait Callback1<Arg1> {
pub trait Function1<Arg1> {
fn call(&mut self, arg1:Arg1);
}
//
//pub trait Callback2<Arg1,Arg2> {
// fn call(&mut self, arg1:Arg1, arg2:Arg2);
//}
//
//pub trait Callback3<Arg1,Arg2,Arg3> {
// fn call(&mut self, arg1:Arg1, arg2:Arg2, arg3:Arg3);
//}
//
//pub trait Callback4<Arg1,Arg2,Arg3,Arg4> {
// fn call(&mut self, arg1:Arg1, arg2:Arg2, arg3:Arg3, arg4:Arg4);
//}
//
//pub trait Callback5<Arg1,Arg2,Arg3,Arg4,Arg5> {
// fn call(&mut self, arg1:Arg1, arg2:Arg2, arg3:Arg3, arg4:Arg4, arg5:Arg5);
//}
// === Unit Implementations ===
impl<T:Callback0> Callback0 for Option<T> {
impl<T:Function0> Function0 for Option<T> {
fn call(&mut self) {
self.iter_mut().for_each(|t| {
t.call()
@ -92,81 +45,25 @@ impl<T:Callback0> Callback0 for Option<T> {
}
}
impl Callback0 for () {
impl Function0 for () {
fn call(&mut self) {}
}
impl<Arg1> Callback1<Arg1> for () {
impl<Arg1> Function1<Arg1> for () {
fn call(&mut self, _arg1:Arg1) {}
}
//impl<Arg1,Arg2> Callback2<Arg1,Arg2> for () {
// fn call(&mut self, _arg1:Arg1, _arg2:Arg2) {}
//}
//
//impl<Arg1,Arg2,Arg3> Callback3<Arg1,Arg2,Arg3> for () {
// fn call(&mut self, _arg1:Arg1, _arg2:Arg2, _arg3:Arg3) {}
//}
//
//impl<Arg1,Arg2,Arg3,Arg4> Callback4<Arg1,Arg2,Arg3,Arg4> for () {
// fn call(&mut self, _arg1:Arg1, _arg2:Arg2, _arg3:Arg3, _arg4:Arg4) {}
//}
//
//impl<Arg1,Arg2,Arg3,Arg4,Arg5> Callback5<Arg1,Arg2,Arg3,Arg4,Arg5> for () {
// fn call(&mut self, _arg1:Arg1, _arg2:Arg2, _arg3:Arg3, _arg4:Arg4, _arg5:Arg5) {}
//}
// === FnMut Implementations ===
// FIXME: How to make it more generic?
impl<T: 'static, P: 'static> Callback0 for WithPhantom<Rc<dyn Fn() -> T>, P> {
fn call(&mut self) {
(self)();
}
}
// FIXME: How to make it more generic?
impl<Arg1, T: 'static, P: 'static> Callback1<Arg1> for WithPhantom<Rc<dyn Fn(Arg1) -> T>, P> {
fn call(&mut self, arg1:Arg1) {
(self)(arg1);
}
}
impl<F: FnMut() -> T + 'static, T> Callback0 for F {
impl<F: FnMut() -> T, T> Function0 for F {
fn call(&mut self) {
self();
}
}
impl<Arg1, F: FnMut(Arg1) -> T, T> Callback1<Arg1> for F {
impl<Arg1, F:FnMut(Arg1) -> T, T> Function1<Arg1> for F {
fn call(&mut self, arg1:Arg1) {
self(arg1);
}
}
//impl<Arg1,Arg2, F: FnMut(Arg1,Arg2) -> T, T> Callback2<Arg1,Arg2> for F {
// fn call(&mut self, arg1:Arg1, arg2:Arg2) {
// self(arg1, arg2);
// }
//}
//
//impl<Arg1,Arg2,Arg3, F: FnMut(Arg1,Arg2,Arg3) -> T, T> Callback3<Arg1,Arg2,Arg3> for F {
// fn call(&mut self, arg1:Arg1, arg2:Arg2, arg3:Arg3) {
// self(arg1, arg2, arg3);
// }
//}
//
//impl<Arg1,Arg2,Arg3,Arg4, F: FnMut(Arg1,Arg2,Arg3,Arg4) -> T, T>
// Callback4<Arg1,Arg2,Arg3,Arg4> for F {
// fn call(&mut self, arg1:Arg1, arg2:Arg2, arg3:Arg3, arg4:Arg4) {
// self(arg1, arg2, arg3, arg4);
// }
//}
//
//impl<Arg1,Arg2,Arg3,Arg4,Arg5, F: FnMut(Arg1,Arg2,Arg3,Arg4,Arg5) -> T, T>
// Callback5<Arg1,Arg2,Arg3,Arg4,Arg5> for F {
// fn call(&mut self, arg1:Arg1, arg2:Arg2, arg3:Arg3, arg4:Arg4, arg5:Arg5) {
// self(arg1, arg2, arg3, arg4, arg5);
// }
//}

View File

@ -1,15 +0,0 @@
#![allow(missing_docs)]
// ===========
// === NOP ===
// ===========
pub trait NOP { fn nop() -> Self; }
impl NOP for () { fn nop() -> Self { } }
impl NOP for fn() { fn nop() -> Self { || {} } }
impl<T1> NOP for fn(T1) { fn nop() -> Self { |_| {} } }
impl<T1,T2> NOP for fn(T1,T2) { fn nop() -> Self { |_, _| {} } }
impl<T1,T2,T3> NOP for fn(T1,T2,T3) { fn nop() -> Self { |_, _, _| {} } }
impl<T1,T2,T3,T4> NOP for fn(T1,T2,T3,T4) { fn nop() -> Self { |_, _, _, _| {} } }
impl<T1,T2,T3,T4,T5> NOP for fn(T1,T2,T3,T4,T5) { fn nop() -> Self { |_, _, _, _, _| {} } }

View File

@ -72,100 +72,28 @@ macro_rules! closure {
$body:tt
) => { paste::item! {
#[cfg(not(feature = "no_unboxed_callbacks"))]
/// Closure type.
pub type $type<$($param),*> =
impl Fn($($larg_type),*) + Clone;
#[cfg(not(feature = "no_unboxed_callbacks"))]
/// Closure constructor.
pub fn $name<$($param:$param_type),*>
($($arg:$arg_type),*) -> $type<$($param),*> {
move |$($larg),*| $body
}
#[cfg(feature = "no_unboxed_callbacks")]
/// Closure type.
pub type $type<$($param),*> =
WithPhantom<Rc<dyn Fn($($larg_type),*)>, $($param),*>;
Box<dyn Fn($($larg_type),*)>;
#[cfg(feature = "no_unboxed_callbacks")]
/// Closure constructor.
pub fn $name<$($param:$param_type),*>
($($arg:$arg_type),*)
-> WithPhantom<Rc<dyn Fn($($larg_type),*)>, $($param),*> {
WithPhantom::new(Rc::new(move |$($larg),*| $body))
-> Box<dyn Fn($($larg_type),*)> {
Box::new(move |$($larg),*| $body)
}
}};
}
// ===============
// === Promote ===
// ===============
/// Promotion of closures is a complex topic. Consider the following code:
///
/// ```compile_fail
/// pub type Buffer<T,OnResize> = Observable<Vec<T>, BufferOnSet<OnSet>>;
///
/// closure! {
/// fn buffer_on_set<C:Callback0> (dirty: ResizeDirty<C>) ->
/// BufferOnSet { || dirty.set() }
/// }
/// ```
///
/// It defines an unboxed closure with type `BufferOnSet<C>`, where `C` is
/// potentially another closure which is called when the buffer was set for the
/// first time (this is how the `dirty` flag behaves).
///
/// In another file we've got:
///
/// ```compile_fail
/// closure! {
/// fn attribute_on_set<C:Callback0> (dirty:AttributeDirty<C>, ix: usize) ->
/// AttributeOnSet { || dirty.set(ix) }
/// }
/// ```
///
/// And we would like to promote the `Buffer` type:
///
/// ```compile_fail
/// pub type Buffer<T,C> = file1::Buffer<T,AttributeOnSet<C>>;
/// ```
///
/// This macro automates such promotion. See its usages to learn more.
#[macro_export]
macro_rules! promote {
// === Final expansion, closure names provided in double braces. ===
([[$($closure:ident),*]] $module:ident [$name:ident<$($param:ident),*>]) =>{
pub type $name<$($param),*> =
$module::$name <$($param),*,$($closure),*>;
};
([[$($closure:ident),*]] $module:ident [$name:ident]) => {
pub type $name = $module::$name <$($closure),*>;
};
// === Intermediate expansion. ===
([$($closure:ident),*] $module:ident [$name:ident<$($param:ident),*>]) => {
pub type $name<$($param),*,Callback> =
$module::$name <$($param),*,$($closure<Callback>),*>;
};
([$($closure:ident),*] $module:ident [$name:ident]) => {
pub type $name<Callback> =
$module::$name <$($closure<Callback>),*>;
};
// === Mapped promotion ===
($gens:tt $module:ident [$($targets:tt)*]) => {
eval_tt::eval!{ promote_all($gens,$module,split_comma([$($targets)*])) }
};
}
#[macro_export]
/// Promote all provided types to the current scope.
macro_rules! promote_all {
([$gens:tt] [$module:ident] [$($target:tt)*]) => {
$(promote!{$gens $module $target})*
};
}

View File

@ -1,7 +1,9 @@
#![allow(missing_docs)]
use crate::prelude::*;
use crate::data::function::callback::{Callback0,Callback1};
use crate::data::function::callback::Function0;
use crate::data::function::callback::Function1;
// ==================
@ -12,7 +14,7 @@ use crate::data::function::callback::{Callback0,Callback1};
/// structure changes.
#[derive(Shrinkwrap)]
#[derive(Derivative)]
#[derivative(Debug(bound="T:Debug"))]
#[derivative(Clone,Debug(bound="T:Debug"))]
pub struct Observable<T,OnMut,OnResize> {
#[shrinkwrap(main_field)]
pub data: T,
@ -39,7 +41,7 @@ Index<Ix> for Observable<T,OnMut,OnResize> {
}
}
impl<T:IndexMut<Ix>,OnMut:Callback1<Ix>,OnResize,Ix:Copy>
impl<T:IndexMut<Ix>, OnMut: Function1<Ix> ,OnResize, Ix:Copy>
IndexMut<Ix> for Observable<T,OnMut,OnResize> {
#[inline]
fn index_mut(&mut self, index:Ix) -> &mut Self::Output {
@ -48,7 +50,7 @@ IndexMut<Ix> for Observable<T,OnMut,OnResize> {
}
}
impl <T:Extend<S>,S,OnMut,OnResize:Callback0>
impl <T:Extend<S>,S,OnMut,OnResize:Function0>
Extend<S> for Observable<T,OnMut,OnResize> {
#[inline]
fn extend<I:IntoIterator<Item=S>>(&mut self, iter:I) {

View File

@ -2,3 +2,6 @@
pub mod monitor;
pub mod stats;
pub use monitor::*;
pub use stats::*;

View File

@ -44,7 +44,6 @@ macro_rules! gen_stats {
}
impl Stats { $(
/// Field getter.
pub fn $field(&self) -> $field_type {
self.rc.borrow().$field
@ -98,3 +97,14 @@ impl StatsData {
self.data_upload_size = 0;
}
}
/// Keeps the body if the `statistics` compilation flag was enabled.
#[macro_export]
macro_rules! if_compiled_with_stats {
($($tok:tt)*) => {
#[cfg(feature = "statistics")]
{$($tok)*}
#[cfg(not(feature = "statistics"))]
{}
};
}

View File

@ -5,6 +5,5 @@ pub mod camera;
pub mod shape;
pub mod symbol;
pub mod object;
pub mod render;
pub mod world;
pub mod navigation;

View File

@ -3,4 +3,4 @@
#[warn(missing_docs)]
pub mod camera2d;
pub use camera2d::Camera2D;
pub use camera2d::Camera2d;

View File

@ -8,7 +8,8 @@ use crate::prelude::*;
use crate::data::dirty;
use crate::display::object::DisplayObjectData;
use nalgebra::{Vector3, Matrix4, Perspective3};
use basegl_system_web::Logger;
use crate::system::gpu::data::uniform::Uniform;
use crate::system::gpu::data::uniform::UniformScope;
use crate::data::dirty::traits::*;
@ -104,15 +105,16 @@ impl Default for Clipping {
// ====================
// === Camera2DData ===
// === Camera2dData ===
// ====================
/// Internal `Camera2D` representation. Please see `Camera2D` for full documentation.
/// Internal `Camera2d` representation. Please see `Camera2d` for full documentation.
#[derive(Clone,Debug)]
pub struct Camera2DData {
pub struct Camera2dData {
pub transform : DisplayObjectData,
screen : Screen,
zoom : f32,
zoom_uniform : Uniform<f32>,
native_z : f32,
alignment : Alignment,
projection : Projection,
@ -127,8 +129,8 @@ pub struct Camera2DData {
type ProjectionDirty = dirty::SharedBool<()>;
type TransformDirty2 = dirty::SharedBool<()>;
impl Camera2DData {
pub fn new(logger: Logger) -> Self {
impl Camera2dData {
pub fn new(logger:Logger, globals:&UniformScope) -> Self {
let screen = default();
let projection = default();
let clipping = default();
@ -142,10 +144,11 @@ impl Camera2DData {
let transform_dirty = TransformDirty2::new(logger.sub("transform_dirty"),());
let transform_dirty_copy = transform_dirty.clone();
let transform = DisplayObjectData::new(logger);
let zoom_uniform = globals.add_or_panic("zoom",1.0);
transform.set_on_updated(move |_| { transform_dirty_copy.set(); });
transform.mod_position(|p| p.z = 1.0);
projection_dirty.set();
Self {transform,screen,projection,clipping,alignment,zoom,native_z,view_matrix
Self {transform,screen,projection,clipping,alignment,zoom,zoom_uniform,native_z,view_matrix
,projection_matrix,view_projection_matrix,projection_dirty,transform_dirty}
}
@ -187,6 +190,7 @@ impl Camera2DData {
}
if changed {
self.view_projection_matrix = self.projection_matrix * self.view_matrix;
self.zoom_uniform.set(self.zoom);
}
changed
}
@ -195,7 +199,7 @@ impl Camera2DData {
// === Getters ===
impl Camera2DData {
impl Camera2dData {
pub fn zoom(&self) -> f32 {
self.zoom
}
@ -208,7 +212,7 @@ impl Camera2DData {
// === Setters ===
impl Camera2DData {
impl Camera2dData {
pub fn projection_mut(&mut self) -> &mut Projection {
self.projection_dirty.set();
&mut self.projection
@ -240,7 +244,7 @@ impl Camera2DData {
// === Transform Setters ===
impl Camera2DData {
impl Camera2dData {
pub fn mod_position<F:FnOnce(&mut Vector3<f32>)>(&mut self, f:F) {
self.mod_position_keep_zoom(f);
self.zoom = self.native_z / self.transform.position().z;
@ -254,7 +258,7 @@ impl Camera2DData {
// === Private Transform Setters ===
impl Camera2DData {
impl Camera2dData {
fn mod_position_keep_zoom<F:FnOnce(&mut Vector3<f32>)>(&mut self, f:F) {
self.transform.mod_position(f)
}
@ -263,7 +267,7 @@ impl Camera2DData {
// ================
// === Camera2D ===
// === Camera2d ===
// ================
/// Camera definition for 2D objects.
@ -282,14 +286,14 @@ impl Camera2DData {
/// corner, you will get a view which behaves like a window in window-based GUIs. When scaling
/// the window, the left-bottom corner will stay in place.
#[derive(Clone,Debug)]
pub struct Camera2D {
rc: Rc<RefCell<Camera2DData>>
pub struct Camera2d {
rc: Rc<RefCell<Camera2dData>>
}
impl Camera2D {
impl Camera2d {
/// Creates new Camera instance.
pub fn new(logger:Logger) -> Self {
let data = Camera2DData::new(logger);
pub fn new(logger:Logger, globals:&UniformScope) -> Self {
let data = Camera2dData::new(logger,globals);
let rc = Rc::new(RefCell::new(data));
Self {rc}
}
@ -298,7 +302,7 @@ impl Camera2D {
// === Modifiers ===
impl Camera2D {
impl Camera2d {
/// Sets screen dimensions.
pub fn set_screen(&self, width:f32, height:f32) {
self.rc.borrow_mut().set_screen(width,height)
@ -313,7 +317,7 @@ impl Camera2D {
// === Getters ===
impl Camera2D {
impl Camera2d {
pub fn zoom(&self) -> f32 {
self.rc.borrow().zoom()
}
@ -326,7 +330,7 @@ impl Camera2D {
// === Setters ===
impl Camera2D {
impl Camera2d {
pub fn mod_position<F:FnOnce(&mut Vector3<f32>)>(&self, f:F) {
self.rc.borrow_mut().mod_position(f)
}

View File

@ -6,9 +6,9 @@ use events::NavigatorEvents;
use events::ZoomEvent;
use events::PanEvent;
use crate::system::web::Result;
use crate::display::render::css3d::Camera;
use crate::display::render::css3d::CameraType;
use crate::display::render::css3d::DOMContainer;
use crate::system::web::dom::Camera;
use crate::system::web::dom::CameraType;
use crate::system::web::dom::DOMContainer;
use crate::animation::position::HasPosition;
use crate::animation::physics::inertia::PhysicsSimulator;
use crate::animation::physics::inertia::SpringProperties;

View File

@ -1,18 +1,20 @@
use crate::control::mouse_manager::MouseManager;
use crate::control::mouse_manager::MouseClickEvent;
use crate::control::mouse_manager::MouseWheelEvent;
use crate::control::mouse_manager::MousePositionEvent;
use crate::control::mouse_manager::MouseButton;
use crate::control::mouse_manager::WheelEventListener;
use crate::control::mouse_manager::MouseEventListener;
use crate::control::io::mouse::MouseManager;
use crate::control::io::mouse::MouseClickEvent;
use crate::control::io::mouse::MouseWheelEvent;
use crate::control::io::mouse::MousePositionEvent;
use crate::control::io::mouse::MouseButton;
use crate::control::io::mouse::WheelEventListener;
use crate::control::io::mouse::MouseEventListener;
use crate::system::web::Result;
use crate::display::render::css3d::DOMContainer;
use crate::system::web::dom::DOMContainer;
use nalgebra::Vector2;
use std::rc::Rc;
use std::cell::RefCell;
use nalgebra::zero;
// =================
// === ZoomEvent ===
// =================

View File

@ -9,9 +9,7 @@ use crate::closure;
use crate::data::dirty;
use crate::data::dirty::traits::*;
use data::opt_vec::OptVec;
use crate::system::web::group;
use basegl_system_web::Logger;
use nalgebra::Vector3;
use nalgebra::Matrix4;
use transform::CachedTransform;
@ -158,7 +156,7 @@ impl DisplayObjectDataMut {
Some(_) => "Update with new parent origin.",
None => "Update with old parent origin."
};
group!(self.logger, msg, {
group!(self.logger, "{msg}", {
let origin_changed = self.transform.update(new_origin);
let origin = &self.transform.matrix;
if origin_changed {
@ -213,9 +211,10 @@ impl DisplayObjectDataMut {
fn set_parent_bind(&mut self, bind:ParentBind) {
self.logger.info("Adding new parent bind.");
let dirty = bind.parent.rc.borrow().child_dirty.clone_ref();
let on_change = fn_on_change(dirty, bind.index);
self.transform.dirty.set_callback(Some(on_change.clone()));
self.child_dirty.set_callback(Some(on_change));
let index = bind.index;
let on_mut = move || {dirty.set(index)};
self.transform.dirty.set_callback(Some(Box::new(on_mut.clone())));
self.child_dirty.set_callback(Some(Box::new(on_mut)));
self.new_parent_dirty.set();
self.wrapped.set_parent_bind(bind);
}

View File

@ -4,8 +4,7 @@ use crate::prelude::*;
use crate::data::dirty;
use crate::data::function::callback::*;
use crate::system::web::group;
use basegl_system_web::Logger;
use nalgebra::Matrix4;
use nalgebra::Vector3;
use nalgebra::Vector4;
@ -231,7 +230,7 @@ impl<OnChange> CachedTransform<OnChange> {
// === Setters ===
impl<OnChange:Callback0> CachedTransform<OnChange> {
impl<OnChange:Function0> CachedTransform<OnChange> {
pub fn position_mut(&mut self) -> &mut Vector3<f32> {
self.dirty.set();
&mut self.transform.position

View File

@ -2,5 +2,3 @@
#[warn(missing_docs)]
pub mod css3d;
#[warn(missing_docs)]
pub mod webgl;

View File

@ -13,7 +13,9 @@ use crate::display::shape::primitive::def::class::ShapeRef;
use crate::display::shape::primitive::shader::canvas::Canvas;
use crate::display::shape::primitive::shader::canvas::CanvasShape;
use crate::display::shape::primitive::shader::data::ShaderData;
use crate::system::gpu::data::GpuData;
use crate::system::gpu::shader::glsl::Glsl;
use crate::system::gpu::shader::glsl::traits::*;
@ -63,14 +65,14 @@ pub trait SdfShape {
///
/// #[derive(Debug,Clone)]
/// pub struct Circle {
/// pub glsl_name : String,
/// pub radius : String,
/// pub glsl_name : Glsl,
/// pub radius : Glsl,
/// }
///
/// impl Circle {
/// pub fn new<radius:ShaderData<f32>>(radius:radius) -> Self {
/// let glsl_name = "circle".to_string();
/// let radius = radius.to_glsl();
/// let glsl_name = "circle".into();
/// let radius = radius.into();
/// Self {glsl_name,radius}
/// }
/// }
@ -97,7 +99,7 @@ pub trait SdfShape {
/// let body = "return bound_sdf(length(position)-radius, bounding_box(radius,radius));";
/// let args = vec![
/// "vec2 position".to_string(),
/// format!("{} {}", <$f32 as GpuData>::gpu_type_name(), "radius")
/// format!("{} {}", <$f32 as BufferItem>::gpu_type_name(), "radius")
/// ].join(", ");
/// format!("sdf {} ({}) {{ {} }}",self.glsl_name,args,body)
/// }
@ -156,7 +158,7 @@ macro_rules! _define_sdf_shape_immutable_part {
let name = stringify!($name).to_snake_case();
let body = stringify!($body);
let args = vec!["vec2 position".to_string(), $(
format!("{} {}", <$field_type as GpuData>::glsl_type_name(), stringify!($field))
format!("{} {}", <$field_type>::glsl_prim_type(), stringify!($field))
),*].join(", ");
iformat!("BoundSdf {name} ({args}) {body}")
}
@ -172,16 +174,16 @@ macro_rules! _define_sdf_shape_mutable_part {
#[allow(missing_docs)]
#[derive(Debug,Clone)]
pub struct $name {
pub glsl_name : String,
$(pub $field : String),*
pub glsl_name : Glsl,
$(pub $field : Glsl),*
}
impl $name {
/// Constructor.
#[allow(clippy::new_without_default)]
pub fn new <$($field:ShaderData<$field_type>),*> ( $($field : $field),* ) -> Self {
let glsl_name = stringify!($name).to_snake_case();
$(let $field = $field.to_glsl();)*
let glsl_name = stringify!($name).to_snake_case().into();
$(let $field = $field.into();)*
Self {glsl_name,$($field),*}
}
}

View File

@ -9,6 +9,7 @@ use crate::display::shape::primitive::def::class::ShapeRef;
use crate::display::shape::primitive::shader::canvas::Canvas;
use crate::display::shape::primitive::shader::canvas::CanvasShape;
use crate::display::shape::primitive::shader::data::ShaderData;
use crate::system::gpu::shader::glsl::Glsl;
@ -32,15 +33,15 @@ use crate::display::shape::primitive::shader::data::ShaderData;
///
/// pub struct Translate<child> {
/// pub child : child,
/// pub x : String,
/// pub y : String,
/// pub x : Glsl,
/// pub y : Glsl,
/// }
///
/// impl<child:Shape> Translate<child> {
/// pub fn new<x:ShaderData<f32>,y:ShaderData<f32>>(child:&child,x:x,y:y) -> Self {
/// let child = child.clone();
/// let x = x.to_glsl();
/// let y = y.to_glsl();
/// let x = x.into();
/// let y = y.into();
/// Self {child,x,y}
/// }
/// }
@ -80,7 +81,7 @@ macro_rules! _define_compound_shape_data {
#[allow(missing_docs)]
pub struct $name<$($shape_field),*> {
$(pub $shape_field : $shape_field),*,
$(pub $field : String ),*
$(pub $field : Glsl),*
}
impl<$($shape_field:Shape),*> $name<$($shape_field),*> {
@ -88,7 +89,7 @@ macro_rules! _define_compound_shape_data {
pub fn new<$($field:ShaderData<$field_type>),*>
($($shape_field:&$shape_field),*,$($field:$field),*) -> Self {
$(let $shape_field = $shape_field.clone();)*
$(let $field = $field.to_glsl();)*
$(let $field = $field.into();)*
Self {$($shape_field),*,$($field),*}
}
}

View File

@ -2,6 +2,7 @@
use crate::prelude::*;
use crate::display::shape::primitive::shader::data::ShaderData;
use crate::system::gpu::shader::glsl::Glsl;
@ -192,8 +193,8 @@ impl Canvas {
pub fn translate<X:ShaderData<f32>, Y:ShaderData<f32>>
(&mut self, num:usize, s1:CanvasShape, x:X, y:Y) -> CanvasShape {
self.if_not_defined(num, |this| {
let x = x.to_glsl();
let y = y.to_glsl();
let x:Glsl = x.into();
let y:Glsl = y.into();
let trans = iformat!("position = translate(position,vec2({x},{y}));");
let expr = iformat!("return {s1.getter()};");
this.add_current_function_code_line(trans);

View File

@ -1,9 +1,8 @@
//! This module defines an abstraction for all types which can be used as GLSL code values.
use crate::prelude::*;
use crate::system::gpu::data::GpuData;
use crate::system::gpu::data::Empty;
use crate::system::gpu::data::BufferItem;
use crate::system::gpu::data::GpuDefault;
use crate::system::gpu::shader::glsl::Glsl;
@ -17,39 +16,34 @@ use crate::system::gpu::data::Empty;
/// allows for dirty injection of GLSL code easily. For example, when moving a shape, you can write
/// `s1.translate("a","b")`, where `a` and `b` refer to variables defined in the GLSL shader. Such
/// operation is not checked during compilation, so be careful when using it, please.
pub trait ShaderData<T> {
pub trait ShaderData<T>: Into<Glsl> {
/// Checks if the value is zero.
fn is_zero (&self) -> bool;
/// Converts the value to GLSL code.
fn to_glsl (&self) -> String;
}
// === Instances ===
impl<T> ShaderData<T> for Glsl {
fn is_zero (&self) -> bool { self.str == "0" || self.str == "0.0" }
}
impl<T> ShaderData<T> for &Glsl {
fn is_zero (&self) -> bool { (*self).str == "0" || (*self).str == "0.0" }
}
impl<T> ShaderData<T> for String {
fn is_zero (&self) -> bool { self == "0" || self == "0.0" }
fn to_glsl (&self) -> String { self.into() }
}
impl<T> ShaderData<T> for &String {
fn is_zero (&self) -> bool { *self == "0" || *self == "0.0" }
fn to_glsl (&self) -> String { (*self).into() }
}
impl<T> ShaderData<T> for str {
fn is_zero (&self) -> bool { self == "0" || self == "0.0" }
fn to_glsl (&self) -> String { self.into() }
}
impl<T> ShaderData<T> for &str {
fn is_zero (&self) -> bool { *self == "0" || *self == "0.0" }
fn to_glsl (&self) -> String { (*self).into() }
}
impl<T:GpuData+PartialEq> ShaderData<T> for T {
fn is_zero (&self) -> bool { <T as Empty> :: is_empty(self) }
fn to_glsl (&self) -> String { <T as GpuData> :: to_glsl(self) }
impl<T: BufferItem+PartialEq+Into<Glsl>> ShaderData<T> for T {
fn is_zero (&self) -> bool { <T as GpuDefault> :: is_gpu_default(self) }
}

View File

@ -3,7 +3,7 @@
use crate::prelude::*;
use crate::display::symbol::geometry::sprite::SpriteSystem;
use crate::display::symbol::geometry::SpriteSystem;
use crate::display::world::World;
use crate::display::symbol::material::Material;
use crate::display::shape::primitive::shader;

View File

@ -16,7 +16,7 @@ pub mod program;
use crate::prelude::*;
use crate::display::world::Workspace;
use crate::display::render::webgl::Context;
use crate::system::gpu::shader::Context;
use crate::display::shape::text::buffer::TextComponentBuffers;
use crate::display::shape::text::content::TextComponentContent;
use crate::display::shape::text::cursor::Cursors;

View File

@ -9,9 +9,9 @@ pub mod line;
use crate::prelude::*;
use crate::display::render::webgl::Context;
use crate::display::render::webgl::set_buffer_data;
use crate::display::render::webgl::set_buffer_subdata;
use crate::system::gpu::shader::Context;
use crate::system::gpu::shader::set_buffer_data;
use crate::system::gpu::shader::set_buffer_subdata;
use crate::display::shape::text::buffer::glyph_square::BASE_LAYOUT_SIZE;
use crate::display::shape::text::buffer::glyph_square::GlyphAttributeBuilder;
use crate::display::shape::text::buffer::glyph_square::GlyphVertexPositionBuilder;

View File

@ -2,8 +2,8 @@
use crate::prelude::*;
use crate::display::render::webgl::Context;
use crate::display::render::webgl::set_buffer_data;
use crate::system::gpu::Context;
use crate::system::gpu::shader::set_buffer_data;
use crate::display::shape::text::content::TextLocation;
use crate::display::shape::text::content::TextComponentContent;
use crate::display::shape::text::content::line::LineRef;

View File

@ -2,10 +2,10 @@
use crate::prelude::*;
use crate::display::render::webgl::Context;
use crate::display::render::webgl::compile_shader;
use crate::display::render::webgl::link_program;
use crate::display::render::webgl::Program;
use crate::system::gpu::shader::Context;
use crate::system::gpu::shader::compile_shader;
use crate::system::gpu::shader::link_program;
use crate::system::gpu::shader::Program;
use crate::display::shape::text::font::FontRenderInfo;
use crate::display::shape::text::msdf::MsdfTexture;
use crate::display::shape::text::TextComponentProperties;

View File

@ -9,28 +9,28 @@ pub mod registry;
#[warn(missing_docs)]
pub mod shader;
pub mod types {
use super::*;
pub use geometry::types::*;
}
pub use types::*;
use crate::prelude::*;
use crate::closure;
use crate::data::dirty::traits::*;
use crate::data::dirty;
use crate::data::function::callback::*;
use crate::debug::stats::Stats;
use crate::display::render::webgl::Context;
use crate::display::render::webgl;
use crate::system::gpu::buffer::IsBuffer;
use crate::system::gpu::shader::Context;
use crate::system::gpu::data::buffer::IsBuffer;
use crate::system::gpu::data::uniform::AnyUniform;
use crate::system::gpu::data::uniform::AnyUniformOps;
use crate::system::gpu::data::uniform::UniformScope;
use crate::system::gpu::data::uniform::AnyTextureUniform;
use crate::system::gpu::data::uniform::AnyPrimUniform;
use crate::system::gpu::data::uniform::AnyPrimUniformOps;
use crate::display::symbol::geometry::primitive::mesh;
use crate::promote;
use crate::promote_all;
use crate::promote_mesh_types;
use crate::promote_shader_types;
use crate::system::web::group;
use crate::system::web::Logger;
use eval_tt::*;
use shader::Shader;
use web_sys::WebGlVertexArrayObject;
use web_sys::WebGlProgram;
use web_sys::WebGlUniformLocation;
@ -38,16 +38,33 @@ use web_sys::WebGlUniformLocation;
/// Binds input variable definition in shader to both its location and an uniform declaration.
#[derive(Clone,Debug)]
pub struct UniformBinding {
name : String,
location : WebGlUniformLocation,
uniform : AnyUniform,
uniform : AnyPrimUniform,
}
impl UniformBinding {
pub fn new<Name:Str>(name:Name, location:WebGlUniformLocation, uniform:AnyUniform) -> Self {
pub fn new<Name:Str>(name:Name, location:WebGlUniformLocation, uniform:AnyPrimUniform) -> Self {
let name = name.into();
Self {name,location,uniform}
}
}
#[derive(Clone,Debug)]
pub struct TextureBinding {
name : String,
location : WebGlUniformLocation,
uniform : AnyTextureUniform,
}
impl TextureBinding {
pub fn new<Name:Str>(name:Name, location:WebGlUniformLocation, uniform:AnyTextureUniform) -> Self {
let name = name.into();
Self {name,location,uniform}
}
@ -119,73 +136,64 @@ impl Drop for VertexArrayObject {
/// Symbol is a surface with attached `Shader`.
#[derive(Derivative)]
#[derivative(Debug(bound=""))]
pub struct Symbol<OnMut> {
pub surface : Mesh <OnMut>,
pub shader : Shader <OnMut>,
pub surface_dirty : GeometryDirty <OnMut>,
pub shader_dirty : ShaderDirty <OnMut>,
pub logger : Logger,
pub struct Symbol {
pub surface : Mesh,
pub shader : Shader,
pub surface_dirty : GeometryDirty,
pub shader_dirty : ShaderDirty,
symbol_scope : UniformScope,
global_scope : UniformScope,
context : Context,
logger : Logger,
vao : Option<VertexArrayObject>,
uniforms : Vec<UniformBinding>,
textures : Vec<TextureBinding>,
stats : Stats,
}
// === Types ===
pub type GeometryDirty<Callback> = dirty::SharedBool<Callback>;
pub type ShaderDirty<Callback> = dirty::SharedBool<Callback>;
promote_mesh_types! { [OnSurfaceMut] mesh }
promote_shader_types! { [OnSurfaceMut] shader }
#[derive(Copy,Clone,Debug,PartialEq)]
pub enum ScopeType {
Mesh(mesh::ScopeType), Symbol, Global
}
#[macro_export]
/// Promote relevant types to parent scope. See `promote!` macro for more information.
macro_rules! promote_symbol_types { ($($args:tt)*) => {
crate::promote_mesh_types! {$($args)*}
crate::promote_shader_types! {$($args)*}
promote! {$($args)* [Symbol]}
};}
pub type GeometryDirty = dirty::SharedBool<Box<dyn Fn()>>;
pub type ShaderDirty = dirty::SharedBool<Box<dyn Fn()>>;
// === Callbacks ===
closure! {
fn surface_on_mut<C:Callback0>(dirty:GeometryDirty<C>) -> OnSurfaceMut {
|| dirty.set()
}}
closure! {
fn shader_on_mut<C:Callback0>(dirty:ShaderDirty<C>) -> OnShaderMut {
|| dirty.set()
}}
// === Implementation ===
impl<OnMut:Callback0+Clone> Symbol<OnMut> {
impl Symbol {
/// Create new instance with the provided on-dirty callback.
pub fn new
(global:&UniformScope, logger:Logger, stats:&Stats, ctx:&Context, on_dirty:OnMut) -> Self {
pub fn new <OnMut:Fn()+Clone+'static>
(global_scope:&UniformScope, logger:Logger, stats:&Stats, context:&Context, on_mut:OnMut) -> Self {
stats.inc_symbol_count();
let init_logger = logger.clone();
group!(init_logger, "Initializing.", {
let context = ctx.clone();
let on_dirty2 = on_dirty.clone();
let on_mut2 = on_mut.clone();
let surface_logger = logger.sub("surface");
let shader_logger = logger.sub("shader");
let geo_dirt_logger = logger.sub("surface_dirty");
let mat_dirt_logger = logger.sub("shader_dirty");
let surface_dirty = GeometryDirty::new(geo_dirt_logger,on_dirty2);
let shader_dirty = ShaderDirty::new(mat_dirt_logger,on_dirty);
let geo_on_change = surface_on_mut(surface_dirty.clone_ref());
let mat_on_change = shader_on_mut(shader_dirty.clone_ref());
let shader = Shader::new(shader_logger,&stats,ctx,mat_on_change);
let surface = Mesh::new(global,surface_logger,&stats,ctx,geo_on_change);
let surface_dirty = GeometryDirty::new(geo_dirt_logger,Box::new(on_mut2));
let shader_dirty = ShaderDirty::new(mat_dirt_logger,Box::new(on_mut));
let surface_dirty2 = surface_dirty.clone_ref();
let shader_dirty2 = shader_dirty.clone_ref();
let surface_on_mut = Box::new(move || { surface_dirty2.set() });
let shader_on_mut = Box::new(move || { shader_dirty2.set() });
let shader = Shader::new(shader_logger,&stats,context,shader_on_mut);
let surface = Mesh::new(surface_logger,&stats,context,surface_on_mut);
let symbol_scope = UniformScope::new(logger.sub("uniform_scope"),context);
let global_scope = global_scope.clone();
let vao = default();
let uniforms = default();
let textures = default();
let stats = stats.clone_ref();
Self{surface,shader,surface_dirty,shader_dirty,logger,context,vao,uniforms,stats}
let context = context.clone();
Self{surface,shader,surface_dirty,shader_dirty,symbol_scope,global_scope,logger,context,vao,uniforms,textures,stats}
})
}
@ -199,7 +207,7 @@ impl<OnMut:Callback0+Clone> Symbol<OnMut> {
if self.shader_dirty.check() {
let var_bindings = self.discover_variable_bindings();
self.shader.update(&var_bindings);
self.init_vao(&var_bindings);
self.init_variable_bindings(&var_bindings);
self.shader_dirty.unset();
}
})
@ -207,53 +215,69 @@ impl<OnMut:Callback0+Clone> Symbol<OnMut> {
/// Creates a new VertexArrayObject, discovers all variable bindings from shader to geometry,
/// and initializes the VAO with the bindings.
fn init_vao(&mut self, var_bindings:&[shader::VarBinding]) {
fn init_variable_bindings(&mut self, var_bindings:&[shader::VarBinding]) {
self.vao = Some(VertexArrayObject::new(&self.context));
let mut uniforms: Vec<UniformBinding> = default();
self.with_program(|program|{
self.uniforms = default();
self.textures = default();
self.with_program_mut(|this,program|{
for binding in var_bindings {
if let Some(scope_type) = binding.scope.as_ref() {
let opt_scope = self.surface.var_scope(*scope_type);
match opt_scope {
None => {
let name = &binding.name;
let uni_name = shader::builder::mk_uniform_name(name);
let location = self.context.get_uniform_location(program,&uni_name);
match location {
None => self.logger.warning(|| format!("The uniform '{}' is not used in this shader. It is recommended to remove it from the material definition.", name)),
Some(location) => {
let uniform = self.surface.scopes.global.get(name).unwrap();
let binding = UniformBinding::new(name,location,uniform);
uniforms.push(binding);
match scope_type {
ScopeType::Mesh(s) => this.init_attribute_binding(program,binding,*s),
_ => this.init_uniform_binding(program,binding),
}
}
}
});
}
},
Some(scope) => {
fn init_attribute_binding(&mut self, program:&WebGlProgram, binding:&shader::VarBinding, mesh_scope_type:mesh::ScopeType) {
let vtx_name = shader::builder::mk_vertex_name(&binding.name);
let scope = self.surface.scope_by_type(mesh_scope_type);
let location = self.context.get_attrib_location(program, &vtx_name);
if location < 0 {
self.logger.error(|| format!("Attribute '{}' not found.",vtx_name));
} else {
let location = location as u32;
let buffer = &scope.buffer(&binding.name).unwrap();
let is_instanced = scope_type == &mesh::ScopeType::Instance;
buffer.bind(webgl::Context::ARRAY_BUFFER);
let is_instanced = mesh_scope_type == mesh::ScopeType::Instance;
buffer.bind(Context::ARRAY_BUFFER);
buffer.vertex_attrib_pointer(location, is_instanced);
}
}
}
}
fn init_uniform_binding(&mut self, program:&WebGlProgram, binding:&shader::VarBinding) {
let name = &binding.name;
let uni_name = shader::builder::mk_uniform_name(name);
let opt_location = self.context.get_uniform_location(program,&uni_name);
opt_location.map(|location|{
let uniform = self.global_scope.get(name).unwrap_or_else(||{
panic!("Internal error. Variable {} not found in program.",name)
});
match uniform {
AnyUniform::Prim(uniform) =>
self.uniforms.push(UniformBinding::new(name,location,uniform)),
AnyUniform::Texture(uniform) =>
self.textures.push(TextureBinding::new(name,location,uniform)),
}
});
self.uniforms = uniforms;
}
pub fn lookup_variable<S:Str>(&self, name:S) -> Option<ScopeType> {
let name = name.as_ref();
self.surface.lookup_variable(name).map(ScopeType::Mesh).or_else(|| {
if self.symbol_scope.contains(name) { Some(ScopeType::Symbol) }
else if self.global_scope.contains(name) { Some(ScopeType::Global) }
else { None }
})
}
/// For each variable from the shader definition, looks up its position in geometry scopes.
pub fn discover_variable_bindings(&self) -> Vec<shader::VarBinding> {
let var_decls = self.shader.collect_variables();
var_decls.into_iter().map(|(var_name,var_decl)| {
let target = self.surface.lookup_variable(&var_name);
let target = self.lookup_variable(&var_name);
if target.is_none() {
let msg = || format!("Unable to bind variable '{}' to geometry buffer.", var_name);
self.logger.warning(msg);
@ -268,13 +292,29 @@ impl<OnMut:Callback0+Clone> Symbol<OnMut> {
let program = self.shader.program().as_ref().unwrap(); // FIXME
self.context.use_program(Some(&program));
let vao = self.vao.as_ref().unwrap(); // FIXME
let out = vao.with(|| {
f(program)
});
let out = vao.with(||{ f(program) });
self.context.use_program(None);
out
}
/// Runs the provided function in a context of active program and active VAO. After the function
/// is executed, both program and VAO are bound to None.
pub fn with_program_mut<F:FnOnce(&mut Self, &WebGlProgram) -> T,T>(&mut self, f:F) -> T {
let this:&mut Self = self;
let program = this.shader.program().as_ref().unwrap().clone(); // FIXME
this.context.use_program(Some(&program));
let out = this.with_vao_mut(|this|{ f(this,&program) });
self.context.use_program(None);
out
}
pub fn with_vao_mut<F:FnOnce(&mut Self) -> T,T>(&mut self, f:F) -> T {
self.vao.as_ref().unwrap().bind();
let out = f(self);
self.vao.as_ref().unwrap().unbind();
out
}
pub fn render(&self) {
group!(self.logger, "Rendering.", {
self.with_program(|_|{
@ -282,10 +322,10 @@ impl<OnMut:Callback0+Clone> Symbol<OnMut> {
binding.uniform.upload(&self.context,&binding.location);
}
let mode = webgl::Context::TRIANGLE_STRIP;
let mode = Context::TRIANGLE_STRIP;
let first = 0;
let count = self.surface.scopes.point.size() as i32;
let instance_count = self.surface.scopes.instance.size() as i32;
let count = self.surface.point.size() as i32;
let instance_count = self.surface.instance.size() as i32;
self.stats.inc_draw_call_count();
self.context.draw_arrays_instanced(mode,first,count,instance_count);
@ -295,7 +335,7 @@ impl<OnMut:Callback0+Clone> Symbol<OnMut> {
}
}
impl<OnMut> Drop for Symbol<OnMut> {
impl Drop for Symbol {
fn drop(&mut self) {
self.stats.dec_symbol_count();
}

View File

@ -3,4 +3,16 @@
pub mod compound;
pub mod primitive;
pub mod sprite;
// =================
// === Reexports ===
// =================
/// Common types.
pub mod types {
use super::*;
pub use primitive::types::*;
pub use compound::types::*;
}
pub use types::*;

View File

@ -1 +1,16 @@
#![allow(missing_docs)]
//! Root module for compound geometries. Compound geometries are defined by using primitive
//! geometries and behave like smart constructors for commonly used shapes.
pub mod sprite;
// ===============
// === Exports ===
// ===============
/// Common types.
pub mod types {
use super::*;
pub use sprite::*;
}

View File

@ -4,12 +4,12 @@
use crate::prelude::*;
use crate::display::object::*;
use crate::display::symbol::geometry::primitive::mesh::InstanceId;
use crate::display::symbol::material::Material;
use crate::system::gpu::data::AttributeInstanceIndex;
use crate::display::object::*;
use crate::display::world::*;
use basegl_system_web::Logger;
use nalgebra::Vector2;
use nalgebra::Vector3;
use nalgebra::Matrix4;
@ -44,12 +44,12 @@ impl SymbolRef {
#[derive(Clone,Debug)]
pub struct SpriteRef {
symbol_ref : SymbolRef,
instance_id : InstanceId,
instance_id : AttributeInstanceIndex,
}
impl SpriteRef {
/// Constructor.
pub fn new(symbol_ref:SymbolRef, instance_id:InstanceId) -> Self {
pub fn new(symbol_ref:SymbolRef, instance_id:AttributeInstanceIndex) -> Self {
Self {symbol_ref,instance_id}
}
}
@ -132,16 +132,17 @@ struct SpriteData {
impl SpriteData {
pub fn new
(sprite_ref:SpriteRef, _transform:Attribute<Matrix4<f32>>, bbox:Attribute<Vector2<f32>>) -> Self {
( sprite_ref:SpriteRef
, _transform:Attribute<Matrix4<f32>>
, bbox:Attribute<Vector2<f32>>
) -> Self {
let logger = Logger::new(format!("Sprite{}",sprite_ref.instance_id));
let display_object = DisplayObjectData::new(logger);
let transform_cp = _transform.clone();
display_object.set_on_updated(move |t| {
transform_cp.set(t.matrix().clone());
});
sprite_ref.symbol_ref.world.mod_stats(|stats| stats.inc_sprite_count());
Self {sprite_ref,display_object,_transform,bbox}
}
}
@ -213,10 +214,10 @@ impl SpriteSystem {
let p3_index = mesh.scopes.point.add_instance();
let p4_index = mesh.scopes.point.add_instance();
uv.get(p1_index).set(Vector2::new(0.0, 0.0));
uv.get(p2_index).set(Vector2::new(0.0, 1.0));
uv.get(p3_index).set(Vector2::new(1.0, 0.0));
uv.get(p4_index).set(Vector2::new(1.0, 1.0));
uv.at(p1_index).set(Vector2::new(0.0, 0.0));
uv.at(p2_index).set(Vector2::new(0.0, 1.0));
uv.at(p3_index).set(Vector2::new(1.0, 0.0));
uv.at(p4_index).set(Vector2::new(1.0, 1.0));
world_data.stats.inc_sprite_system_count();
@ -232,8 +233,8 @@ impl SpriteSystem {
let symbol = &mut world_data.workspace[self.symbol_ref.symbol_id];
symbol.surface.instance.add_instance()
};
let transform = self.transform.get(instance_id);
let bbox = self.bbox.get(instance_id);
let transform = self.transform.at(instance_id);
let bbox = self.bbox.at(instance_id);
let sprite_ref = SpriteRef::new(self.symbol_ref.clone(),instance_id);
bbox.set(Vector2::new(1.0,1.0));
let sprite = Sprite::new(sprite_ref,transform,bbox);
@ -243,11 +244,11 @@ impl SpriteSystem {
fn geometry_material() -> Material {
let mut material = Material::new();
material.add_input ("bounds" , Vector2::<f32>::zeros());
material.add_input ("uv" , Vector2::<f32>::zeros());
material.add_input ("transform" , Matrix4::<f32>::identity());
material.add_input ("view_projection" , Matrix4::<f32>::identity());
material.add_output ("local" , Vector3::<f32>::zeros());
material.add_input_def :: <Vector2<f32>> ("bounds");
material.add_input_def :: <Vector2<f32>> ("uv");
material.add_input_def :: <Matrix4<f32>> ("transform");
material.add_input_def :: <Matrix4<f32>> ("view_projection");
material.add_output_def :: <Vector3<f32>> ("local");
material.set_main("
mat4 model_view_projection = input_view_projection * input_transform;
input_local = vec3((input_uv - 0.5) * input_bounds, 0.0);

View File

@ -1,4 +1,16 @@
#![allow(missing_docs)]
//! Root module for primitive geometry definitions. A primitive geometry could not be constructed
//! from other types.
#[warn(missing_docs)]
pub mod mesh;
// ===============
// === Exports ===
// ===============
/// Common types.
pub mod types {
use super::*;
pub use mesh::types::*;
}
pub use types::*;

View File

@ -1,26 +1,31 @@
#![allow(missing_docs)]
//! This module defines a [polygon mesh](https://en.wikipedia.org/wiki/Polygon_mesh).
pub use crate::system::gpu::data;
pub use crate::system::gpu::data::Uniform;
pub use crate::system::gpu::data::UniformScope;
use crate::prelude::*;
use crate::closure;
use crate::control::callback::CallbackFn;
use crate::data::dirty::traits::*;
use crate::data::dirty;
use crate::data::function::callback::*;
use crate::debug::stats::Stats;
use crate::display::render::webgl::Context;
use crate::prelude::*;
use crate::promote;
use crate::promote_all;
use crate::promote_scope_types;
use crate::system::web::group;
use crate::system::web::Logger;
use eval_tt::*;
use crate::system::gpu::shader::Context;
use num_enum::IntoPrimitive;
// ===============
// === Exports ===
// ===============
/// Common data types.
pub mod types {
pub use crate::system::gpu::types::*;
pub use super::Mesh;
}
pub use types::*;
// ============
// === Mesh ===
// ============
@ -29,26 +34,11 @@ use num_enum::IntoPrimitive;
/// A polygon mesh is a collection of vertices, edges and faces that defines the shape of a
/// polyhedral object. Mesh describes the shape of the display element. It consist of several
/// scopes containing sets of variables.
/// scopes containing sets of variables. See the documentation of `Scopes` to learn more.
///
/// - Point Scope
/// A point is simply a point in space. Points are often assigned with such variables as
/// 'position' or 'color'.
/// Please note, that there are other, higher-level scopes defined by other structures, including:
///
/// - Vertex Scope
/// A vertex is a reference to a point. Primitives use vertices to reference points. For
/// example, the corners of a polygon, the center of a sphere, or a control vertex of a spline
/// curve. Primitives can share points, while vertices are unique to a primitive.
///
/// - Primitive Scope
/// Primitives refer to a unit of geometry, lower-level than an object but above points. There
/// are several different types of primitives, including polygon faces or Bezier/NURBS surfaces.
///
/// - Instance Scope
/// Instances are virtual copies of the same geometry. They share point, vertex, and primitive
/// variables.
///
/// - Object Scope
/// - Symbol Scope
/// Object refers to the whole geometry with all of its instances.
///
/// - Global Scope
@ -59,40 +49,45 @@ use num_enum::IntoPrimitive;
/// name was defined in various scopes, it gets resolved to the var defined in the most specific
/// scope. For example, if var 'color' was defined in both 'instance' and 'point' scope, the 'point'
/// definition overlapps the other one.
#[derive(Shrinkwrap)]
#[derive(Debug,Shrinkwrap)]
#[shrinkwrap(mutable)]
#[derive(Derivative)]
#[derivative(Debug(bound=""))]
pub struct Mesh<OnMut> {
pub struct Mesh {
/// Scope list.
#[shrinkwrap(main_field)]
pub scopes : Scopes <OnMut>,
pub scopes_dirty : ScopesDirty <OnMut>,
pub logger : Logger,
pub scopes : Scopes,
scopes_dirty : ScopesDirty,
logger : Logger,
context : Context,
stats : Stats,
}
#[derive(Derivative)]
#[derivative(Debug(bound=""))]
pub struct Scopes<OnMut> {
pub point : AttributeScope <OnMut>,
pub vertex : AttributeScope <OnMut>,
pub primitive : AttributeScope <OnMut>,
pub instance : AttributeScope <OnMut>,
pub object : UniformScope,
pub global : UniformScope,
/// Container for all scopes owned by a mesh.
#[derive(Debug)]
pub struct Scopes {
/// Point Scope. A point is simply a point in space. Points are often assigned with such
/// variables as 'position' or 'color'.
pub point: AttributeScope,
/// Vertex Scope. A vertex is a reference to a point. Primitives use vertices to reference
/// points. For example, the corners of a polygon, the center of a sphere, or a control vertex
/// of a spline curve. Primitives can share points, while vertices are unique to a primitive.
pub vertex: AttributeScope,
/// Primitive Scope. Primitives refer to a unit of geometry, lower-level than an object but
/// above points. There are several different types of primitives, including polygon faces or
/// Bezier/NURBS surfaces.
pub primitive: AttributeScope,
/// Instance Scope. Instances are virtual copies of the same geometry. They share point, vertex,
/// and primitive variables.
pub instance: AttributeScope,
}
pub type PointId = usize;
pub type VertexId = usize;
pub type PrimitiveId = usize;
pub type InstanceId = usize;
#[derive(Copy,Clone,Debug,IntoPrimitive,PartialEq)]
/// A singleton for each of scope types.
#[derive(Copy,Clone,Debug,Display,IntoPrimitive,PartialEq)]
#[allow(missing_docs)]
#[repr(u8)]
pub enum ScopeType {
Point, Vertex, Primitive, Instance, Object, Global
}
pub enum ScopeType {Point,Vertex,Primitive,Instance}
impl From<ScopeType> for usize {
fn from(t: ScopeType) -> Self {
@ -100,67 +95,47 @@ impl From<ScopeType> for usize {
}
}
impl Display for ScopeType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f,"{:?}",self)
}
}
// === Types ===
pub type ScopesDirty<F> = dirty::SharedEnum<u8,ScopeType,F>;
promote_scope_types!{ [ScopeOnChange] data }
#[macro_export]
/// Promote relevant types to parent scope. See `promote!` macro for more information.
macro_rules! promote_mesh_types { ($($args:tt)*) => {
crate::promote_scope_types! { $($args)* }
promote! {$($args)* [Mesh,Scopes]}
};}
// === Callbacks ===
/// Dirty flag remembering which scopes were mutated.
pub type ScopesDirty = dirty::SharedEnum<u8,ScopeType,Box<dyn Fn()>>;
closure! {
fn scope_on_change<C:Callback0>(dirty:ScopesDirty<C>, item:ScopeType) -> ScopeOnChange {
fn scope_on_change(dirty:ScopesDirty, item:ScopeType) -> ScopeOnChange {
|| dirty.set(item)
}}
// === Implementation ===
macro_rules! update_scopes { ($self:ident . {$($name:ident),*} {$($uname:ident),*}) => {$(
macro_rules! update_scopes {
($self:ident . {$($name:ident),*} {$($uname:ident),*}) => {$(
if $self.scopes_dirty.check(&ScopeType::$uname) {
$self.scopes.$name.update()
}
)*}}
impl<OnMut: Callback0> Mesh<OnMut> {
)*}
}
impl Mesh {
/// Creates new mesh with attached dirty callback.
pub fn new
(global:&UniformScope, logger:Logger, stats:&Stats, context:&Context, on_mut:OnMut) -> Self {
pub fn new<OnMut:CallbackFn>
(logger:Logger, stats:&Stats, context:&Context,on_mut:OnMut) -> Self {
stats.inc_mesh_count();
let stats = stats.clone();
let scopes_logger = logger.sub("scopes_dirty");
let scopes_dirty = ScopesDirty::new(scopes_logger,on_mut);
let scopes_dirty = ScopesDirty::new(scopes_logger,Box::new(on_mut));
let context = context.clone();
let scopes = group!(logger, "Initializing.", {
macro_rules! new_scope { ($cls:ident { $($name:ident),* } { $($uname:ident),* } ) => {$(
macro_rules! new_scope { ({ $($name:ident),* } { $($uname:ident),* } ) => {$(
let sub_logger = logger.sub(stringify!($name));
let status_mod = ScopeType::$uname;
let scs_dirty = scopes_dirty.clone_ref();
let callback = scope_on_change(scs_dirty, status_mod);
let $name = $cls::new(sub_logger,&stats,&context,callback);
let callback = move || {scs_dirty.set(status_mod)};
let $name = AttributeScope::new(sub_logger,&stats,&context,callback);
)*}}
new_scope!(AttributeScope {point,vertex,primitive,instance}{Point,Vertex,Primitive,Instance});
let object_scope_logger = logger.sub("object");
let object = UniformScope::new(object_scope_logger);
let global = global.clone();
Scopes {point,vertex,primitive,instance,object,global}
new_scope! ({point,vertex,primitive,instance}{Point,Vertex,Primitive,Instance});
Scopes {point,vertex,primitive,instance}
});
Self {context,scopes,scopes_dirty,logger,stats}
}
@ -169,9 +144,9 @@ impl<OnMut: Callback0> Mesh<OnMut> {
pub fn update(&mut self) {
group!(self.logger, "Updating.", {
if self.scopes_dirty.check_all() {
update_scopes!(self.{point,vertex,primitive,instance}
{Point,Vertex,Primitive,Instance});
// update_scopes!(self.{object,global}{Object,Global});
update_scopes!{
self.{point,vertex,primitive,instance}{Point,Vertex,Primitive,Instance}
}
self.scopes_dirty.unset_all()
}
})
@ -185,24 +160,21 @@ impl<OnMut: Callback0> Mesh<OnMut> {
else if self.scopes.vertex . contains(name) { Some(ScopeType::Vertex) }
else if self.scopes.primitive . contains(name) { Some(ScopeType::Primitive) }
else if self.scopes.instance . contains(name) { Some(ScopeType::Instance) }
else if self.scopes.object . contains(name) { Some(ScopeType::Object) }
else if self.scopes.global . contains(name) { Some(ScopeType::Global) }
else {None}
}
/// Gets reference to scope based on the scope type.
pub fn var_scope(&self, scope_type:ScopeType) -> Option<&AttributeScope<OnMut>> {
pub fn scope_by_type(&self, scope_type:ScopeType) -> &AttributeScope {
match scope_type {
ScopeType::Point => Some(&self.scopes.point),
ScopeType::Vertex => Some(&self.scopes.vertex),
ScopeType::Primitive => Some(&self.scopes.primitive),
ScopeType::Instance => Some(&self.scopes.instance),
_ => None
ScopeType::Point => &self.scopes.point,
ScopeType::Vertex => &self.scopes.vertex,
ScopeType::Primitive => &self.scopes.primitive,
ScopeType::Instance => &self.scopes.instance,
}
}
}
impl<OnMut> Drop for Mesh<OnMut> {
impl Drop for Mesh {
fn drop(&mut self) {
self.stats.dec_mesh_count();
}

View File

@ -2,9 +2,8 @@
use crate::prelude::*;
use crate::system::gpu::data::GpuData;
use crate::display::render::webgl::glsl;
use crate::display::symbol::shader::builder::CodeTemplete;
use crate::system::gpu::types::*;
@ -31,6 +30,13 @@ impl VarDecl {
}
}
impl<T:PhantomInto<glsl::PrimType> + Into<Glsl>>
From<T> for VarDecl {
fn from(t:T) -> Self {
Self::new(<T>::glsl_prim_type(), t.glsl().into())
}
}
// ================
@ -48,6 +54,9 @@ pub struct Material {
outputs : BTreeMap<String,VarDecl>,
}
/// Bounds for the material inputs.
pub trait Input = Into<VarDecl> + GpuDefault;
impl Material {
/// Constructor.
pub fn new() -> Self {
@ -55,17 +64,23 @@ impl Material {
}
/// Adds a new input variable.
pub fn add_input<Name:Str,T:GpuData>(&mut self, name:Name, t:T) {
self.inputs.insert(name.into(),Self::make_var_decl(t));
pub fn add_input<T:Input>(&mut self, name:&str, t:T) {
self.inputs.insert(name.into(),t.into());
}
/// Adds a new output variable.
pub fn add_output<Name:Str,T:GpuData>(&mut self, name:Name, t:T) {
self.outputs.insert(name.into(),Self::make_var_decl(t));
pub fn add_output<T:Input>(&mut self, name:&str, t:T) {
self.outputs.insert(name.into(),t.into());
}
fn make_var_decl<T:GpuData>(t:T) -> VarDecl {
VarDecl::new(<T as GpuData>::glsl_type(), t.to_glsl())
/// Adds a new input variable.
pub fn add_input_def<T:Input>(&mut self, name:&str) {
self.inputs.insert(name.into(),<T>::gpu_default().into());
}
/// Adds a new output variable.
pub fn add_output_def<T:Input>(&mut self, name:&str) {
self.outputs.insert(name.into(),<T>::gpu_default().into());
}
}

View File

@ -5,23 +5,18 @@ use crate::prelude::*;
use crate::closure;
use crate::data::dirty::traits::*;
use crate::data::dirty;
use crate::data::function::callback::*;
use crate::debug::stats::Stats;
use crate::display::camera::Camera2D;
use crate::display::render::webgl::Context;
use crate::display::symbol;
use crate::promote;
use crate::promote_all;
use crate::promote_symbol_types;
use crate::display::camera::Camera2d;
use crate::display::symbol::Symbol;
use crate::system::gpu::data::uniform::Uniform;
use crate::system::gpu::data::uniform::UniformScope;
use crate::system::web::group;
use crate::system::web::Logger;
use crate::system::gpu::shader::Context;
use data::opt_vec::OptVec;
use eval_tt::*;
use nalgebra::Matrix4;
// ======================
// === SymbolRegistry ===
// ======================
@ -29,14 +24,12 @@ use nalgebra::Matrix4;
// === Definition ===
/// Registry for all the created symbols.
#[derive(Derivative)]
#[derivative(Debug(bound=""))]
pub struct SymbolRegistry<OnMut> {
pub symbols : OptVec<Symbol<OnMut>>,
pub symbol_dirty : SymbolDirty<OnMut>,
#[derive(Debug)]
pub struct SymbolRegistry {
pub symbols : OptVec<Symbol>,
pub symbol_dirty : SymbolDirty,
pub logger : Logger,
pub view_projection : Uniform<Matrix4<f32>>,
pub zoom : Uniform<f32>,
variables : UniformScope,
context : Context,
stats : Stats,
@ -46,41 +39,32 @@ pub struct SymbolRegistry<OnMut> {
// === Types ===
pub type SymbolId = usize;
pub type SymbolDirty<OnDirty> = dirty::SharedSet<SymbolId, OnDirty>;
promote_symbol_types!{ [OnSymbolChange] symbol }
#[macro_export]
/// Promote relevant types to parent scope. See `promote!` macro for more information.
macro_rules! promote_symbol_registry_types { ($($args:tt)*) => {
crate::promote_symbol_types! { $($args)* }
promote! { $($args)* [SymbolRegistry] }
};}
pub type SymbolDirty = dirty::SharedSet<SymbolId,Box<dyn Fn()>>;
// === Callbacks ===
closure! {
fn mesh_on_change<C:Callback0> (dirty:SymbolDirty<C>, ix:SymbolId) -> OnSymbolChange {
fn mesh_on_change(dirty:SymbolDirty, ix:SymbolId) -> OnSymbolChange {
|| dirty.set(ix)
}}
// === Implementation ===
impl<OnDirty:Callback0> SymbolRegistry<OnDirty> {
impl SymbolRegistry {
/// Create new instance with the provided on-dirty callback.
pub fn new(variables:&UniformScope, stats:&Stats, context:&Context, logger:Logger, on_mut:OnDirty) -> Self {
pub fn new<OnMut:Fn()+'static>(variables:&UniformScope, stats:&Stats, context:&Context, logger:Logger, on_mut:OnMut) -> Self {
logger.info("Initializing.");
let symbol_logger = logger.sub("symbol_dirty");
let symbol_dirty = SymbolDirty::new(symbol_logger, on_mut);
let symbol_dirty = SymbolDirty::new(symbol_logger,Box::new(on_mut));
let symbols = default();
let variables = variables.clone();
let view_projection = variables.add_or_panic("view_projection", Matrix4::<f32>::identity());
let zoom = variables.add_or_panic("zoom" , 1.0);
let context = context.clone();
let stats = stats.clone_ref();
Self {symbols,symbol_dirty,logger,view_projection,zoom,variables,context,stats}
Self {symbols,symbol_dirty,logger,view_projection,variables,context,stats}
}
/// Creates a new `Symbol` instance.
@ -91,7 +75,7 @@ impl<OnDirty:Callback0> SymbolRegistry<OnDirty> {
let context = &self.context;
let stats = &self.stats;
self.symbols.insert_with_ix(|ix| {
let on_mut = mesh_on_change(symbol_dirty, ix);
let on_mut = move || {symbol_dirty.set(ix)};
let logger = logger.sub(format!("symbol{}",ix));
Symbol::new(variables,logger,stats,context,on_mut)
})
@ -107,11 +91,10 @@ impl<OnDirty:Callback0> SymbolRegistry<OnDirty> {
})
}
pub fn render(&self, camera:&Camera2D) {
pub fn render(&self, camera:&Camera2d) {
let changed = camera.update();
if changed {
self.view_projection.set(camera.view_projection_matrix());
self.zoom.set(camera.zoom());
}
group!(self.logger, "Rendering.", {
for symbol in &self.symbols {
@ -121,14 +104,14 @@ impl<OnDirty:Callback0> SymbolRegistry<OnDirty> {
}
}
impl<OnDirty> Index<usize> for SymbolRegistry<OnDirty> {
type Output = Symbol<OnDirty>;
impl Index<usize> for SymbolRegistry {
type Output = Symbol;
fn index(&self, ix:usize) -> &Self::Output {
self.symbols.index(ix)
}
}
impl<OnDirty> IndexMut<usize> for SymbolRegistry<OnDirty> {
impl IndexMut<usize> for SymbolRegistry {
fn index_mut(&mut self, ix:usize) -> &mut Self::Output {
self.symbols.index_mut(ix)
}

View File

@ -7,17 +7,14 @@ use crate::prelude::*;
use crate::data::dirty::traits::*;
use crate::data::dirty;
use crate::data::function::callback::*;
use crate::debug::stats::Stats;
use crate::display::render::webgl::Context;
use crate::display::render::webgl::glsl;
use crate::display::render::webgl;
use crate::display::symbol::material::Material;
use crate::display::symbol::material::VarDecl;
use crate::display::symbol::ScopeType;
use crate::display::symbol::shader;
use crate::system::web::group;
use crate::system::web::Logger;
use crate::display::symbol::geometry::primitive::mesh::ScopeType;
use crate::system::gpu::shader::*;
use crate::system::gpu::shader::Context;
use crate::control::callback::CallbackFn;
use web_sys::WebGlProgram;
@ -52,43 +49,37 @@ impl VarBinding {
/// Shader keeps track of a shader and related WebGL Program.
#[derive(Derivative)]
#[derivative(Debug(bound=""))]
pub struct Shader<OnMut> {
pub struct Shader {
geometry_material : Material,
material : Material,
surface_material : Material,
program : Option<WebGlProgram>,
pub dirty : Dirty <OnMut>,
pub logger : Logger,
dirty : Dirty,
logger : Logger,
context : Context,
stats : Stats,
}
// === Types ===
pub type Dirty <F> = dirty::SharedBool<F>;
#[macro_export]
/// Promote relevant types to parent scope. See `promote!` macro for more information.
macro_rules! promote_shader_types { ($($args:tt)*) => {
promote! {$($args)* [Shader]}
};}
pub type Dirty = dirty::SharedBool<Box<dyn Fn()>>;
// === Implementation ===
impl<OnMut:Callback0> Shader<OnMut> {
impl Shader {
/// Creates new shader with attached callback.
pub fn new(logger:Logger, stats:&Stats, context:&Context, on_mut:OnMut) -> Self {
pub fn new<OnMut:CallbackFn>(logger:Logger, stats:&Stats, context:&Context, on_mut:OnMut) -> Self {
stats.inc_shader_count();
let geometry_material = default();
let material = default();
let surface_material = default();
let program = default();
let dirty_logger = logger.sub("dirty");
let dirty = Dirty::new(dirty_logger,on_mut);
let dirty = Dirty::new(dirty_logger,Box::new(on_mut));
let context = context.clone();
let stats = stats.clone_ref();
dirty.set();
Self {geometry_material,material,program,dirty,logger,context,stats}
Self {geometry_material,surface_material,program,dirty,logger,context,stats}
}
// TODO: this is very work-in-progress function. It should be refactored in the next PR.
@ -108,10 +99,9 @@ impl<OnMut:Callback0> Shader<OnMut> {
match binding.scope {
None => todo!(),
Some(scope_type) => match scope_type {
ScopeType::Instance => shader_cfg.add_attribute (name,tp),
ScopeType::Point => shader_cfg.add_attribute (name,tp),
ScopeType::Symbol => shader_cfg.add_uniform (name,tp),
ScopeType::Global => shader_cfg.add_uniform (name,tp),
_ => todo!()
_ => shader_cfg.add_attribute (name,tp),
}
}
}
@ -123,18 +113,18 @@ impl<OnMut:Callback0> Shader<OnMut> {
shader_cfg.add_output("color", glsl::PrimType::Vec4);
let vertex_code = self.geometry_material.code().clone();
let fragment_code = self.material.code().clone();
let fragment_code = self.surface_material.code().clone();
shader_builder.compute(&shader_cfg,vertex_code,fragment_code);
let shader = shader_builder.build();
let vert_shader = webgl::compile_vertex_shader (&self.context,&shader.vertex);
let frag_shader = webgl::compile_fragment_shader(&self.context,&shader.fragment);
let vert_shader = compile_vertex_shader (&self.context,&shader.vertex);
let frag_shader = compile_fragment_shader(&self.context,&shader.fragment);
if let Err(ref err) = frag_shader {
self.logger.error(|| format!("{}", err))
}
let vert_shader = vert_shader.unwrap();
let frag_shader = frag_shader.unwrap();
let program = webgl::link_program(&self.context,&vert_shader,&frag_shader);
let program = link_program(&self.context,&vert_shader,&frag_shader);
let program = program.unwrap();
self.program = Some(program);
@ -146,12 +136,12 @@ impl<OnMut:Callback0> Shader<OnMut> {
/// Traverses the shader definition and collects all attribute names.
pub fn collect_variables(&self) -> BTreeMap<String,VarDecl> {
let geometry_material_inputs = self.geometry_material.inputs().clone();
let surface_material_inputs = self.material.inputs().clone();
let surface_material_inputs = self.surface_material.inputs().clone();
geometry_material_inputs.into_iter().chain(surface_material_inputs).collect()
}
}
impl<OnMut> Drop for Shader<OnMut> {
impl Drop for Shader {
fn drop(&mut self) {
self.stats.dec_shader_count();
}
@ -160,7 +150,7 @@ impl<OnMut> Drop for Shader<OnMut> {
// === Getters ===
impl<OnMut> Shader<OnMut> {
impl Shader {
pub fn program(&self) -> &Option<WebGlProgram> {
&self.program
}
@ -169,14 +159,14 @@ impl<OnMut> Shader<OnMut> {
// === Setters ===
impl<OnMut:Callback0> Shader<OnMut> {
impl Shader {
pub fn set_geometry_material<M:Into<Material>>(&mut self, material:M) {
self.geometry_material = material.into();
self.dirty.set();
}
pub fn set_material<M:Into<Material>>(&mut self, material:M) {
self.material = material.into();
self.surface_material = material.into();
self.dirty.set();
}
}

View File

@ -3,7 +3,7 @@
use crate::prelude::*;
use crate::data::container::Add;
use crate::display::render::webgl::glsl;
use crate::system::gpu::shader::glsl;
use code_builder::HasCodeRepr;
use std::collections::BTreeMap;

View File

@ -7,34 +7,28 @@ pub mod scene;
#[warn(missing_docs)]
pub mod workspace;
use crate::prelude::*;
pub use crate::display::symbol::types::*;
pub use crate::display::world::workspace::Workspace;
pub use crate::data::container::*;
pub use crate::display::world::workspace::SymbolId;
use crate::prelude::*;
use crate::closure;
use crate::control::callback::CallbackHandle;
use crate::data::dirty;
use crate::data::dirty::traits::*;
use crate::debug::stats::Stats;
use crate::promote_all;
use crate::promote_workspace_types;
use crate::promote;
use crate::system::web;
use crate::system::web::group;
use crate::system::web::Logger;
use crate::display::shape::text::font::Fonts;
use crate::debug::monitor;
use crate::data::dirty;
use crate::debug::monitor::Monitor;
use crate::debug::monitor::Panel;
use crate::system::gpu::data::uniform::UniformScope;
use crate::system::gpu::data::uniform::Uniform;
use crate::debug::monitor;
use crate::debug::stats::Stats;
use crate::display::shape::text::font::Fonts;
use crate::system::web;
use event_loop::EventLoop;
use wasm_bindgen::prelude::Closure;
use wasm_bindgen::{JsCast, JsValue};
use web_sys::{Performance,KeyboardEvent};
use event_loop::EventLoop;
use eval_tt::*;
@ -186,7 +180,6 @@ pub struct WorldData {
pub workspace_dirty : WorkspaceDirty,
pub logger : Logger,
pub event_loop : EventLoop,
pub variables : UniformScope,
pub performance : Performance,
pub start_time : f32,
pub time : Uniform<f32>,
@ -202,7 +195,6 @@ pub struct WorldData {
pub type WorkspaceID = usize;
pub type WorkspaceDirty = dirty::SharedBool;
promote_workspace_types!{ [[WorkspaceOnChange]] workspace }
// === Callbacks ===
@ -238,7 +230,8 @@ impl WorldData {
if key == "0" { world_copy.borrow_mut().display_mode.set(0) }
else if key == "1" { world_copy.borrow_mut().display_mode.set(1) }
}));
web::document().unwrap().add_event_listener_with_callback("keydown",c.as_ref().unchecked_ref()).unwrap();
web::document().unwrap().add_event_listener_with_callback
("keydown",c.as_ref().unchecked_ref()).unwrap();
c.forget();
// -----------------------------------------------------------------------------------------
@ -253,11 +246,12 @@ impl WorldData {
let workspace_logger = logger.sub("workspace");
let workspace_dirty_logger = logger.sub("workspace_dirty");
let workspace_dirty = WorkspaceDirty::new(workspace_dirty_logger,());
let on_change = workspace_on_change(workspace_dirty.clone_ref());
let variables = UniformScope::new(logger.sub("global_variables"));
let workspace_dirty2 = workspace_dirty.clone();
let on_change = move || {workspace_dirty2.set()};
let workspace = Workspace::new(dom,workspace_logger,&stats,on_change).unwrap(); // fixme unwrap
let variables = &workspace.variables;
let time = variables.add_or_panic("time",0.0);
let display_mode = variables.add_or_panic("display_mode",0);
let workspace = Workspace::new(dom,&variables,workspace_logger,&stats,on_change).unwrap(); // fixme unwrap
let fonts = Fonts::new();
let event_loop = EventLoop::new();
let update_handle = default();
@ -268,7 +262,8 @@ impl WorldData {
let stats_monitor_cp_2 = stats_monitor.clone();
event_loop.set_on_loop_started (move || { stats_monitor_cp_1.begin(); });
event_loop.set_on_loop_finished (move || { stats_monitor_cp_2.end(); });
Self {workspace,workspace_dirty,logger,event_loop,variables,performance,start_time,time,display_mode,fonts,update_handle,stats,stats_monitor}
Self {workspace,workspace_dirty,logger,event_loop,performance,start_time,time,display_mode
,fonts,update_handle,stats,stats_monitor}
}
pub fn run(&mut self) {
@ -282,7 +277,6 @@ impl WorldData {
//TODO[WD]: Re-think when should we check the condition (uniform update):
// if self.workspace_dirty.check_all() {
group!(self.logger, "Updating.", {
// FIXME render only needed workspaces.
self.workspace_dirty.unset_all();
let fonts = &mut self.fonts;
self.workspace.update(fonts);
@ -300,5 +294,3 @@ impl Drop for WorldData {
self.logger.info("Dropping.");
}
}

View File

@ -2,9 +2,10 @@
use crate::prelude::*;
use crate::display::camera::Camera2D;
use crate::display::camera::Camera2d;
use crate::display::object::DisplayObjectData;
use basegl_system_web::Logger;
use crate::system::gpu::data::uniform::UniformScope;
// =============
@ -15,17 +16,16 @@ use basegl_system_web::Logger;
#[derivative(Debug(bound=""))]
pub struct Scene {
pub root : DisplayObjectData,
pub camera : Camera2D
pub camera : Camera2d
}
// === Implementation ===
impl Scene {
pub fn new(logger:Logger) -> Self {
pub fn new(logger:Logger, globals:&UniformScope) -> Self {
let root = DisplayObjectData::new(logger.sub("root"));
let camera = Camera2D::new(logger.sub("camera"));
let camera = Camera2d::new(logger.sub("camera"),globals);
Self {root,camera}
}
}

View File

@ -7,25 +7,18 @@ pub use crate::display::symbol::registry::SymbolId;
use crate::closure;
use crate::data::dirty::traits::*;
use crate::data::dirty;
use crate::data::function::callback::*;
use crate::debug::stats::Stats;
use crate::display::render::webgl;
use crate::system::gpu::shader::Context;
use crate::display::shape::text::font::Fonts;
use crate::display::shape::text;
use crate::display::world::scene::Scene;
use crate::display::symbol::registry;
use crate::promote;
use crate::promote_all;
use crate::promote_symbol_registry_types;
use crate::system::web::fmt;
use crate::system::web::group;
use crate::system::web::Logger;
use crate::display::symbol::Symbol;
use crate::display::symbol::registry::SymbolRegistry;
use crate::system::web::resize_observer::ResizeObserver;
use crate::system::web;
use crate::system::gpu::data::uniform::UniformScope;
use eval_tt::*;
use wasm_bindgen::prelude::Closure;
@ -115,16 +108,17 @@ impl ShapeData {
#[derive(Derivative)]
#[derivative(Debug(bound=""))]
pub struct Workspace<OnMut> {
pub struct Workspace {
pub canvas : web_sys::HtmlCanvasElement,
pub context : webgl::Context,
pub symbols : SymbolRegistry<OnMut>,
pub symbols_dirty : SymbolRegistryDirty<OnMut>,
pub context : Context,
pub symbols : SymbolRegistry,
pub symbols_dirty : SymbolRegistryDirty,
pub scene : Scene,
pub shape : Shape,
pub shape_dirty : ShapeDirty<OnMut>,
pub shape_dirty : ShapeDirty,
pub logger : Logger,
pub listeners : Listeners,
pub variables : UniformScope,
// TODO[AO] this is a very temporary solution. Need to develop some general component handling.
pub text_components : Vec<text::TextComponent>,
}
@ -132,22 +126,14 @@ pub struct Workspace<OnMut> {
// === Types ===
pub type ShapeDirty <Callback> = dirty::SharedBool<Callback>;
pub type SymbolRegistryDirty <Callback> = dirty::SharedBool<Callback>;
promote_symbol_registry_types!{ [OnSymbolRegistryChange] registry }
#[macro_export]
/// Promote relevant types to parent scope. See `promote!` macro for more information.
macro_rules! promote_workspace_types { ($($args:tt)*) => {
crate::promote_symbol_registry_types! { $($args)* }
promote! { $($args)* [Workspace] }
};}
pub type ShapeDirty = dirty::SharedBool<Box<dyn Fn()>>;
pub type SymbolRegistryDirty = dirty::SharedBool<Box<dyn Fn()>>;
// === Callbacks ===
closure! {
fn symbols_on_change<C:Callback0> (dirty:SymbolRegistryDirty<C>) -> OnSymbolRegistryChange {
fn symbols_on_change(dirty:SymbolRegistryDirty) -> OnSymbolRegistryChange {
|| dirty.set()
}}
@ -159,44 +145,43 @@ pub struct Listeners {
resize: ResizeObserver,
}
impl<OnMut: Clone + Callback0 + 'static> Workspace<OnMut> {
impl Workspace {
/// Create new instance with the provided on-dirty callback.
pub fn new<Dom:Str>
(dom:Dom, variables:&UniformScope, logger:Logger, stats:&Stats, on_dirty:OnMut) -> Result<Self, Error> {
pub fn new<Dom:Str, OnMut:Fn()+Clone+'static>
(dom:Dom, logger:Logger, stats:&Stats, on_mut:OnMut) -> Result<Self, Error> {
logger.trace("Initializing.");
let dom = dom.as_ref();
let canvas = web::get_canvas(dom)?;
let context = web::get_webgl2_context(&canvas)?;
let sub_logger = logger.sub("shape_dirty");
let shape_dirty = ShapeDirty::new(sub_logger,on_dirty.clone());
let shape_dirty = ShapeDirty::new(sub_logger,Box::new(on_mut.clone()));
let sub_logger = logger.sub("symbols_dirty");
let dirty_flag = SymbolRegistryDirty::new(sub_logger, on_dirty);
let dirty_flag = SymbolRegistryDirty::new(sub_logger,Box::new(on_mut));
let on_change = symbols_on_change(dirty_flag.clone_ref());
let sub_logger = logger.sub("symbols");
let symbols = SymbolRegistry::new(variables,&stats,&context,sub_logger,on_change);
let variables = UniformScope::new(logger.sub("global_variables"),&context);
let symbols = SymbolRegistry::new(&variables,&stats,&context,sub_logger,on_change);
let shape = Shape::default();
let listeners = Self::init_listeners(&logger,&canvas,&shape,&shape_dirty);
let symbols_dirty = dirty_flag;
let scene = Scene::new(logger.sub("scene"));
let scene = Scene::new(logger.sub("scene"),&variables);
let text_components = default();
variables.add("pixel_ratio", shape.pixel_ratio());
// FIXME: use correct blending function and rething premultiplying the alpha.
context.enable(webgl::Context::BLEND);
// context.blend_func(webgl::Context::ONE, webgl::Context::ONE_MINUS_SRC_ALPHA);
context.blend_func(webgl::Context::SRC_ALPHA, webgl::Context::ONE);
let this = Self {canvas,context,symbols,scene,symbols_dirty
,shape,shape_dirty,logger,listeners,text_components};
context.enable(Context::BLEND);
// context.blend_func(Context::ONE, Context::ONE_MINUS_SRC_ALPHA);
context.blend_func(Context::SRC_ALPHA, Context::ONE);
let this = Self {canvas,context,symbols,scene,symbols_dirty,shape,shape_dirty,logger
,listeners,variables,text_components};
Ok(this)
}
/// Initialize all listeners and attach them to DOM elements.
fn init_listeners
(logger:&Logger, canvas:&web_sys::HtmlCanvasElement, shape:&Shape, dirty:&ShapeDirty<OnMut>)
(logger:&Logger, canvas:&web_sys::HtmlCanvasElement, shape:&Shape, dirty:&ShapeDirty)
-> Listeners {
let logger = logger.clone();
let shape = shape.clone();
@ -245,7 +230,7 @@ impl<OnMut: Clone + Callback0 + 'static> Workspace<OnMut> {
self.logger.info("Clearing the scene.");
self.context.clear_color(0.0, 0.0, 0.0, 1.0);
self.context.clear(webgl::Context::COLOR_BUFFER_BIT);
self.context.clear(Context::COLOR_BUFFER_BIT);
self.logger.info("Rendering meshes.");
self.symbols.render(&self.scene.camera);
if !self.text_components.is_empty() {
@ -258,14 +243,14 @@ impl<OnMut: Clone + Callback0 + 'static> Workspace<OnMut> {
}
}
impl<OnMut> Index<usize> for Workspace<OnMut> {
type Output = Symbol<OnMut>;
impl Index<usize> for Workspace {
type Output = Symbol;
fn index(&self, ix: usize) -> &Self::Output {
self.symbols.index(ix)
}
}
impl<OnMut> IndexMut<usize> for Workspace<OnMut> {
impl IndexMut<usize> for Workspace {
fn index_mut(&mut self, ix: usize) -> &mut Self::Output {
self.symbols.index_mut(ix)
}

View File

@ -2,10 +2,10 @@
use wasm_bindgen::prelude::*;
use crate::display::render::css3d::Scene;
use crate::display::render::css3d::Camera;
use crate::display::render::css3d::html::HTMLObject;
use crate::display::render::css3d::html::HTMLRenderer;
use crate::system::web::dom::Scene;
use crate::system::web::dom::Camera;
use crate::system::web::dom::html::HTMLObject;
use crate::system::web::dom::html::HTMLRenderer;
use crate::system::web::StyleSetter;
use crate::display::navigation::navigator::Navigator;

View File

@ -1,7 +1,7 @@
#![allow(missing_docs)]
use crate::display::object::DisplayObjectOps;
use crate::display::symbol::geometry::sprite::Sprite;
use crate::display::symbol::geometry::Sprite;
use crate::display::shape::primitive::system::ShapeSystem;
use crate::display::world::*;
use crate::system::web::set_stdout;
@ -24,9 +24,6 @@ pub fn run_example_shapes() {
}
fn init(world: &World) {
let s1 = Circle("25.0 + 20.0*sin(input_time/1000.0)");
let s2 = s1.translate(25.0,0.0);
let s3 = &s1 + &s2;

View File

@ -1,8 +1,8 @@
#![allow(missing_docs)]
use crate::display::object::DisplayObjectOps;
use crate::display::symbol::geometry::sprite::Sprite;
use crate::display::symbol::geometry::sprite::SpriteSystem;
use crate::display::symbol::geometry::Sprite;
use crate::display::symbol::geometry::SpriteSystem;
use crate::display::world::*;
use crate::prelude::*;
use crate::system::web::set_stdout;

View File

@ -2,7 +2,7 @@
//! component library. It is able to display millions of shapes 60 frames per second in a web
//! browser on a modern laptop hardware. This is the main entry point to the library.
#![cfg_attr(test, allow(dead_code))]
#![allow(dead_code)]
#![warn(missing_docs)]
#![warn(trivial_casts)]
@ -20,6 +20,7 @@
#![feature(unboxed_closures)]
#![feature(weak_into_raw)]
#![feature(drain_filter)]
#![recursion_limit="256"]
// To be removed after this gets resolved: https://github.com/rust-lang/cargo/issues/5034
#![allow(clippy::option_map_unit_fn)]
@ -49,6 +50,10 @@ pub mod debug;
pub mod display;
pub mod examples;
pub mod system;
pub mod math;
pub use basegl_prelude as prelude;
/// Prelude - commonly used utilities.
pub mod prelude {
pub use basegl_prelude::*;
pub use logger::*;
pub use shapely::newtype_copy;
}

View File

@ -1,3 +0,0 @@
#![allow(missing_docs)]
pub mod utils;

View File

@ -1,11 +0,0 @@
#![allow(missing_docs)]
use nalgebra::clamp;
use std::ops::Mul;
use std::ops::Add;
pub fn linear_interpolation<T>(a:T, b:T, t:f32) -> T
where T : Mul<f32, Output = T> + Add<T, Output = T> {
let t = clamp(t, 0.0, 1.0);
a * (1.0 - t) + b * t
}

View File

@ -2,5 +2,4 @@
//! including the native system, JS world, GPU runtime, etc.
pub mod gpu;
pub use basegl_system_web as web;
pub mod web;

View File

@ -1,4 +1,17 @@
//! GPU-specific implementations.
//! GPU-specific types and related implementations.
pub mod buffer;
pub mod data;
pub mod shader;
/// Common types.
pub mod types {
use web_sys::WebGl2RenderingContext;
pub use super::data::types::*;
pub use super::shader::types::*;
/// Alias for WebGl2RenderingContext.
pub type Context = WebGl2RenderingContext;
}
pub use types::*;

View File

@ -1,465 +0,0 @@
#![allow(missing_docs)]
use crate::prelude::*;
use crate::closure;
use crate::data::dirty::traits::*;
use crate::data::dirty;
use crate::data::function::callback::*;
use crate::data::seq::observable::Observable;
use crate::debug::stats::Stats;
use crate::display::render::webgl::Context;
use crate::system::gpu::data::attribute::class::Attribute;
use crate::system::gpu::data::GpuData;
use crate::system::gpu::data::Item;
use crate::system::web::fmt;
use crate::system::web::group;
use crate::system::web::Logger;
use nalgebra::Matrix4;
use nalgebra::Vector2;
use nalgebra::Vector3;
use nalgebra::Vector4;
use std::iter::Extend;
use std::ops::RangeInclusive;
use web_sys::WebGlBuffer;
// ==================
// === BufferData ===
// ==================
// === Definition ===
/// Please refer to the 'Buffer management pipeline' doc to learn more about
/// attributes, scopes, geometries, meshes, scenes, and other relevant concepts.
///
/// Buffers are values stored in geometry. Under the hood they are stored in
/// vectors and are synchronised with GPU buffers on demand.
#[derive(Derivative,Shrinkwrap)]
#[shrinkwrap(mutable)]
#[derivative(Debug(bound="T:Debug"))]
pub struct BufferData<T,OnMut,OnResize> {
#[shrinkwrap(main_field)]
pub buffer : Data <T,OnMut,OnResize>,
pub buffer_dirty : BufferDirty <OnMut>,
pub resize_dirty : ResizeDirty <OnResize>,
pub logger : Logger,
pub gl_buffer : WebGlBuffer,
context : Context,
stats : Stats,
gpu_mem_usage : u32,
}
// === Types ===
pub type ObservableVec<T,OnMut,OnResize> = Observable<Vec<T>,OnMut,OnResize>;
pub type Data<T,OnMut,OnResize> = ObservableVec<T,DataOnSet<OnMut>,DataOnResize<OnResize>>;
#[macro_export]
/// Promote relevant types to parent scope. See `promote!` macro for more information.
macro_rules! promote_buffer_types { ($callbacks:tt $module:ident) => {
promote! { $callbacks $module [BufferData<T>,Buffer<T>,AnyBuffer] }
};}
// === Callbacks ===
pub type BufferDirty <Callback> = dirty::SharedRange<usize,Callback>;
pub type ResizeDirty <Callback> = dirty::SharedBool<Callback>;
closure! {
fn buffer_on_resize<C:Callback0> (dirty:ResizeDirty<C>) -> DataOnResize {
|| dirty.set()
}}
closure! {
fn buffer_on_mut<C:Callback0> (dirty:BufferDirty<C>) -> DataOnSet {
|ix: usize| dirty.set(ix)
}}
// === Instances ===
impl<T,OnMut:Callback0, OnResize:Callback0>
BufferData<T,OnMut,OnResize> {
/// Creates a new empty buffer.
pub fn new
(logger:Logger, stats:&Stats, context:&Context, on_mut:OnMut, on_resize:OnResize) -> Self {
stats.inc_buffer_count();
logger.info(fmt!("Creating new {} buffer.", T::type_display()));
let stats = stats.clone_ref();
let set_logger = logger.sub("buffer_dirty");
let resize_logger = logger.sub("resize_dirty");
let buffer_dirty = BufferDirty::new(set_logger,on_mut);
let resize_dirty = ResizeDirty::new(resize_logger,on_resize);
let buff_on_resize = buffer_on_resize(resize_dirty.clone_ref());
let buff_on_mut = buffer_on_mut(buffer_dirty.clone_ref());
let buffer = Data::new(buff_on_mut, buff_on_resize);
let context = context.clone();
let gl_buffer = create_gl_buffer(&context);
let gpu_mem_usage = default();
Self {buffer,buffer_dirty,resize_dirty,logger,gl_buffer,context,stats,gpu_mem_usage}
}
}
impl<T:GpuData,OnMut,OnResize>
BufferData<T,OnMut,OnResize> {
/// View the data as slice of primitive elements.
pub fn as_prim_slice(&self) -> &[Item<T>] {
<T as GpuData>::convert_prim_buffer(&self.buffer.data)
}
/// View the data as slice of elements.
pub fn as_slice(&self) -> &[T] {
&self.buffer.data
}
/// Check dirty flags and update the state accordingly.
pub fn update(&mut self) {
group!(self.logger, "Updating.", {
self.context.bind_buffer(Context::ARRAY_BUFFER, Some(&self.gl_buffer));
if self.resize_dirty.check() {
self.upload_data(&None);
} else if self.buffer_dirty.check_all() {
let range = &self.buffer_dirty.take().range;
self.upload_data(range);
}
self.buffer_dirty.unset_all();
self.resize_dirty.unset();
})
}
/// Uploads the provided data to the GPU buffer.
fn upload_data(&mut self, opt_range:&Option<RangeInclusive<usize>>) {
// Note that `js_buffer_view` is somewhat dangerous (hence the `unsafe`!). This is creating
// a raw view into our module's `WebAssembly.Memory` buffer, but if we allocate more pages
// for ourself (aka do a memory allocation in Rust) it'll cause the buffer to change,
// causing the resulting js array to be invalid.
//
// As a result, after `js_buffer_view` we have to be very careful not to do any memory
// allocations before it's dropped.
self.logger.info("Setting buffer data.");
self.stats.inc_data_upload_count();
let data = self.as_slice();
let item_byte_size = <T as GpuData>::gpu_item_byte_size() as u32;
let item_count = <T as GpuData>::item_count() as u32;
match opt_range {
None => unsafe {
let js_array = data.js_buffer_view();
self.context.buffer_data_with_array_buffer_view
(Context::ARRAY_BUFFER, &js_array, Context::STATIC_DRAW);
self.stats.mod_gpu_memory_usage(|s| s - self.gpu_mem_usage);
self.gpu_mem_usage = self.len() as u32 * item_count * item_byte_size;
self.stats.mod_gpu_memory_usage(|s| s + self.gpu_mem_usage);
self.stats.mod_data_upload_size(|s| s + self.gpu_mem_usage);
}
Some(range) => {
let start = *range.start() as u32;
let end = *range.end() as u32;
let start_item = start * item_count;
let length = (end - start + 1) * item_count;
let dst_byte_offset = (item_byte_size * item_count * start) as i32;
unsafe {
let js_array = data.js_buffer_view();
self.context.buffer_sub_data_with_i32_and_array_buffer_view_and_src_offset_and_length
(Context::ARRAY_BUFFER,dst_byte_offset,&js_array,start_item,length)
}
self.stats.mod_data_upload_size(|s| s + length * item_byte_size);
}
}
}
/// Binds the buffer currently bound to gl.ARRAY_BUFFER to a generic vertex attribute of the
/// current vertex buffer object and specifies its layout. Please note that this function is
/// more complex that a raw call to `WebGLRenderingContext.vertexAttribPointer`, as it correctly
/// handles complex data types like `mat4`. See the following links to learn more:
/// https://developer.mozilla.org/docs/Web/API/WebGLRenderingContext/vertexAttribPointer
/// https://stackoverflow.com/questions/38853096/webgl-how-to-bind-values-to-a-mat4-attribute
pub fn vertex_attrib_pointer(&self, loc:u32, instanced:bool) {
let item_byte_size = <T as GpuData>::gpu_item_byte_size() as i32;
let item_type = <T as GpuData>::glsl_item_type_code();
let rows = <T as GpuData>::rows() as i32;
let cols = <T as GpuData>::cols() as i32;
let col_byte_size = item_byte_size * rows;
let stride = col_byte_size * cols;
let normalize = false;
for col in 0..cols {
let lloc = loc + col as u32;
let off = col * col_byte_size;
self.context.enable_vertex_attrib_array(lloc);
self.context.vertex_attrib_pointer_with_i32(lloc,rows,item_type,normalize,stride,off);
if instanced {
self.context.vertex_attrib_divisor(lloc, 1);
}
}
}
}
impl<T,OnMut,OnResize>
BufferData<T,OnMut,OnResize> {
/// Returns the number of elements in the buffer.
pub fn len(&self) -> usize {
self.buffer.len()
}
/// Checks if the buffer is empty.
pub fn is_empty(&self) -> bool {
self.buffer.is_empty()
}
/// Binds the underlying WebGLBuffer to a given target.
/// https://developer.mozilla.org/docs/Web/API/WebGLRenderingContext/bindBuffer
pub fn bind(&self, target:u32) {
self.context.bind_buffer(target, Some(&self.gl_buffer));
}
}
pub trait AddElementCtx<T,OnResize> = where
T: GpuData + Clone,
OnResize: Callback0;
impl<T,OnMut,OnResize>
BufferData<T,OnMut,OnResize> where Self: AddElementCtx<T,OnResize> {
/// Adds a single new element initialized to default value.
pub fn add_element(&mut self) {
self.add_elements(1);
}
/// Adds multiple new elements initialized to default values.
pub fn add_elements(&mut self, elem_count: usize) {
self.extend(iter::repeat(T::empty()).take(elem_count));
}
}
impl<T,OnMut,OnResize>
Index<usize> for BufferData<T,OnMut,OnResize> {
type Output = T;
fn index(&self, index: usize) -> &Self::Output {
self.buffer.index(index)
}
}
impl<T,OnMut:Callback0,OnResize>
IndexMut<usize> for BufferData<T,OnMut,OnResize> {
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
self.buffer.index_mut(index)
}
}
impl<T,OnMut,OnResize> Drop for BufferData<T,OnMut,OnResize> {
fn drop(&mut self) {
self.context.delete_buffer(Some(&self.gl_buffer));
self.stats.mod_gpu_memory_usage(|s| s - self.gpu_mem_usage);
self.stats.dec_buffer_count();
}
}
// === Utils ===
fn create_gl_buffer(context:&Context) -> WebGlBuffer {
let buffer = context.create_buffer();
buffer.ok_or("failed to create buffer").unwrap()
}
// ==============
// === Buffer ===
// ==============
/// Shared view for `Buffer`.
#[derive(Derivative)]
#[derivative(Debug(bound="T:Debug"))]
#[derivative(Clone(bound=""))]
pub struct Buffer<T,OnMut,OnResize> {
pub rc: Rc<RefCell<BufferData<T,OnMut,OnResize>>>
}
impl<T, OnMut:Callback0, OnResize:Callback0>
Buffer<T,OnMut,OnResize> {
/// Creates a new empty buffer.
pub fn new
(logger:Logger, stats:&Stats, context:&Context, on_mut:OnMut, on_resize:OnResize) -> Self {
let data = BufferData::new(logger,stats,context,on_mut,on_resize);
let rc = Rc::new(RefCell::new(data));
Self {rc}
}
}
impl<T:GpuData,OnMut,OnResize>
Buffer<T,OnMut,OnResize> {
/// Check dirty flags and update the state accordingly.
pub fn update(&self) {
self.rc.borrow_mut().update()
}
/// binds the buffer currently bound to gl.ARRAY_BUFFER to a generic vertex
/// attribute of the current vertex buffer object and specifies its layout.
/// https://developer.mozilla.org/docs/Web/API/WebGLRenderingContext/vertexAttribPointer
pub fn vertex_attrib_pointer(&self, index:u32, instanced:bool) {
self.rc.borrow().vertex_attrib_pointer(index,instanced)
}
}
impl<T,OnMut,OnResize>
Buffer<T,OnMut,OnResize> {
// FIXME: Rethink if buffer should know about Attribute.
/// Get the variable by given index.
pub fn get(&self, index:usize) -> Attribute<T,OnMut,OnResize> {
Attribute::new(index, self.clone())
}
/// Returns the number of elements in the buffer.
pub fn len(&self) -> usize {
self.rc.borrow().len()
}
/// Checks if the buffer is empty.
pub fn is_empty(&self) -> bool {
self.rc.borrow().is_empty()
}
/// Binds the underlying WebGLBuffer to a given target.
/// https://developer.mozilla.org/docs/Web/API/WebGLRenderingContext/bindBuffer
pub fn bind(&self, target:u32) {
self.rc.borrow().bind(target)
}
}
impl<T,OnMut,OnResize>
Buffer<T,OnMut,OnResize> where (): AddElementCtx<T,OnResize> {
/// Adds a single new element initialized to default value.
pub fn add_element(&self){
self.rc.borrow_mut().add_element()
}
}
impl <T,OnMut,OnResize>
From<Rc<RefCell<BufferData<T,OnMut,OnResize>>>> for Buffer<T,OnMut,OnResize> {
fn from(rc: Rc<RefCell<BufferData<T, OnMut, OnResize>>>) -> Self {
Self {rc}
}
}
// ========================
// === TO BE REFACTORED ===
// ========================
// TODO The following code should be refactored to use the new macro `eval-tt`
// TODO engine. Some utils, like `cartesian` macro should also be refactored
// TODO out.
macro_rules! cartesian_impl {
($out:tt [] $b:tt $init_b:tt, $f:ident) => {
$f!{ $out }
};
($out:tt [$a:ident, $($at:tt)*] [] $init_b:tt, $f:ident) => {
cartesian_impl!{ $out [$($at)*] $init_b $init_b, $f }
};
([$($out:tt)*] [$a:ident, $($at:tt)*] [$b:ident, $($bt:tt)*] $init_b:tt
,$f:ident) => {
cartesian_impl!{
[$($out)* ($a, $b),] [$a, $($at)*] [$($bt)*] $init_b, $f
}
};
}
macro_rules! cartesian {
([$($a:tt)*], [$($b:tt)*], $f:ident) => {
cartesian_impl!{ [] [$($a)*,] [$($b)*,] [$($b)*,], $f }
};
}
// =================
// === AnyBuffer ===
// =================
use enum_dispatch::*;
// === Macros ===
#[derive(Debug)]
pub struct BadVariant;
macro_rules! mk_any_buffer_impl {
([$(($base:ident, $param:ident)),*,]) => { paste::item! {
/// An enum with a variant per possible buffer type (i32, f32, Vector<f32>,
/// and many, many more). It provides a faster alternative to dyn trait one:
/// `Buffer<dyn GpuData, OnMut, OnResize>`.
#[enum_dispatch(IsBuffer)]
#[derive(Derivative)]
#[derivative(Debug(bound=""))]
pub enum AnyBuffer<OnMut, OnResize> {
$( [<Variant $base For $param>]
(Buffer<$base<$param>, OnMut, OnResize>),
)*
}
$( // ======================================================================
impl<'t, T, S>
TryFrom<&'t AnyBuffer<T, S>>
for &'t Buffer<$base<$param>, T, S> {
type Error = BadVariant;
fn try_from(v: &'t AnyBuffer<T, S>)
-> Result <&'t Buffer<$base<$param>, T, S>, Self::Error> {
match v {
AnyBuffer::[<Variant $base For $param>](a) => Ok(a),
_ => Err(BadVariant)
}
}
}
impl<'t, T, S>
TryFrom<&'t mut AnyBuffer<T, S>>
for &'t mut Buffer<$base<$param>, T, S> {
type Error = BadVariant;
fn try_from(v: &'t mut AnyBuffer<T, S>)
-> Result <&'t mut Buffer<$base<$param>, T, S>, Self::Error> {
match v {
AnyBuffer::[<Variant $base For $param>](a) => Ok(a),
_ => Err(BadVariant)
}
}
}
)* // ======================================================================
}
}}
macro_rules! mk_any_buffer {
($bases:tt, $params:tt) => {
cartesian!($bases, $params, mk_any_buffer_impl);
}
}
// === Definition ===
type Identity<T> = T;
mk_any_buffer!([Identity,Vector2,Vector3,Vector4,Matrix4], [f32]);
/// Collection of all methods common to every buffer variant.
#[enum_dispatch]
pub trait IsBuffer<OnMut: Callback0, OnResize: Callback0> {
fn add_element(&self);
fn len(&self) -> usize;
fn is_empty(&self) -> bool;
fn update(&self);
fn bind(&self, target:u32);
fn vertex_attrib_pointer(&self, index:u32, instanced:bool);
}

View File

@ -6,15 +6,38 @@
//! https://www.khronos.org/opengl/wiki/Type_Qualifier_(GLSL)
pub mod attribute;
pub mod class;
pub mod buffer;
pub mod default;
pub mod gl_enum;
pub mod prim;
pub mod sized;
pub mod texture;
pub mod uniform;
// =================
// === Reexports ===
// =================
pub use attribute::*;
pub use class::*;
pub use buffer::item::*;
pub use default::*;
pub use uniform::*;
/// Common types.
pub mod types {
use super::*;
pub use attribute::Attribute;
pub use attribute::AttributeScope;
pub use buffer::AnyBuffer;
pub use buffer::Buffer;
pub use buffer::IsBuffer;
pub use buffer::BufferItem;
pub use default::GpuDefault;
pub use gl_enum::GlEnum;
pub use gl_enum::traits::*;
pub use prim::*;
pub use uniform::Uniform;
pub use uniform::UniformScope;
}
pub use types::*;

View File

@ -1,47 +1,34 @@
#![allow(missing_docs)]
#[warn(missing_docs)]
pub mod class;
//! This module defines attributes and related utilities.
use crate::prelude::*;
use crate::closure;
use crate::data::dirty::traits::*;
use crate::control::callback::CallbackFn;
use crate::data::dirty;
use crate::data::function::callback::*;
use crate::debug::stats::Stats;
use crate::display::render::webgl::Context;
use crate::system::gpu::buffer::IsBuffer;
use crate::system::gpu::data::GpuData;
use crate::system::gpu::buffer;
use crate::promote;
use crate::promote_all;
use crate::promote_buffer_types;
use crate::system::web::group;
use crate::system::web::Logger;
use data::opt_vec::OptVec;
use eval_tt::*;
use crate::data::OptVec;
use crate::debug::Stats;
use crate::system::gpu::Context;
use crate::data::dirty::traits::*;
use crate::system::gpu::types::*;
// =============
// === Scope ===
// =============
// === Definition ===
// ======================
// === AttributeScope ===
// ======================
/// Scope defines a view for geometry structure. For example, there is point
/// scope or instance scope. Scope contains buffer of data for each item it
/// describes.
#[derive(Derivative)]
#[derivative(Debug(bound=""))]
pub struct AttributeScope<OnMut> {
pub buffers : OptVec<AnyBuffer<OnMut>>,
pub buffer_dirty : BufferDirty<OnMut>,
pub shape_dirty : ShapeDirty<OnMut>,
pub name_map : HashMap<BufferName, BufferIndex>,
pub logger : Logger,
free_ids : Vec<InstanceId>,
#[derive(Debug)]
pub struct AttributeScope {
buffers : OptVec<AnyBuffer>,
buffer_dirty : BufferDirty,
shape_dirty : ShapeDirty,
buffer_name_map : HashMap<String,BufferIndex>,
logger : Logger,
free_ids : Vec<AttributeInstanceIndex>,
size : usize,
context : Context,
stats : Stats,
@ -50,64 +37,66 @@ pub struct AttributeScope<OnMut> {
// === Types ===
pub type InstanceId = usize;
pub type BufferIndex = usize;
pub type BufferName = String;
pub type BufferDirty <OnMut> = dirty::SharedBitField<u64,OnMut>;
pub type ShapeDirty <OnMut> = dirty::SharedBool<OnMut>;
pub type Attribute <T,OnMut> = class::Attribute<T,BufferOnSet<OnMut>,BufferOnResize<OnMut>>;
promote_buffer_types! {[BufferOnSet,BufferOnResize] buffer}
newtype_copy! {
/// Index of the attribute instance.
AttributeInstanceIndex(usize);
#[macro_export]
/// Promote relevant types to parent scope. See `promote!` macro for more information.
macro_rules! promote_scope_types { ($callbacks:tt $module:ident) => {
crate::promote_buffer_types! { $callbacks $module }
promote! { $callbacks $module [Attribute<T>,AttributeScope] }
};}
/// Index of the attribute instance.
BufferIndex(usize);
}
/// Dirty flag collecting information which buffers were mutated.
pub type BufferDirty = dirty::SharedBitField<u64,Box<dyn Fn()>>;
/// Dirty flag indicating that the shape of the attribute (all buffers) was changed.
pub type ShapeDirty = dirty::SharedBool<Box<dyn Fn()>>;
// === Callbacks ===
closure! {
fn buffer_on_set<C:Callback0> (dirty:BufferDirty<C>, ix:usize) -> BufferOnSet {
fn buffer_on_set(dirty:BufferDirty, ix:usize) -> BufferOnSet {
|| dirty.set(ix)
}}
closure! {
fn buffer_on_resize<C:Callback0> (dirty:ShapeDirty<C>) -> BufferOnResize {
fn buffer_on_resize(dirty:ShapeDirty) -> BufferOnResize {
|| dirty.set()
}}
// === Implementation ===
impl<OnMut:Clone> AttributeScope<OnMut> {
impl AttributeScope {
/// Create a new scope with the provided dirty callback.
pub fn new(logger:Logger, stats:&Stats, context:&Context, on_mut:OnMut) -> Self {
logger.info("Initializing.");
pub fn new<OnMut:CallbackFn+Clone>
(logger:Logger, stats:&Stats, context:&Context, on_mut:OnMut) -> Self {
info!(logger,"Initializing.",{
let stats = stats.clone_ref();
let buffer_logger = logger.sub("buffer_dirty");
let shape_logger = logger.sub("shape_dirty");
let buffer_dirty = BufferDirty::new(buffer_logger,on_mut.clone());
let shape_dirty = ShapeDirty::new(shape_logger,on_mut);
let buffer_dirty = BufferDirty::new(buffer_logger,Box::new(on_mut.clone()));
let shape_dirty = ShapeDirty::new(shape_logger,Box::new(on_mut));
let buffers = default();
let name_map = default();
let buffer_name_map = default();
let free_ids = default();
let size = default();
let context = context.clone();
Self {context,buffers,buffer_dirty,shape_dirty,name_map,logger,free_ids,size,stats}
Self {context,buffers,buffer_dirty,shape_dirty,buffer_name_map,logger,free_ids,size
,stats}
})
}
}
impl<OnMut: Callback0> AttributeScope<OnMut> {
impl AttributeScope {
/// Adds a new named buffer to the scope.
pub fn add_buffer<Name:Str, T:GpuData>(&mut self, name:Name) -> Buffer<T,OnMut>
where AnyBuffer<OnMut>: From<Buffer<T,OnMut>> {
pub fn add_buffer<Name:Str, T:BufferItem>(&mut self, name:Name) -> Buffer<T>
where AnyBuffer: From<Buffer<T>> {
let name = name.as_ref().to_string();
let buffer_dirty = self.buffer_dirty.clone();
let shape_dirty = self.shape_dirty.clone();
let ix = self.buffers.reserve_ix();
group!(self.logger, "Adding buffer '{}' at index {}.", name, ix, {
group!(self.logger, "Adding buffer '{name}' at index {ix}.", {
let on_set = buffer_on_set(buffer_dirty, ix);
let on_resize = buffer_on_resize(shape_dirty);
let logger = self.logger.sub(&name);
@ -115,32 +104,33 @@ impl<OnMut: Callback0> AttributeScope<OnMut> {
let buffer = Buffer::new(logger,&self.stats,context,on_set,on_resize);
let buffer_ref = buffer.clone();
self.buffers.set(ix,AnyBuffer::from(buffer));
self.name_map.insert(name, ix);
self.buffer_name_map.insert(name,ix.into());
self.shape_dirty.set();
buffer_ref
})
}
/// Lookups buffer by a given name.
pub fn buffer(&self, name:&str) -> Option<&AnyBuffer<OnMut>> {
self.name_map.get(name).map(|i| &self.buffers[*i])
pub fn buffer(&self, name:&str) -> Option<&AnyBuffer> {
self.buffer_name_map.get(name).map(|i| &self.buffers[(*i).into()])
}
/// Checks if a buffer with the given name was created in this scope.
pub fn contains<S:Str>(&self, name:S) -> bool {
self.name_map.contains_key(name.as_ref())
self.buffer_name_map.contains_key(name.as_ref())
}
/// Adds a new instance to every buffer in the scope.
pub fn add_instance(&mut self) -> InstanceId {
group!(self.logger, "Adding {} instance(s).", 1, {
pub fn add_instance(&mut self) -> AttributeInstanceIndex {
let instance_count = 1;
group!(self.logger, "Adding {instance_count} instance(s).", {
match self.free_ids.pop() {
Some(ix) => ix,
None => {
let ix = self.size;
self.size += 1;
self.size += instance_count;
self.buffers.iter_mut().for_each(|t| t.add_element());
ix
ix.into()
}
}
})
@ -149,8 +139,8 @@ impl<OnMut: Callback0> AttributeScope<OnMut> {
/// Disposes instance for reuse in the future. Please note that the disposed data still
/// exists in the buffer and will be used when rendering. It is yours responsibility to hide
/// id, fo example by degenerating vertices.
pub fn dispose(&mut self, id:InstanceId) {
group!(self.logger, "Disposing instance {}.", id, {
pub fn dispose(&mut self, id:AttributeInstanceIndex) {
group!(self.logger, "Disposing instance {id}.", {
self.free_ids.push(id);
})
}
@ -179,3 +169,44 @@ impl<OnMut: Callback0> AttributeScope<OnMut> {
self.size
}
}
// =================
// === Attribute ===
// =================
/// View for a particular buffer. Allows reading and writing buffer data
/// via the internal mutability pattern. It is implemented as a view on
/// a selected `Buffer` element under the hood.
#[derive(Clone,Debug,Derivative)]
pub struct Attribute<T> {
index : AttributeInstanceIndex,
buffer : Buffer<T>
}
impl<T> Attribute<T> {
/// Creates a new variable as an indexed view over provided buffer.
pub fn new(index:AttributeInstanceIndex, buffer:Buffer<T>) -> Self {
Self {index,buffer}
}
}
impl<T: BufferItem> Attribute<T> {
/// Gets a copy of the data this attribute points to.
pub fn get(&self) -> T {
self.buffer.get(self.index.into())
}
/// Sets the data this attribute points to.
pub fn set(&self, value:T) {
self.buffer.set(self.index.into(),value);
}
/// Modifies the data this attribute points to.
pub fn modify<F:FnOnce(&mut T)>(&self, f:F) {
let mut value = self.get();
f(&mut value);
self.set(value);
}
}

View File

@ -1,47 +0,0 @@
#![allow(missing_docs)]
use crate::prelude::*;
use crate::data::function::callback::Callback0;
use crate::system::gpu::buffer::Buffer;
// =================
// === Attribute ===
// =================
/// View for a particular buffer. Allows reading and writing buffer data
/// via the internal mutability pattern. It is implemented as a view on
/// a selected `Buffer` element under the hood.
#[derive(Clone,Derivative)]
#[derivative(Debug(bound="T:Debug"))]
pub struct Attribute<T,OnMut,OnResize> {
index : usize,
buffer : Buffer<T,OnMut,OnResize>
}
impl<T,OnMut,OnResize> Attribute<T,OnMut,OnResize> {
/// Creates a new variable as an indexed view over provided buffer.
pub fn new(index:usize, buffer: Buffer<T,OnMut,OnResize>) -> Self {
Self {index, buffer}
}
}
impl<T:Copy,OnMut:Callback0,OnResize> Attribute<T,OnMut,OnResize> {
/// Gets immutable reference to the underlying data.
pub fn get(&self) -> T {
*self.buffer.rc.borrow().index(self.index)
}
/// Sets the variable to a new value.
pub fn set(&self, value:T) {
*self.buffer.rc.borrow_mut().index_mut(self.index) = value;
}
/// Modifies the underlying data by using the provided function.
pub fn modify<F:FnOnce(&mut T)>(&self, f:F) {
let mut value = self.get();
f(&mut value);
self.set(value);
}
}

View File

@ -0,0 +1,380 @@
//! This module implements utilities for managing WebGL buffers.
pub mod usage;
pub mod item;
use crate::prelude::*;
use crate::closure;
use crate::control::callback::Callback;
use crate::control::callback::CallbackFn;
use crate::data::dirty;
use crate::data::seq::observable::Observable;
use crate::debug::stats::Stats;
use crate::system::gpu::shader::Context;
use crate::system::gpu::data::buffer::usage::BufferUsage;
use crate::system::gpu::data::attribute::Attribute;
use crate::system::gpu::data::buffer::item::JsBufferView;
use crate::system::gpu::data::prim::*;
use crate::data::dirty::traits::*;
use crate::system::gpu::data::gl_enum::traits::*;
use nalgebra::Matrix4;
use nalgebra::Vector2;
use nalgebra::Vector3;
use nalgebra::Vector4;
use shapely::shared;
use std::iter::Extend;
use std::ops::RangeInclusive;
use web_sys::WebGlBuffer;
pub use crate::system::gpu::data::BufferItem;
// =============
// === Types ===
// =============
/// A vector which fires events whenever it is modified or resized.
pub type ObservableVec<T> = Observable<Vec<T>,OnMut,OnResize>;
/// Dirty flag keeping track of the range of modified elements.
pub type MutDirty = dirty::SharedRange<usize,Callback>;
/// Dirty flag keeping track of whether the buffer was resized.
pub type ResizeDirty = dirty::SharedBool<Callback>;
closure! {
fn on_resize_fn(dirty:ResizeDirty) -> OnResize {
|| dirty.set()
}}
closure! {
fn on_mut_fn(dirty:MutDirty) -> OnMut {
|ix: usize| dirty.set(ix)
}}
// ==============
// === Buffer ===
// ==============
shared! {Buffer
/// CPU-counterpart of WebGL buffers. The buffer data is synchronised with GPU on demand, usually
/// in the update stage before drawing the frame.
#[derive(Debug)]
pub struct BufferData<T> {
buffer : ObservableVec<T>,
mut_dirty : MutDirty,
resize_dirty : ResizeDirty,
gl_buffer : WebGlBuffer,
usage : BufferUsage,
context : Context,
stats : Stats,
gpu_mem_usage : u32,
logger : Logger,
}
impl<T:BufferItem> {
/// Constructor.
pub fn new<OnMut:CallbackFn,OnResize:CallbackFn>
(logger:Logger, stats:&Stats, context:&Context, on_mut:OnMut, on_resize:OnResize) -> Self {
info!(logger,"Creating new {T::type_display()} buffer.",{
stats.inc_buffer_count();
let mut_dirty = MutDirty::new(logger.sub("mut_dirty"),Callback(on_mut));
let resize_dirty = ResizeDirty::new(logger.sub("resize_dirty"),Callback(on_resize));
let on_resize_fn = on_resize_fn(resize_dirty.clone_ref());
let on_mut_fn = on_mut_fn(mut_dirty.clone_ref());
let buffer = ObservableVec::new(on_mut_fn,on_resize_fn);
let gl_buffer = create_gl_buffer(&context);
let usage = default();
let context = context.clone();
let stats = stats.clone_ref();
let gpu_mem_usage = default();
Self {buffer,mut_dirty,resize_dirty,logger,gl_buffer,usage,context,stats,gpu_mem_usage}
})
}
/// Returns the number of elements in the buffer.
pub fn len(&self) -> usize {
self.buffer.len()
}
/// Checks if the buffer is empty.
pub fn is_empty(&self) -> bool {
self.buffer.is_empty()
}
/// Reads the usage pattern of the buffer.
pub fn usage(&self) -> BufferUsage {
self.usage
}
/// Sets the usage pattern of the buffer.
pub fn set_usage(&mut self, usage:BufferUsage) {
self.usage = usage;
self.resize_dirty.set();
}
/// Gets a copy of the data by its index.
pub fn get(&self, index:usize) -> T {
*self.buffer.index(index)
}
/// Sets data value at the given index.
pub fn set(&mut self, index:usize, value:T) {
*self.buffer.index_mut(index) = value;
}
/// Adds a single new element initialized to default value.
pub fn add_element(&mut self) {
self.add_elements(1);
}
/// Adds multiple new elements initialized to default values.
pub fn add_elements(&mut self, elem_count:usize) {
self.extend(iter::repeat(T::gpu_default()).take(elem_count));
}
/// Check dirty flags and update the state accordingly.
pub fn update(&mut self) {
info!(self.logger, "Updating.", {
self.context.bind_buffer(Context::ARRAY_BUFFER,Some(&self.gl_buffer));
if self.resize_dirty.check() {
self.upload_data(&None);
} else if self.mut_dirty.check_all() {
self.upload_data(&self.mut_dirty.take().range);
} else {
internal_warning!(self.logger,"Update requested but it was not needed.")
}
self.mut_dirty.unset_all();
self.resize_dirty.unset();
})
}
/// Binds the underlying WebGLBuffer to a given target.
/// https://developer.mozilla.org/docs/Web/API/WebGLRenderingContext/bindBuffer
pub fn bind(&self, target:u32) {
self.context.bind_buffer(target,Some(&self.gl_buffer));
}
/// Binds the buffer currently bound to gl.ARRAY_BUFFER to a generic vertex attribute of the
/// current vertex buffer object and specifies its layout. Please note that this function is
/// more complex that a raw call to `WebGLRenderingContext.vertexAttribPointer`, as it correctly
/// handles complex data types like `mat4`. See the following links to learn more:
/// https://developer.mozilla.org/docs/Web/API/WebGLRenderingContext/vertexAttribPointer
/// https://stackoverflow.com/questions/38853096/webgl-how-to-bind-values-to-a-mat4-attribute
pub fn vertex_attrib_pointer(&self, loc:u32, instanced:bool) {
let item_byte_size = T::item_gpu_byte_size() as i32;
let item_type = T::item_gl_enum().into();
let rows = T::rows() as i32;
let cols = T::cols() as i32;
let col_byte_size = item_byte_size * rows;
let stride = col_byte_size * cols;
let normalize = false;
for col in 0..cols {
let lloc = loc + col as u32;
let off = col * col_byte_size;
self.context.enable_vertex_attrib_array(lloc);
self.context.vertex_attrib_pointer_with_i32(lloc,rows,item_type,normalize,stride,off);
if instanced {
let instance_count = 1;
self.context.vertex_attrib_divisor(lloc,instance_count);
}
}
}
}}
// === Private API ===
impl<T: BufferItem> BufferData<T> {
/// View the data as slice of primitive elements.
pub fn as_prim_slice(&self) -> &[item::Item<T>] {
<T as BufferItem>::slice_to_items(&self.buffer.data)
}
/// View the data as slice of elements.
pub fn as_slice(&self) -> &[T] {
&self.buffer.data
}
}
// === Data Upload ===
// Note [Safety]
// =============
// Usage of `js_buffer_view` is somewhat dangerous. It is creating a raw view into the module's
// `WebAssembly.Memory` buffer, but if we allocate more pages for ourself (aka do a memory
// allocation in Rust) it'll cause the buffer to change, causing the resulting js array to be
// invalid.
impl<T: BufferItem> BufferData<T> {
/// Uploads the provided data range to the GPU buffer. In case the local buffer was resized,
/// it will be re-created on the GPU.
fn upload_data(&mut self, opt_range:&Option<RangeInclusive<usize>>) {
info!(self.logger,"Uploading buffer data.",{
self.stats.inc_data_upload_count();
match opt_range {
None => self.replace_gpu_buffer(),
Some(range) => self.update_gpu_sub_buffer(range)
}
});
}
/// Replaces the whole GPU buffer by the local data.
fn replace_gpu_buffer(&mut self) {
let data = self.as_slice();
let gl_enum = self.usage.into_gl_enum().into();
unsafe { // Note [Safety]
let js_array = data.js_buffer_view();
self.context.buffer_data_with_array_buffer_view
(Context::ARRAY_BUFFER,&js_array,gl_enum);
}
crate::if_compiled_with_stats! {
let item_byte_size = T::item_gpu_byte_size() as u32;
let item_count = T::item_count() as u32;
let new_gpu_mem_usage = self.len() as u32 * item_count * item_byte_size;
self.stats.mod_gpu_memory_usage(|s| s - self.gpu_mem_usage);
self.stats.mod_gpu_memory_usage(|s| s + new_gpu_mem_usage);
self.stats.mod_data_upload_size(|s| s + new_gpu_mem_usage);
self.gpu_mem_usage = new_gpu_mem_usage;
}
}
/// Updates the GPU sub-buffer data by the provided index range.
fn update_gpu_sub_buffer(&mut self, range:&RangeInclusive<usize>) {
let data = self.as_slice();
let item_byte_size = T::item_gpu_byte_size() as u32;
let item_count = T::item_count() as u32;
let start = *range.start() as u32;
let end = *range.end() as u32;
let start_item = start * item_count;
let length = (end - start + 1) * item_count;
let dst_byte_offset = (item_byte_size * item_count * start) as i32;
unsafe { // Note [Safety]
let js_array = data.js_buffer_view();
self.context.buffer_sub_data_with_i32_and_array_buffer_view_and_src_offset_and_length
(Context::ARRAY_BUFFER,dst_byte_offset,&js_array,start_item,length)
}
self.stats.mod_data_upload_size(|s| s + length * item_byte_size);
}
}
// === Smart Accessors ===
impl<T: BufferItem> Buffer<T> {
/// Get the attribute pointing to a given buffer index.
pub fn at(&self, index:AttributeInstanceIndex) -> Attribute<T> {
Attribute::new(index,self.clone_ref())
}
}
// === Instances ===
impl<T> Deref for BufferData<T> {
type Target = ObservableVec<T>;
fn deref(&self) -> &Self::Target {
&self.buffer
}
}
impl<T> DerefMut for BufferData<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.buffer
}
}
impl<T> Drop for BufferData<T> {
fn drop(&mut self) {
self.context.delete_buffer(Some(&self.gl_buffer));
self.stats.mod_gpu_memory_usage(|s| s - self.gpu_mem_usage);
self.stats.dec_buffer_count();
}
}
// === Utils ===
fn create_gl_buffer(context:&Context) -> WebGlBuffer {
let buffer = context.create_buffer();
buffer.ok_or("Failed to create WebGL buffer.").unwrap()
}
// =================
// === AnyBuffer ===
// =================
use enum_dispatch::*;
use crate::system::gpu::data::AttributeInstanceIndex;
// === Macros ===
/// Variant mismatch error type.
#[derive(Debug)]
pub struct BadVariant;
macro_rules! define_any_buffer {
([] [$([$base:ident $param:ident])*]) => { paste::item! {
/// An enum with a variant per possible buffer type (i32, f32, Vector<f32>,
/// and many, many more). It provides a faster alternative to dyn trait one:
/// `Buffer<dyn BufferItem, OnMut, OnResize>`.
#[enum_dispatch(IsBuffer)]
#[derive(Debug)]
#[allow(missing_docs)]
pub enum AnyBuffer {
$([<Variant $base For $param>](Buffer<$base<$param>>)),*
}
$(
impl<'t> TryFrom<&'t AnyBuffer> for &'t Buffer<$base<$param>> {
type Error = BadVariant;
fn try_from(t:&'t AnyBuffer) -> Result <&'t Buffer<$base<$param>>,Self::Error> {
match t {
AnyBuffer::[<Variant $base For $param>](a) => Ok(a),
_ => Err(BadVariant)
}
}
}
impl<'t> TryFrom<&'t mut AnyBuffer> for &'t mut Buffer<$base<$param>> {
type Error = BadVariant;
fn try_from(t:&'t mut AnyBuffer) -> Result <&'t mut Buffer<$base<$param>>,Self::Error> {
match t {
AnyBuffer::[<Variant $base For $param>](a) => Ok(a),
_ => Err(BadVariant)
}
}
}
)*
}}}
// === Definition ===
crate::with_all_prim_types!([[define_any_buffer] []]);
/// Collection of all methods common to every buffer variant.
#[enum_dispatch]
#[allow(missing_docs)]
pub trait IsBuffer {
fn add_element(&self);
fn len(&self) -> usize;
fn is_empty(&self) -> bool;
fn update(&self);
fn bind(&self, target:u32);
fn vertex_attrib_pointer(&self, index:u32, instanced:bool);
}

View File

@ -0,0 +1,266 @@
//! This module defines abstraction for items in buffers stored on GPU.
use crate::prelude::*;
use crate::system::gpu::shader::glsl::Glsl;
use crate::system::gpu::shader::glsl;
use crate::system::gpu::data::gl_enum::GlEnum;
use crate::system::gpu::data::sized::GpuKnownSize;
use crate::system::gpu::data::GpuDefault;
use crate::system::gpu::data::gl_enum::traits::*;
use nalgebra::*;
// =============
// === Types ===
// =============
/// Common Matrix bounds used as super-bounds for many helpers in this module.
pub trait MatrixCtx<T,R,C> = where
T:Scalar, R:DimName, C:DimName,
DefaultAllocator: nalgebra::allocator::Allocator<T,R,C>,
<DefaultAllocator as nalgebra::allocator::Allocator<T,R,C>>::Buffer:Copy;
// ==================
// === BufferItem ===
// ==================
// === Definition ===
pub trait JsBufferViewArr = Sized where [Self]:JsBufferView;
/// Super bounds of the `BufferItem::Item` type;
pub trait ItemBounds = BufferItem + PhantomInto<GlEnum>;
/// Super bounds of the `BufferItem` trait.
pub trait BufferItemBounds =
Copy + GpuDefault + JsBufferViewArr + PhantomInto<glsl::PrimType> + Into<Glsl> + GpuKnownSize;
/// Class for buffer items, like `f32` or `Vector<f32>`.
///
/// WebGL buffers contain primitive values only, so for example, two `Vector3<f32>` are represented
/// as six `f32` values. This trait defines fast conversions (views) for the underlying flat data
/// storage.
pub trait BufferItem: BufferItemBounds {
// === Types ===
/// The primitive type which this type is build of. In case of the most primitive types, like
/// `f32` this type may be set to itself.
type Item: ItemBounds;
/// The number of rows of the type encoded as 2d matrix.
type Rows: DimName;
/// The number of columns of the type encoded as 2d matrix.
type Cols: DimName;
// === Size ===
/// Returns the number of rows of the type encoded as 2d matrix.
fn rows() -> usize {
<Self::Rows as DimName>::dim()
}
/// Returns the number of columns of the type encoded as 2d matrix.
fn cols() -> usize {
<Self::Cols as DimName>::dim()
}
/// Count of primitives of the item. For example, `Vector3<f32>` contains
/// three primitives (`f32` values).
fn item_count() -> usize {
Self::rows() * Self::cols()
}
// === Conversions ===
/// Conversion from a slice of items to a buffer slice.
fn slice_from_items(buffer: &[Self::Item]) -> &[Self];
/// Conversion from a mutable slice of items to a mutable buffer slice.
fn slice_from_items_mut(buffer: &mut [Self::Item]) -> &mut [Self];
/// Converts from a buffer slice to a slice of items.
fn slice_to_items(buffer: &[Self]) -> &[Self::Item];
/// Converts from a mutable buffer slice to a mutable slice of items.
fn slice_to_items_mut(buffer: &mut [Self]) -> &mut [Self::Item];
// === Temporary Helpers ===
// TODO: Remove when it gets resolved: https://github.com/rust-lang/rust/issues/68210
/// Returns the WebGL enum code representing the item type, like Context::FLOAT.
fn item_gl_enum() -> GlEnum {
Self::Item::gl_enum()
}
// TODO: Remove when it gets resolved: https://github.com/rust-lang/rust/issues/68210
/// Returns the size in bytes in GPU memory of the primitive type of this type.
fn item_gpu_byte_size() -> usize {
Self::Item::gpu_byte_size()
}
}
// === Type Families ===
/// Item accessor.
pub type Item <T> = <T as BufferItem>::Item;
/// Rows accessor.
pub type Rows <T> = <T as BufferItem>::Rows;
/// Cols accessor.
pub type Cols <T> = <T as BufferItem>::Cols;
// === Instances ===
impl BufferItem for bool {
type Item = Self;
type Rows = U1;
type Cols = U1;
fn slice_from_items (buffer: & [Self::Item]) -> & [Self] { buffer }
fn slice_from_items_mut (buffer: &mut [Self::Item]) -> &mut [Self] { buffer }
fn slice_to_items (buffer: & [Self]) -> & [Self::Item] { buffer }
fn slice_to_items_mut (buffer: &mut [Self]) -> &mut [Self::Item] { buffer }
}
impl BufferItem for i32 {
type Item = Self;
type Rows = U1;
type Cols = U1;
fn slice_from_items (buffer: & [Self::Item]) -> & [Self] { buffer }
fn slice_from_items_mut (buffer: &mut [Self::Item]) -> &mut [Self] { buffer }
fn slice_to_items (buffer: & [Self]) -> & [Self::Item] { buffer }
fn slice_to_items_mut (buffer: &mut [Self]) -> &mut [Self::Item] { buffer }
}
impl BufferItem for f32 {
type Item = Self;
type Rows = U1;
type Cols = U1;
fn slice_from_items (buffer: & [Self::Item]) -> & [Self] { buffer }
fn slice_from_items_mut (buffer: &mut [Self::Item]) -> &mut [Self] { buffer }
fn slice_to_items (buffer: & [Self]) -> & [Self::Item] { buffer }
fn slice_to_items_mut (buffer: &mut [Self]) -> &mut [Self::Item] { buffer }
}
impl<T:BufferItem<Item=T>,R,C> BufferItem for MatrixMN<T,R,C>
where T:ItemBounds, Self:MatrixCtx<T,R,C>,
Self:GpuDefault + PhantomInto<glsl::PrimType> + GpuKnownSize {
type Item = T;
type Rows = R;
type Cols = C;
fn slice_from_items(buffer: &[Self::Item]) -> &[Self] {
// This code casts slice to matrix. This is safe because `MatrixMN`
// uses `nalgebra::Owned` allocator, which resolves to array defined as
// `#[repr(C)]` under the hood.
let len = buffer.len() / Self::item_count();
unsafe { std::slice::from_raw_parts(buffer.as_ptr().cast(), len) }
}
fn slice_from_items_mut(buffer: &mut [Self::Item]) -> &mut [Self] {
// This code casts slice to matrix. This is safe because `MatrixMN`
// uses `nalgebra::Owned` allocator, which resolves to array defined as
// `#[repr(C)]` under the hood.
let len = buffer.len() / Self::item_count();
unsafe { std::slice::from_raw_parts_mut(buffer.as_mut_ptr().cast(), len) }
}
fn slice_to_items(buffer: &[Self]) -> &[Self::Item] {
// This code casts slice to matrix. This is safe because `MatrixMN`
// uses `nalgebra::Owned` allocator, which resolves to array defined as
// `#[repr(C)]` under the hood.
let len = buffer.len() * Self::item_count();
unsafe { std::slice::from_raw_parts(buffer.as_ptr().cast(), len) }
}
fn slice_to_items_mut(buffer: &mut [Self]) -> &mut [Self::Item] {
// This code casts slice to matrix. This is safe because `MatrixMN`
// uses `nalgebra::Owned` allocator, which resolves to array defined as
// `#[repr(C)]` under the hood.
let len = buffer.len() * Self::item_count();
unsafe { std::slice::from_raw_parts_mut(buffer.as_mut_ptr().cast(), len) }
}
}
// ====================
// === JsBufferView ===
// ====================
/// Extension method for viewing into wasm's linear memory.
pub trait JsBufferView {
/// Creates a JS typed array which is a view into wasm's linear memory at the slice specified.
///
/// This function returns a new typed array which is a view into wasm's memory. This view does
/// not copy the underlying data.
///
/// # Safety
///
/// Views into WebAssembly memory are only valid so long as the backing buffer isn't resized in
/// JS. Once this function is called any future calls to `Box::new` (or malloc of any form) may
/// cause the returned value here to be invalidated. Use with caution!
///
/// Additionally the returned object can be safely mutated but the input slice isn't guaranteed
/// to be mutable.
///
/// Finally, the returned object is disconnected from the input slice's lifetime, so there's no
/// guarantee that the data is read at the right time.
unsafe fn js_buffer_view(&self) -> js_sys::Object;
}
// === Instances ===
impl JsBufferView for [bool] {
unsafe fn js_buffer_view(&self) -> js_sys::Object {
let i32arr = self.iter().cloned().map(|t| if t {1} else {0}).collect::<Vec<i32>>();
js_sys::Int32Array::view(&i32arr).into()
}
}
impl JsBufferView for [i32] {
unsafe fn js_buffer_view(&self) -> js_sys::Object {
js_sys::Int32Array::view(self).into()
}
}
impl JsBufferView for [f32] {
unsafe fn js_buffer_view(&self) -> js_sys::Object {
js_sys::Float32Array::view(self).into()
}
}
impl<T: BufferItem<Item=T>,R,C> JsBufferView for [MatrixMN<T,R,C>]
where Self : MatrixCtx<T,R,C>,
T : ItemBounds,
MatrixMN<T,R,C> : BufferItem,
[Item<MatrixMN<T,R,C>>] : JsBufferView {
unsafe fn js_buffer_view(&self) -> js_sys::Object {
<MatrixMN<T,R,C> as BufferItem>::slice_to_items(self).js_buffer_view()
}
}
impl<T: BufferItem<Item=T>,R,C> JsBufferView for MatrixMN<T,R,C>
where Self:MatrixCtx<T,R,C>, T:ItemBounds {
unsafe fn js_buffer_view(&self) -> js_sys::Object {
self.as_slice().js_buffer_view()
}
}

View File

@ -0,0 +1,60 @@
//! `BufferUsage` specifies the intended usage pattern of the data store for optimization purposes.
use crate::prelude::*;
use crate::system::gpu::shader::Context;
use crate::system::gpu::data::gl_enum::GlEnum;
// ===================
// === BufferUsage ===
// ===================
crate::define_singleton_enum_gl! {
/// Specifies the intended usage pattern of the data store for optimization purposes.
BufferUsage {
/// The contents are intended to be specified once by the application, and used many times
/// as the source for WebGL drawing and image specification commands.
Static = Context::STATIC_DRAW,
/// Default. The contents are intended to be respecified repeatedly by the application, and
/// used many times as the source for WebGL drawing and image specification commands.
Dynamic = Context::DYNAMIC_DRAW,
/// The contents are intended to be specified once by the application, and used at most a
/// few times as the source for WebGL drawing and image specification commands.
Stream = Context::STREAM_DRAW,
/// The contents are intended to be specified once by reading data from WebGL, and queried
/// many times by the application.
StaticRead = Context::STATIC_READ,
/// The contents are intended to be respecified repeatedly by reading data from WebGL, and
/// queried many times by the application.
DynamicRead = Context::DYNAMIC_READ,
/// The contents are intended to be specified once by reading data from WebGL, and queried
/// at most a few times by the application
StreamRead = Context::STREAM_READ,
/// The contents are intended to be specified once by reading data from WebGL, and used many
/// times as the source for WebGL drawing and image specification commands.
StaticCopy = Context::STATIC_COPY,
/// The contents are intended to be respecified repeatedly by reading data from WebGL, and
/// used many times as the source for WebGL drawing and image specification commands.
DynamicCopy = Context::DYNAMIC_COPY,
/// The contents are intended to be specified once by reading data from WebGL, and used at
/// most a few times as the source for WebGL drawing and image specification commands.
StreamCopy = Context::STREAM_COPY,
}
}
impl Default for BufferUsage {
fn default() -> Self {
BufferUsage::Dynamic
}
}

View File

@ -1,345 +0,0 @@
#![allow(missing_docs)]
use crate::display::render::webgl::Context;
use crate::display::render::webgl::glsl;
use nalgebra::*;
use web_sys::WebGlUniformLocation;
use code_builder::HasCodeRepr;
// =============
// === Types ===
// =============
pub trait MatrixCtx<T,R,C> = where
T:Scalar, R:DimName, C:DimName,
DefaultAllocator: nalgebra::allocator::Allocator<T,R,C>,
<DefaultAllocator as nalgebra::allocator::Allocator<T,R,C>>::Buffer:Copy;
// ====================
// === JSBufferView ===
// ====================
pub trait JSBufferView {
/// Creates a JS typed array which is a view into wasm's linear memory at the slice specified.
///
/// This function returns a new typed array which is a view into wasm's memory. This view does
/// not copy the underlying data.
///
/// # Safety
///
/// Views into WebAssembly memory are only valid so long as the backing buffer isn't resized in
/// JS. Once this function is called any future calls to `Box::new` (or malloc of any form) may
/// cause the returned value here to be invalidated. Use with caution!
///
/// Additionally the returned object can be safely mutated but the input slice isn't guaranteed
/// to be mutable.
///
/// Finally, the returned object is disconnected from the input slice's lifetime, so there's no
/// guarantee that the data is read at the right time.
unsafe fn js_buffer_view(&self) -> js_sys::Object;
}
// =============
// === Empty ===
// =============
/// Trait for types which have empty value.
pub trait Empty {
fn empty() -> Self;
fn is_empty(&self) -> bool where Self:Sized+PartialEq {
*self == Self::empty()
}
}
impl Empty for i32 { fn empty() -> Self { 0 } }
impl Empty for f32 { fn empty() -> Self { 0.0 } }
impl Empty for Vector2<f32> { fn empty() -> Self { Self::new(0.0,0.0) } }
impl Empty for Vector3<f32> { fn empty() -> Self { Self::new(0.0,0.0,0.0) } }
impl Empty for Vector4<f32> { fn empty() -> Self { Self::new(0.0,0.0,0.0,1.0) } }
impl Empty for Matrix4<f32> { fn empty() -> Self { Self::identity() } }
// =================
// === IsUniform ===
// =================
pub type UniformLocation = WebGlUniformLocation;
pub trait ContextUniformOps<T> {
fn set_uniform(&self, location:&UniformLocation, value:&T);
}
impl ContextUniformOps<i32> for Context {
fn set_uniform(&self, location:&UniformLocation, value:&i32) {
self.uniform1i(Some(location),*value);
}
}
impl ContextUniformOps<f32> for Context {
fn set_uniform(&self, location:&UniformLocation, value:&f32) {
self.uniform1f(Some(location),*value);
}
}
impl ContextUniformOps<Vector2<f32>> for Context {
fn set_uniform(&self, location:&UniformLocation, value:&Vector2<f32>) {
self.uniform_matrix2fv_with_f32_array(Some(location),false,value.data.as_slice());
}
}
impl ContextUniformOps<Vector3<f32>> for Context {
fn set_uniform(&self, location:&UniformLocation, value:&Vector3<f32>) {
self.uniform_matrix3fv_with_f32_array(Some(location),false,value.data.as_slice());
}
}
impl ContextUniformOps<Vector4<f32>> for Context {
fn set_uniform(&self, location:&UniformLocation, value:&Vector4<f32>) {
self.uniform_matrix4fv_with_f32_array(Some(location),false,value.data.as_slice());
}
}
impl ContextUniformOps<Matrix4<f32>> for Context {
fn set_uniform(&self, location:&UniformLocation, value:&Matrix4<f32>) {
self.uniform_matrix4fv_with_f32_array(Some(location),false,value.data.as_slice());
}
}
// ===============
// === GpuData ===
// ===============
// === Definition ===
pub trait JSBufferViewArr = Sized where [Self]:JSBufferView;
/// Class for buffer items, like `f32` or `Vector<f32>`. It defines utils
/// for mapping the item to WebGL buffer and vice versa.
pub trait GpuData : Copy + Empty + JSBufferViewArr {
// === Types ===
/// The primitive type which this type is build of. In case of the most primitive types, like
/// `f32` this type may be set to itself.
type Item: GpuData;
/// The number of rows of the type encoded as 2d matrix.
type Rows: DimName;
/// The number of columns of the type encoded as 2d matrix.
type Cols: DimName;
// === Size ===
/// Returns the number of rows of the type encoded as 2d matrix.
fn rows() -> usize {
<Self::Rows as DimName>::dim()
}
/// Returns the number of columns of the type encoded as 2d matrix.
fn cols() -> usize {
<Self::Cols as DimName>::dim()
}
/// Count of primitives of the item. For example, `Vector3<f32>` contains
/// three primitives (`f32` values).
fn item_count() -> usize {
Self::rows() * Self::cols()
}
/// Returns the size in bytes in GPU memory of the type.
fn gpu_byte_size() -> usize {
Self::gpu_item_byte_size() * Self::item_count()
}
/// Returns the size in bytes in GPU memory of the primitive type of this type.
fn gpu_item_byte_size() -> usize {
Self::Item::gpu_byte_size()
}
// === Conversions ===
/// Conversion from slice of a buffer to the item. Buffers contain primitive
/// values only, so two `Vector3<f32>` are represented there as six `f32`
/// values. This allows us to view the buffers using desired types.
fn from_buffer(buffer: &[Self::Item]) -> &[Self];
/// Mutable conversion from slice of a buffer to the item. See the docs for
/// `from_buffer` to learn more.
fn from_buffer_mut(buffer: &mut [Self::Item]) -> &mut [Self];
// TODO: simplify when this gets resolved: https://github.com/rustsim/nalgebra/issues/687
fn convert_prim_buffer(buffer: &[Self]) -> &[Self::Item];
fn convert_prim_buffer_mut(buffer: &mut [Self]) -> &mut [Self::Item];
// === GLSL ===
/// Returns the WebGL enum code representing the item type, like Context::FLOAT.
fn glsl_item_type_code() -> u32 {
Self::Item::glsl_item_type_code()
}
/// Returns the GLSL type as GLSL AST item.
fn glsl_type() -> glsl::PrimType;
/// Returns the GLSL type name, like `"float"` for `f32`.
fn glsl_type_name() -> String {
Self::glsl_type().to_code()
}
/// Converts the data to GLSL value.
fn to_glsl(&self) -> String;
}
// === Type Families ===
pub type Item <T> = <T as GpuData>::Item;
pub type Rows <T> = <T as GpuData>::Rows;
pub type Cols <T> = <T as GpuData>::Cols;
// === Instances ===
impl GpuData for i32 {
type Item = Self;
type Rows = U1;
type Cols = U1;
fn gpu_byte_size () -> usize { 4 }
fn from_buffer (buffer: & [Self::Item]) -> & [Self] { buffer }
fn from_buffer_mut (buffer: &mut [Self::Item]) -> &mut [Self] { buffer }
fn convert_prim_buffer (buffer: & [Self]) -> & [Self::Item] { buffer }
fn convert_prim_buffer_mut (buffer: &mut [Self]) -> &mut [Self::Item] { buffer }
fn glsl_item_type_code () -> u32 { Context::INT }
fn glsl_type () -> glsl::PrimType { glsl::PrimType::Int }
fn to_glsl (&self) -> String { self.to_string() }
}
impl JSBufferView for [i32] {
unsafe fn js_buffer_view(&self) -> js_sys::Object {
js_sys::Int32Array::view(self).into()
}
}
impl GpuData for f32 {
type Item = Self;
type Rows = U1;
type Cols = U1;
fn gpu_byte_size () -> usize { 4 }
fn from_buffer (buffer: & [Self::Item]) -> & [Self] { buffer }
fn from_buffer_mut (buffer: &mut [Self::Item]) -> &mut [Self] { buffer }
fn convert_prim_buffer (buffer: & [Self]) -> & [Self::Item] { buffer }
fn convert_prim_buffer_mut (buffer: &mut [Self]) -> &mut [Self::Item] { buffer }
fn glsl_item_type_code () -> u32 { Context::FLOAT }
fn glsl_type () -> glsl::PrimType { glsl::PrimType::Float }
fn to_glsl (&self) -> String {
let is_int = self.fract() == 0.0;
if is_int { format!("{}.0" , self) }
else { format!("{}" , self) }
}
}
impl JSBufferView for [f32] {
unsafe fn js_buffer_view(&self) -> js_sys::Object {
js_sys::Float32Array::view(self).into()
}
}
impl<T:GpuData<Item=T>,R,C> GpuData for MatrixMN<T,R,C>
where T:Default, Self:MatrixCtx<T,R,C>, Self:Empty {
type Item = T;
type Rows = R;
type Cols = C;
fn from_buffer(buffer: &[Self::Item]) -> &[Self] {
// This code casts slice to matrix. This is safe because `MatrixMN`
// uses `nalgebra::Owned` allocator, which resolves to array defined as
// `#[repr(C)]` under the hood.
unsafe {
let len = buffer.len() / Self::item_count();
std::slice::from_raw_parts(buffer.as_ptr().cast(), len)
}
}
fn from_buffer_mut(buffer: &mut [Self::Item]) -> &mut [Self] {
// This code casts slice to matrix. This is safe because `MatrixMN`
// uses `nalgebra::Owned` allocator, which resolves to array defined as
// `#[repr(C)]` under the hood.
unsafe {
let len = buffer.len() / Self::item_count();
std::slice::from_raw_parts_mut(buffer.as_mut_ptr().cast(), len)
}
}
fn convert_prim_buffer(buffer: &[Self]) -> &[Self::Item] {
// This code casts slice to matrix. This is safe because `MatrixMN`
// uses `nalgebra::Owned` allocator, which resolves to array defined as
// `#[repr(C)]` under the hood.
let len = buffer.len() * Self::item_count();
unsafe { std::slice::from_raw_parts(buffer.as_ptr().cast(), len) }
}
fn convert_prim_buffer_mut(buffer: &mut [Self]) -> &mut [Self::Item] {
// This code casts slice to matrix. This is safe because `MatrixMN`
// uses `nalgebra::Owned` allocator, which resolves to array defined as
// `#[repr(C)]` under the hood.
unsafe {
let len = buffer.len() * Self::item_count();
std::slice::from_raw_parts_mut(buffer.as_mut_ptr().cast(), len)
}
}
fn glsl_type() -> glsl::PrimType {
let cols = <Self as GpuData>::cols();
let rows = <Self as GpuData>::rows();
match (cols,rows) {
(1,2) => glsl::PrimType::Vec2,
(1,3) => glsl::PrimType::Vec3,
(1,4) => glsl::PrimType::Vec4,
(2,2) => glsl::PrimType::Mat2,
(2,3) => glsl::PrimType::Mat2x3,
(2,4) => glsl::PrimType::Mat2x4,
(3,2) => glsl::PrimType::Mat3x2,
(3,3) => glsl::PrimType::Mat3,
(3,4) => glsl::PrimType::Mat3x4,
(4,4) => glsl::PrimType::Mat4,
_ => panic!("Unsupported GLSL matrix shape {}x{}",cols,rows)
}
}
fn to_glsl(&self) -> String {
let vals:Vec<String> = self.as_slice().iter().cloned().map(|t|format!("{:?}",t)).collect();
format!("{}({})",Self::glsl_type_name(),vals.join(","))
}
}
impl<T:GpuData<Item=T>,R,C> JSBufferView for [MatrixMN<T,R,C>]
where Self : MatrixCtx<T,R,C>,
T : Default,
MatrixMN<T,R,C> : GpuData,
[Item<MatrixMN<T,R,C>>] : JSBufferView {
unsafe fn js_buffer_view(&self) -> js_sys::Object {
<MatrixMN<T,R,C> as GpuData>::convert_prim_buffer(self).js_buffer_view()
}
}
impl<T:GpuData<Item=T>,R,C> JSBufferView for MatrixMN<T,R,C>
where Self:MatrixCtx<T,R,C> {
unsafe fn js_buffer_view(&self) -> js_sys::Object {
self.as_slice().js_buffer_view()
}
}

View File

@ -0,0 +1,57 @@
//! Defines abstraction for data types that have a default value when used as GPU values.
use nalgebra::*;
// ==================
// === GpuDefault ===
// ==================
/// Trait for types which have a default value when used as GPU values.
pub trait GpuDefault {
/// Default value for this type.
fn gpu_default() -> Self;
/// Checks if the current value is the same as the default one.
fn is_gpu_default(&self) -> bool where Self:Sized+PartialEq {
*self == Self::gpu_default()
}
}
// === Instances ===
macro_rules! define_gpu_defaults {
($($ty:ty = $val:expr),* $(,)?) => {$(
impl GpuDefault for $ty { fn gpu_default() -> Self { $val } }
)*}
}
define_gpu_defaults! {
i32 = 0,
f32 = 0.0,
bool = false,
Vector2<f32> = Vector2::new(0.0,0.0),
Vector3<f32> = Vector3::new(0.0,0.0,0.0),
Vector4<f32> = Vector4::new(0.0,0.0,0.0,1.0),
Vector2<i32> = Vector2::new(0,0),
Vector3<i32> = Vector3::new(0,0,0),
Vector4<i32> = Vector4::new(0,0,0,1),
Vector2<bool> = Vector2::new(false,false),
Vector3<bool> = Vector3::new(false,false,false),
Vector4<bool> = Vector4::new(false,false,false,false),
Matrix2<f32> = Matrix2::identity(),
Matrix3<f32> = Matrix3::identity(),
Matrix4<f32> = Matrix4::identity(),
Matrix2x3<f32> = Matrix2x3::identity(),
Matrix2x4<f32> = Matrix2x4::identity(),
Matrix3x2<f32> = Matrix3x2::identity(),
Matrix3x4<f32> = Matrix3x4::identity(),
Matrix4x2<f32> = Matrix4x2::identity(),
Matrix4x3<f32> = Matrix4x3::identity(),
}

View File

@ -0,0 +1,163 @@
//! This module defines a wrapper for WebGL enums and associated utils.
use crate::prelude::*;
use crate::system::gpu::shader::Context;
use crate::system::gpu::data::prim::*;
// ==============
// === GlEnum ===
// ==============
/// The newtype for WebGL enums.
#[derive(Copy,Clone,Debug,Default,Display)]
pub struct GlEnum(pub u32);
impl From<GlEnum> for u32 {
fn from(t:GlEnum) -> u32 {
t.0
}
}
// ==================
// === Extensions ===
// ==================
/// Extension methods.
pub mod traits {
use super::*;
/// Methods for every object which implements `Into<GlEnum>`.
pub trait IntoGlEnum {
/// Converts the current value to `GlEnum`.
fn into_gl_enum(&self) -> GlEnum;
}
impl<T> IntoGlEnum for T where for<'a> &'a T:Into<GlEnum> {
fn into_gl_enum(&self) -> GlEnum {
self.into()
}
}
/// Methods for every object which implements `PhantomInto<GlEnum>`.
pub trait PhantomIntoGlEnum {
/// Converts the current value to `GlEnum`.
fn gl_enum() -> GlEnum;
}
impl<T> PhantomIntoGlEnum for T where T:PhantomInto<GlEnum> {
fn gl_enum() -> GlEnum {
T::phantom_into::<GlEnum>()
}
}
}
// ==============
// === Macros ===
// ==============
/// Combination of `define_singletons` and `define_gl_enum_conversions`.
#[macro_export]
macro_rules! define_singletons_gl {
( $( $(#$meta:tt)* $name:ident = $expr:expr ),* $(,)? ) => {
shapely::define_singletons!{ $( $(#$meta)* $name),* }
$crate::define_gl_enum_conversions!{ $( $(#$meta)* $name = $expr ),* }
}
}
/// Defines conversions `From<$type>` and `From<PhantomData<$type>>` for every provided type.
#[macro_export]
macro_rules! define_gl_enum_conversions {
( $( $(#$meta:tt)* $type:ty = $expr:expr ),* $(,)? ) => {
$(
impl From<$type> for GlEnum {
fn from(_:$type) -> Self {
GlEnum($expr)
}
}
impl From<PhantomData<$type>> for GlEnum {
fn from(_:PhantomData<$type>) -> Self {
GlEnum($expr)
}
}
)*
}
}
/// Combination of `define_singletons_gl` and `define_singleton_enum_gl_from`.
#[macro_export]
macro_rules! define_singleton_enum_gl {
(
$(#$meta:tt)*
$name:ident {
$( $(#$field_meta:tt)* $field:ident = $expr:expr),* $(,)?
}
) => {
$crate :: define_singletons_gl! { $($(#$field_meta)* $field = $expr),* }
$crate :: define_singleton_enum_gl_from! { $(#$meta)* $name {$($(#$field_meta)* $field),*}}
}
}
/// Defines associated enum type for the provided variants, just like `define_singleton_enum_from`.
/// It also defines conversions `From<$singleton>` and `From<PhantomData<$singleton>>` the enum
/// type.
#[macro_export]
macro_rules! define_singleton_enum_gl_from {
(
$(#$meta:tt)*
$name:ident {
$( $(#$field_meta:tt)* $field:ident),* $(,)?
}
) => {
shapely::define_singleton_enum_from! { $(#$meta)* $name {$($(#$field_meta)* $field),*}}
impl From<&$name> for GlEnum {
fn from(t:&$name) -> Self {
match t {
$($name::$field => $field.into()),*
}
}
}
impl From<$name> for GlEnum {
fn from(t:$name) -> Self {
match t {
$($name::$field => $field.into()),*
}
}
}
}
}
// ================================
// === Primitive Type Instances ===
// ================================
define_gl_enum_conversions! {
bool = Context::BOOL,
u8 = Context::UNSIGNED_BYTE,
u16 = Context::UNSIGNED_SHORT,
u32 = Context::UNSIGNED_INT,
i8 = Context::BYTE,
i16 = Context::SHORT,
i32 = Context::INT,
f16 = Context::HALF_FLOAT,
f32 = Context::FLOAT,
f32_u24_u8_REV = Context::FLOAT_32_UNSIGNED_INT_24_8_REV,
u16_4_4_4_4 = Context::UNSIGNED_SHORT_4_4_4_4,
u16_5_5_5_1 = Context::UNSIGNED_SHORT_5_5_5_1,
u16_5_6_5 = Context::UNSIGNED_SHORT_5_6_5,
u32_f10_f11_f11_REV = Context::UNSIGNED_INT_10F_11F_11F_REV,
u32_24_8 = Context::UNSIGNED_INT_24_8,
u32_2_10_10_10_REV = Context::UNSIGNED_INT_2_10_10_10_REV,
u32_5_9_9_9_REV = Context::UNSIGNED_INT_5_9_9_9_REV,
}

View File

@ -0,0 +1,68 @@
//! This module exports primitive data and associated utils.
// =================
// === Reexports ===
// =================
pub use nalgebra::Vector2;
pub use nalgebra::Vector3;
pub use nalgebra::Vector4;
pub use nalgebra::Matrix4;
pub use nalgebra::Matrix2;
pub use nalgebra::Matrix3;
pub use nalgebra::Matrix2x3;
pub use nalgebra::Matrix2x4;
pub use nalgebra::Matrix3x2;
pub use nalgebra::Matrix3x4;
pub use nalgebra::Matrix4x2;
pub use nalgebra::Matrix4x3;
// =============
// === Types ===
// =============
/// `Identity<A>` resolves to `A`.
pub type Identity<T> = T;
macro_rules! gen_unsupported_types {
( $($name:ident),* $(,)? ) => {$(
#[derive(Copy,Clone,Debug)]
pub struct $name {}
)*}
}
/// Types which are used in WebGL but are not (yet) bound to Rust types.
#[allow(non_camel_case_types)]
#[allow(missing_docs)]
pub mod unsupported_types {
gen_unsupported_types!
{ f16, f32_u24_u8_REV, u16_4_4_4_4, u16_5_5_5_1, u16_5_6_5, u32_f10_f11_f11_REV, u32_24_8
, u32_2_10_10_10_REV, u32_5_9_9_9_REV
}
}
pub use unsupported_types::*;
// ==============
// === Macros ===
// ==============
/// Evaluates the argument macro with a list of pairs `[container item]` for all container and for
/// all primitive types supported on GPU. One of the container type is `Identity` which just
/// resolves to it's argument.
#[macro_export]
macro_rules! with_all_prim_types {
([[$f:path] $args:tt]) => {
$f! { $args
[[Identity i32] [Identity f32] [Identity bool] [Vector2 f32] [Vector3 f32] [Vector4 f32]
[Vector2 i32] [Vector3 i32] [Vector4 i32] [Vector2 bool] [Vector3 bool] [Vector4 bool]
[Matrix2 f32] [Matrix3 f32] [Matrix4 f32] [Matrix2x3 f32] [Matrix2x4 f32]
[Matrix3x2 f32] [Matrix3x4 f32] [Matrix4x2 f32] [Matrix4x3 f32]]
}
}
}

View File

@ -0,0 +1,46 @@
//! This module implements type-level utils for checking the size of values for a given type.
use nalgebra::*;
use crate::system::gpu::data::buffer::item::MatrixCtx;
// ====================
// === GpuKnownSize ===
// ====================
/// Extension methods.
pub mod traits {
use super::*;
/// Type-level computation of byte size for types stored on GPU.
pub trait GpuKnownSize {
/// Byte size as type-level uint.
type GpuByteSize: DimName;
/// Byte size of the type.
fn gpu_byte_size() -> usize {
<Self::GpuByteSize as DimName>::dim()
}
}
}
pub use traits::*;
/// A nicer way to query type-level byte size for types stored on GPU.
pub type GpuByteSize<T> = <T as GpuKnownSize>::GpuByteSize;
// === Instances ===
impl GpuKnownSize for bool { type GpuByteSize = U4; }
impl GpuKnownSize for i32 { type GpuByteSize = U4; }
impl GpuKnownSize for f32 { type GpuByteSize = U4; }
type Mul<A,B> = <A as DimMul<B>>::Output;
impl<T:GpuKnownSize,R:DimName,C:DimName> GpuKnownSize for MatrixMN<T,R,C>
where Self:MatrixCtx<T,R,C>,
R:DimMul<C>,
Mul<R,C>:DimName+DimMul<GpuByteSize<T>>,
Mul<Mul<R,C>,GpuByteSize<T>>:DimName {
type GpuByteSize = Mul<Mul<R,C>,GpuByteSize<T>>;
}

View File

@ -0,0 +1,583 @@
//! This module implements GPU-based texture support. Proper texture handling is a complex topic.
//! Follow the link to learn more about many assumptions this module was built upon:
//! https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/texImage2D
use crate::prelude::*;
use crate::system::gpu::types::*;
use crate::system::web;
use nalgebra::*;
use wasm_bindgen::JsCast;
use wasm_bindgen::prelude::Closure;
use web_sys::HtmlImageElement;
use web_sys::Url;
use web_sys::WebGlTexture;
// =============
// === Value ===
// =============
/// Defines relation between types and values, like between `True` and `true`.
pub trait Value {
/// The value-level counterpart of this type-value.
type Type;
/// The value of this type-value.
fn value() -> Self::Type;
}
// =======================
// === Type-level Bool ===
// =======================
/// Type level `true` value.
pub struct True {}
/// Type level `false` value.
pub struct False {}
impl Value for True {
type Type = bool;
fn value() -> Self::Type {
true
}
}
impl Value for False {
type Type = bool;
fn value() -> Self::Type {
false
}
}
// ================
// === GL Types ===
// ================
crate::define_singletons_gl! {
Alpha = Context::ALPHA,
Depth24Stencil8 = Context::DEPTH24_STENCIL8,
Depth32fStencil8 = Context::DEPTH32F_STENCIL8,
DepthComponent = Context::DEPTH_COMPONENT,
DepthComponent16 = Context::DEPTH_COMPONENT16,
DepthComponent24 = Context::DEPTH_COMPONENT24,
DepthComponent32f = Context::DEPTH_COMPONENT32F,
DepthStencil = Context::DEPTH_STENCIL,
Luminance = Context::LUMINANCE,
LuminanceAlpha = Context::LUMINANCE_ALPHA,
R11fG11fB10f = Context::R11F_G11F_B10F,
R16f = Context::R16F,
R16i = Context::R16I,
R16ui = Context::R16UI,
R32f = Context::R32F,
R32i = Context::R32I,
R32ui = Context::R32UI,
R8 = Context::R8,
R8i = Context::R8I,
R8SNorm = Context::R8_SNORM,
R8ui = Context::R8UI,
Red = Context::RED,
RedInteger = Context::RED_INTEGER,
Rg = Context::RG,
Rg16f = Context::RG16F,
Rg16i = Context::RG16I,
Rg16ui = Context::RG16UI,
Rg32f = Context::RG32F,
Rg32i = Context::RG32I,
Rg32ui = Context::RG32UI,
Rg8 = Context::RG8,
Rg8i = Context::RG8I,
Rg8SNorm = Context::RG8_SNORM,
Rg8ui = Context::RG8UI,
Rgb = Context::RGB,
Rgb10A2 = Context::RGB10_A2,
Rgb10A2ui = Context::RGB10_A2UI,
Rgb16f = Context::RGB16F,
Rgb16i = Context::RGB16I,
Rgb16ui = Context::RGB16UI,
Rgb32f = Context::RGB32F,
Rgb32i = Context::RGB32I,
Rgb32ui = Context::RGB32UI,
Rgb565 = Context::RGB565,
Rgb5A1 = Context::RGB5_A1,
Rgb8 = Context::RGB8,
Rgb8i = Context::RGB8I,
Rgb8SNorm = Context::RGB8_SNORM,
Rgb8ui = Context::RGB8UI,
Rgb9E5 = Context::RGB9_E5,
Rgba = Context::RGBA,
Rgba16f = Context::RGBA16F,
Rgba16i = Context::RGBA16I,
Rgba16ui = Context::RGBA16UI,
Rgba32f = Context::RGBA32F,
Rgba32i = Context::RGBA32I,
Rgba32ui = Context::RGBA32UI,
Rgba4 = Context::RGBA4,
Rgba8 = Context::RGBA8,
Rgba8i = Context::RGBA8I,
Rgba8SNorm = Context::RGBA8_SNORM,
Rgba8ui = Context::RGBA8UI,
RgbaInteger = Context::RGBA_INTEGER,
RgbInteger = Context::RGB_INTEGER,
RgInteger = Context::RG_INTEGER,
SRgb8 = Context::SRGB8,
SRgb8Alpha8 = Context::SRGB8_ALPHA8,
}
// ==============
// === Format ===
// ==============
/// Trait for every format of a texture.
pub trait Format = Default + Into<AnyFormat>;
// =================
// === AnyFormat ===
// =================
/// Texture formats. A `GlEnum` specifying the format of the texel data. Follow the link to learn
/// more: https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/texImage2D
pub mod format {
use super::*;
crate::define_singleton_enum_gl_from! {
AnyFormat
{ Alpha, DepthComponent, DepthStencil, Luminance, LuminanceAlpha, Red, RedInteger, Rg
, Rgb, Rgba, RgbaInteger, RgbInteger, RgInteger,
}
}
}
pub use format::*;
// =========================
// === AnyInternalFormat ===
// =========================
/// A GLenum specifying the color components in the texture. Follow the link to learn more:
/// https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/texImage2D
pub mod internal_format {
use super::*;
crate::define_singleton_enum_gl_from! {
AnyInternalFormat
{ Alpha, Luminance, LuminanceAlpha, Rgb, Rgba, R8, R8SNorm, R16f, R32f, R8ui, R8i
, R16ui, R16i, R32ui, R32i, Rg8, Rg8SNorm, Rg16f, Rg32f, Rg8ui, Rg8i, Rg16ui, Rg16i
, Rg32ui, Rg32i, Rgb8, SRgb8, Rgb565, Rgb8SNorm, R11fG11fB10f, Rgb9E5, Rgb16f, Rgb32f
, Rgb8ui, Rgb8i, Rgb16ui, Rgb16i, Rgb32ui, Rgb32i, Rgba8, SRgb8Alpha8, Rgba8SNorm
, Rgb5A1, Rgba4, Rgb10A2, Rgba16f, Rgba32f, Rgba8ui, Rgba8i, Rgb10A2ui, Rgba16ui
, Rgba16i, Rgba32i, Rgba32ui, DepthComponent16, DepthComponent24, DepthComponent32f
, Depth24Stencil8, Depth32fStencil8
}
}
}
pub use internal_format::*;
// ======================
// === InternalFormat ===
// ======================
/// Provides information about the size of a texture element for a given `InternalFormat`.
pub trait TextureElement<Type> {
/// The size in bytes of a single element of the texture.
type ByteSize: DimName;
}
/// Provides information about the suitable format and checks if the texture is color renderable
/// and filterable for a given `InternalFormat`.
pub trait InternalFormat : Default + Into<AnyInternalFormat> +'static {
/// The `Format` associated with this `InternalFormat`. Please note that `InternalFormat`
/// dictates which `Format` to use, but this relation is asymmetrical.
type Format: Format;
/// Checks if the texture format can be rendered as color.
type ColorRenderable: Value<Type=bool>;
/// Checks it he texture can be filtered.
type Filterable: Value<Type=bool>;
/// Checks if the texture format can be rendered as color.
fn color_renderable() -> bool {
<Self::ColorRenderable as Value>::value()
}
/// Checks it he texture can be filtered.
fn filterable() -> bool {
<Self::Filterable as Value>::value()
}
}
/// Generates `TextureElement` and `InternalFormat` instances. Please note that the relation
/// between internal format, format, and possible client texel types is very strict and you are
/// not allowed to choose them arbitrary. Follow the link to learn more about possible relations and
/// how the values were composed below:
/// https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/texImage2D
#[macro_export]
macro_rules! generate_internal_format_instances {
([] $( $internal_format:ident $format:ident $color_renderable:tt $filterable:tt $elem_descs:tt
)*) => {
$(
$crate::generate_internal_format_instances_item!
{ $internal_format $format $color_renderable $filterable $elem_descs }
)*
}
}
/// See docs of `generate_internal_format_instances`.
#[macro_export]
macro_rules! generate_internal_format_instances_item {
( $internal_format:ident $format:ident $color_renderable:tt $filterable:tt
[$($possible_types:ident : $bytes_per_element:ident),*]
) => {
$(impl TextureElement<$possible_types> for $internal_format {
type ByteSize = $bytes_per_element;
})*
impl InternalFormat for $internal_format {
type Format = $format;
type ColorRenderable = $color_renderable;
type Filterable = $filterable;
}
}
}
/// Runs the provided macro with all texture format relations. In order to learn more about the
/// possible relations, refer to the source code and to the guide:
/// https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/texImage2D
#[macro_export]
macro_rules! with_texture_format_relations { ($f:ident $args:tt) => { $crate::$f! { $args
// INTERNAL_FORMAT FORMAT COL FILT [POSSIBLE_TYPE:BYTES_PER_TEXTURE_ELEM]
Alpha Alpha True True [u8:U1,f16:U2,f32:U4]
Luminance Luminance True True [u8:U1,f16:U2,f32:U4]
LuminanceAlpha LuminanceAlpha True True [u8:U2,f16:U4,f32:U8]
Rgb Rgb True True [u8:U3,f16:U6,f32:U12,u16_5_6_5:U2]
Rgba Rgba True True [u8:U4,f16:U8,f32:U16,u16_4_4_4_4:U2,u16_5_5_5_1:U2]
R8 Red True True [u8:U1]
R8SNorm Red False True [i8:U1]
R16f Red False True [f32:U4,f16:U2]
R32f Red False False [f32:U4]
R8ui RedInteger True False [u8:U1]
R8i RedInteger True False [i8:U1]
R16ui RedInteger True False [u16:U2]
R16i RedInteger True False [i16:U2]
R32ui RedInteger True False [u32:U4]
R32i RedInteger True False [i32:U4]
Rg8 Rg True True [u8:U2]
Rg8SNorm Rg False True [i8:U2]
Rg16f Rg False True [f32:U8,f16:U4]
Rg32f Rg False False [f32:U8]
Rg8ui RgInteger True False [u8:U2]
Rg8i RgInteger True False [i8:U2]
Rg16ui RgInteger True False [u16:U4]
Rg16i RgInteger True False [i16:U4]
Rg32ui RgInteger True False [u32:U8]
Rg32i RgInteger True False [i32:U8]
Rgb8 Rgb True True [u8:U3]
SRgb8 Rgb False True [u8:U3]
Rgb565 Rgb True True [u8:U3,u16_5_6_5:U2]
Rgb8SNorm Rgb False True [i8:U3]
R11fG11fB10f Rgb False True [f32:U12,f16:U6,u32_f10_f11_f11_REV:U4]
Rgb9E5 Rgb False True [f32:U12,f16:U6,u32_5_9_9_9_REV:U4]
Rgb16f Rgb False True [f32:U12,f16:U6]
Rgb32f Rgb False False [f32:U12]
Rgb8ui RgbInteger False False [u8:U3]
Rgb8i RgbInteger False False [i8:U3]
Rgb16ui RgbInteger False False [u16:U6]
Rgb16i RgbInteger False False [i16:U6]
Rgb32ui RgbInteger False False [u32:U12]
Rgb32i RgbInteger False False [i32:U12]
Rgba8 Rgba True True [u8:U4]
SRgb8Alpha8 Rgba True True [u8:U4]
Rgba8SNorm Rgba False True [i8:U4]
Rgb5A1 Rgba True True [u8:U4,u16_5_5_5_1:U2,u32_2_10_10_10_REV:U4]
Rgba4 Rgba True True [u8:U4,u16_4_4_4_4:U2]
Rgb10A2 Rgba True True [u32_2_10_10_10_REV:U4]
Rgba16f Rgba False True [f32:U16,f16:U8]
Rgba32f Rgba False False [f32:U16]
Rgba8ui RgbaInteger True False [u8:U4]
Rgba8i RgbaInteger True False [i8:U4]
Rgb10A2ui RgbaInteger True False [u32_2_10_10_10_REV:U4]
Rgba16ui RgbaInteger True False [u16:U8]
Rgba16i RgbaInteger True False [i16:U8]
Rgba32i RgbaInteger True False [i32:U16]
Rgba32ui RgbaInteger True False [u32:U16]
DepthComponent16 DepthComponent True False [u16:U2,u32:U4]
DepthComponent24 DepthComponent True False [u32:U4]
DepthComponent32f DepthComponent True False [f32:U4]
Depth24Stencil8 DepthStencil True False [u32_24_8:U4]
Depth32fStencil8 DepthStencil True False [f32_u24_u8_REV:U4]
}}}
with_texture_format_relations!(generate_internal_format_instances []);
// =====================
// === TextureSource ===
// =====================
/// Source of the texture. Please note that the texture will be loaded asynchronously on demand.
#[derive(Clone,Debug)]
pub enum TextureSource {
/// URL the texture should be loaded from. This source implies asynchronous loading.
Url(String)
}
impl<S:Str> From<S> for TextureSource {
fn from(s:S) -> Self {
Self::Url(s.into())
}
}
// ===============
// === Texture ===
// ===============
/// Texture representation.
#[derive(Derivative)]
#[derivative(Clone(bound=""))]
#[derivative(Debug(bound=""))]
pub struct Texture<InternalFormat,ElemType> {
source : TextureSource,
phantom : PhantomData2<InternalFormat,ElemType>,
}
/// Bounds for every texture item type.
pub trait TextureItemType = PhantomInto<GlEnum> + 'static;
impl<I:InternalFormat,T:TextureItemType> Texture<I,T> {
/// Constructor.
pub fn new<S:Into<TextureSource>>(source:S) -> Self {
let source = source.into();
let phantom = PhantomData;
Self {source,phantom}
}
/// Internal format instance of this texture. Please note, that this value could be computed
/// without taking self reference, however it was defined in such way for convenient usage.
pub fn internal_format(&self) -> AnyInternalFormat {
<I>::default().into()
}
/// Format instance of this texture. Please note, that this value could be computed
/// without taking self reference, however it was defined in such way for convenient usage.
pub fn format(&self) -> AnyFormat {
<I::Format>::default().into()
}
/// Internal format of this texture as `GlEnum`. Please note, that this value could be computed
/// without taking self reference, however it was defined in such way for convenient usage.
pub fn gl_internal_format(&self) -> i32 {
let GlEnum(u) = self.internal_format().into_gl_enum();
u as i32
}
/// Format of this texture as `GlEnum`. Please note, that this value could be computed
/// without taking self reference, however it was defined in such way for convenient usage.
pub fn gl_format(&self) -> GlEnum {
self.format().into_gl_enum()
}
/// Element type of this texture as `GlEnum`. Please note, that this value could be computed
/// without taking self reference, however it was defined in such way for convenient usage.
pub fn gl_elem_type(&self) -> u32 {
<T>::gl_enum().into()
}
}
impl Texture<Rgba,u8> {
/// Smart constructor.
#[allow(non_snake_case)]
pub fn Rgba<S:Into<TextureSource>>(source:S) -> Self {
let source = source.into();
let phantom = PhantomData;
Self {source,phantom}
}
}
// ====================
// === BoundTexture ===
// ====================
/// Texture bound to GL context.
#[derive(Debug,Derivative)]
#[derivative(Clone(bound=""))]
pub struct BoundTexture<I,T> {
rc: Rc<RefCell<BoundTextureData<I,T>>>
}
/// Texture bound to GL context.
#[derive(Debug)]
pub struct BoundTextureData<I,T> {
texture : Texture<I,T>,
gl_texture : WebGlTexture,
context : Context,
}
impl<I,T> BoundTextureData<I,T> {
/// Constructor.
pub fn new(texture:Texture<I,T>,context:&Context) -> Self {
let gl_texture = context.create_texture().unwrap();
let context = context.clone();
Self {texture,gl_texture,context}
}
}
impl<I:InternalFormat,T:TextureItemType> BoundTextureData<I,T> {
/// Initializes default texture value. It is useful when the texture data needs to be downloaded
/// asynchronously. This method creates a mock 1px x 1px texture and uses it as a mock texture
/// until the download is complete.
pub fn init_mock(&self) {
let texture = &self.texture;
let target = Context::TEXTURE_2D;
let level = 0;
let internal_format = texture.gl_internal_format();
let format = texture.gl_format().into();
let elem_type = texture.gl_elem_type();
let width = 1;
let height = 1;
let border = 0;
let color = vec![0,0,255,255];
self.context.bind_texture(Context::TEXTURE_2D,Some(&self.gl_texture));
self.context.tex_image_2d_with_i32_and_i32_and_i32_and_format_and_type_and_opt_u8_array
(target,level,internal_format,width,height,border,format,elem_type,Some(&color)).unwrap();
}
}
impl<I:InternalFormat,T:TextureItemType> BoundTexture<I,T> {
/// Constructor.
pub fn new(texture:Texture<I,T>, context:&Context) -> Self {
let data = BoundTextureData::new(texture,context);
let rc = Rc::new(RefCell::new(data));
let out = Self {rc};
out.init_mock();
out.reload();
out
}
/// Initializes default texture value. It is useful when the texture data needs to be downloaded
/// asynchronously. This method creates a mock 1px x 1px texture and uses it as a mock texture
/// until the download is complete.
pub fn init_mock(&self) {
self.rc.borrow().init_mock()
}
/// Loads or re-loads the texture data from the provided source. If the source involves
/// downloading the data, this action will be performed asynchronously.
pub fn reload(&self) {
let data = self.rc.borrow();
match &data.texture.source {
TextureSource::Url(url) => {
let image = HtmlImageElement::new().unwrap();
let no_callback = <Option<Closure<dyn FnMut()>>>::None;
let callback_ref = Rc::new(RefCell::new(no_callback));
let image_ref = Rc::new(RefCell::new(image));
let this = self.clone();
let callback_ref2 = callback_ref.clone();
let image_ref_opt = image_ref.clone();
let callback: Closure<dyn FnMut()> = Closure::once(move || {
let _keep_alive = callback_ref2;
let data = this.rc.borrow();
let texture = &data.texture;
let image = image_ref_opt.borrow();
let target = Context::TEXTURE_2D;
let level = 0;
let internal_format = texture.gl_internal_format();
let format = texture.gl_format().into();
let elem_type = texture.gl_elem_type();
data.context.bind_texture(target,Some(&data.gl_texture));
data.context.tex_image_2d_with_u32_and_u32_and_html_image_element
(target,level,internal_format,format,elem_type,&image).unwrap();
});
let js_callback = callback.as_ref().unchecked_ref();
let image = image_ref.borrow();
request_cors_if_not_same_origin(&image,&url);
image.set_src(url);
image.add_event_listener_with_callback("load",js_callback).unwrap();
*callback_ref.borrow_mut() = Some(callback);
}
}
}
}
// === Utils ===
/// CORS = Cross Origin Resource Sharing. It's a way for the webpage to ask the image server for
/// permission to use the image. To do this we set the crossOrigin attribute to something and then
/// when the browser tries to get the image from the server, if it's not the same domain, the browser
/// will ask for CORS permission. The string we set `cross_origin` to is sent to the server.
/// The server can look at that string and decide whether or not to give you permission. Most
/// servers that support CORS don't look at the string, they just give permission to everyone.
///
/// **Note**
/// Why don't want to just always see the permission because asking for permission takes 2 HTTP
/// requests, so it's slower than not asking. If we know we're on the same domain or we know we
/// won't use the image for anything except img tags and or canvas2d then we don't want to set
/// crossDomain because it will make things slower.
fn request_cors_if_not_same_origin(img:&HtmlImageElement, url_str:&str) {
let url = Url::new(url_str).unwrap();
let origin = web::window().location().origin().unwrap();
if url.origin() != origin {
img.set_cross_origin(Some(""));
}
}
// ======================
// === Meta Iterators ===
// ======================
/// See docs of `with_all_texture_types`.
#[macro_export]
macro_rules! with_all_texture_types_cartesians {
($f:ident [$($out:tt)*]) => {
$f! { $($out)* }
};
($f:ident $out:tt [$a:tt []] $($in:tt)*) => {
$crate::with_all_texture_types_cartesians! {$f $out $($in)*}
};
($f:ident [$($out:tt)*] [$a:tt [$b:tt $($bs:tt)*]] $($in:tt)*) => {
$crate::with_all_texture_types_cartesians! {$f [$($out)* [$a $b]] [$a [$($bs)*]] $($in)* }
};
}
/// See docs of `with_all_texture_types`.
#[macro_export]
macro_rules! with_all_texture_types_impl {
( [$f:ident]
$( $internal_format:ident $format:ident $color_renderable:tt $filterable:tt
[$($possible_types:ident : $bytes_per_element:ident),*]
)*) => {
$crate::with_all_texture_types_cartesians!
{ $f [] $([$internal_format [$($possible_types)*]])* }
}
}
/// Runs the argument macro providing it with list of all possible texture types:
/// `arg! { [Alpha u8] [Alpha f16] [Alpha f32] [Luminance u8] ... }`
#[macro_export]
macro_rules! with_all_texture_types {
($f:ident) => {
$crate::with_texture_format_relations! { with_all_texture_types_impl [$f] }
}
}

View File

@ -1,28 +1,63 @@
#![allow(missing_docs)]
pub mod upload;
use crate::prelude::*;
use enum_dispatch::*;
use nalgebra::Matrix4;
use nalgebra::Vector3;
use shapely::shared;
use upload::UniformUpload;
use web_sys::WebGlUniformLocation;
use crate::display::render::webgl::Context;
use crate::system::gpu::data::ContextUniformOps;
use crate::system::gpu::data::GpuData;
use crate::system::web::Logger;
use crate::system::gpu::shader::Context;
use crate::system::gpu::data::texture::*;
use crate::system::gpu::data::prim::*;
// =============
// === Types ===
// =============
// ====================
// === UniformValue ===
// ====================
/// A set of constraints that every uniform has to met.
pub trait UniformValue = GpuData where
AnyUniform : From<Uniform<Self>>,
Context : ContextUniformOps<Self>;
/// Describes every value which can be kept inside an Uniform.
pub trait UniformValue = UniformUpload;
/// Some values need to be initialized before they can be used as uniforms. Textures, for example,
/// need to allocate memory on GPU and if used with remote source, need to download images.
/// For primitive types, like numbers or matrices, the binding operation does nothing.
pub trait IntoUniformValue = IntoUniformValueImpl where
Uniform<AsUniformValue<Self>>: Into<AnyUniform>;
/// Internal helper for `IntoUniformValue`.
pub trait IntoUniformValueImpl {
type Result;
fn into_uniform_value(self, context:&Context) -> Self::Result;
}
/// Result of the binding operation.
pub type AsUniformValue<T> = <T as IntoUniformValueImpl>::Result;
// === Instances ===
macro_rules! define_identity_uniform_value_impl {
( [] [$([$t1:ident $t2:ident])*] ) => {$(
impl IntoUniformValueImpl for $t1<$t2> {
type Result = $t1<$t2>;
fn into_uniform_value(self, _context:&Context) -> Self::Result {
self
}
}
)*}
}
crate::with_all_prim_types!([[define_identity_uniform_value_impl][]]);
impl<I:InternalFormat,T:TextureItemType> IntoUniformValueImpl for Texture<I,T> {
type Result = BoundTexture<I,T>;
fn into_uniform_value(self, context:&Context) -> Self::Result {
BoundTexture::new(self,context)
}
}
@ -33,17 +68,19 @@ pub trait UniformValue = GpuData where
shared! { UniformScope
/// A scope containing set of uniform values.
#[derive(Clone,Debug)]
#[derive(Debug)]
pub struct UniformScopeData {
map : HashMap<String,AnyUniform>,
logger : Logger,
context : Context,
}
impl {
/// Constructor.
pub fn new(logger: Logger) -> Self {
pub fn new(logger:Logger, context:&Context) -> Self {
let map = default();
Self {map,logger}
let context = context.clone();
Self {map,logger,context}
}
/// Look up uniform by name.
@ -57,14 +94,18 @@ impl {
}
/// Add a new uniform with a given name and initial value. Returns `None` if the name is in use.
pub fn add<Name:Str, Value:UniformValue>
(&mut self, name:Name, value:Value) -> Option<Uniform<Value>> {
/// Please note that the value will be bound to the context before it becomes the uniform.
/// Refer to the docs of `IntoUniformValue` to learn more.
pub fn add<Name:Str, Value:IntoUniformValue>
(&mut self, name:Name, value:Value) -> Option<Uniform<AsUniformValue<Value>>> {
self.add_or_else(name,value,Some,|_|None)
}
/// Add a new uniform with a given name and initial value. Panics if the name is in use.
pub fn add_or_panic<Name:Str, Value:UniformValue>
(&mut self, name:Name, value:Value) -> Uniform<Value> {
/// Please note that the value will be bound to the context before it becomes the uniform.
/// Refer to the docs of `IntoUniformValue` to learn more.
pub fn add_or_panic<Name:Str, Value:IntoUniformValue>
(&mut self, name:Name, value:Value) -> Uniform<AsUniformValue<Value>> {
self.add_or_else(name,value,|t|{t},|name| {
panic!("Trying to override uniform '{}'.", name.as_ref())
})
@ -75,10 +116,13 @@ impl UniformScopeData {
/// Adds a new uniform with a given name and initial value. In case the name was already in use,
/// it fires the `fail` function. Otherwise, it fires the `ok` function on the newly created
/// uniform.
pub fn add_or_else<Name:Str, Value:UniformValue, Ok:Fn(Uniform<Value>)->T, Fail:Fn(Name)->T, T>
(&mut self, name:Name, value:Value, ok:Ok, fail:Fail) -> T {
pub fn add_or_else<Name:Str,Value:IntoUniformValue,Ok,Fail,T>
(&mut self, name:Name, value:Value, ok:Ok, fail:Fail) -> T
where Ok : Fn(Uniform<AsUniformValue<Value>>)->T,
Fail : Fn(Name)->T {
if self.map.contains_key(name.as_ref()) { fail(name) } else {
let uniform = Uniform::new(value);
let bound_value = value.into_uniform_value(&self.context);
let uniform = Uniform::new(bound_value);
let any_uniform = uniform.clone().into();
self.map.insert(name.into(),any_uniform);
ok(uniform)
@ -88,20 +132,20 @@ impl UniformScopeData {
// ===================
// === UniformData ===
// ===================
// ===============
// === Uniform ===
// ===============
shared! { Uniform
/// An uniform value.
#[derive(Clone,Debug)]
#[derive(Debug)]
pub struct UniformData<Value> {
value: Value,
dirty: bool,
}
impl<Value:UniformValue> {
impl<Value> {
/// Constructor.
pub fn new(value:Value) -> Self {
let dirty = false;
@ -134,12 +178,91 @@ impl<Value:UniformValue> {
pub fn unset_dirty(&mut self) {
self.dirty = false;
}
}}
impl<Value:UniformValue> UniformData<Value> {
/// Uploads the uniform data to the provided location of the currently bound shader program.
pub fn upload(&self, context:&Context, location:&WebGlUniformLocation) {
context.set_uniform(location,&self.value);
self.value.upload_uniform(context,location);
}
}
impl<Value:UniformValue> Uniform<Value> {
/// Uploads the uniform data to the provided location of the currently bound shader program.
pub fn upload(&self, context:&Context, location:&WebGlUniformLocation) {
self.rc.borrow().upload(context,location)
}
}
// ======================
// === AnyPrimUniform ===
// ======================
macro_rules! define_any_prim_uniform {
( [] [$([$t1:ident $t2:ident])*] ) => { paste::item! {
/// Existentially typed uniform value.
#[allow(non_camel_case_types)]
#[enum_dispatch(AnyPrimUniformOps)]
#[derive(Clone,Debug)]
pub enum AnyPrimUniform {
$([<Variant_ $t1 _ $t2>](Uniform<$t1<$t2>>)),*
}
}}
}
crate::with_all_prim_types!([[define_any_prim_uniform][]]);
/// Set of operations exposed by the `AnyPrimUniform` value.
#[enum_dispatch]
pub trait AnyPrimUniformOps {
fn upload(&self, context:&Context, location:&WebGlUniformLocation);
}
// =========================
// === AnyTextureUniform ===
// =========================
macro_rules! gen_any_texture_uniform {
( $([$internal_format:tt $type:tt])* ) => { paste::item! {
#[allow(missing_docs)]
#[allow(non_camel_case_types)]
#[enum_dispatch(AnyTextureUniformOps)]
#[derive(Clone,Debug)]
pub enum AnyTextureUniform {
$( [< $internal_format _ $type >] (Uniform<BoundTexture<$internal_format,$type>>) ),*
}
}}
}
macro_rules! gen_prim_conversions {
( [] [$([$t1:ident $t2:ident])*] ) => {$(
impl From<Uniform<$t1<$t2>>> for AnyUniform {
fn from(t:Uniform<$t1<$t2>>) -> Self {
Self::Prim(t.into())
}
}
)*}
}
macro_rules! gen_texture_conversions {
( $([$internal_format:tt $type:tt])* ) => {$(
impl From<Uniform<BoundTexture<$internal_format,$type>>> for AnyUniform {
fn from(t:Uniform<BoundTexture<$internal_format,$type>>) -> Self {
Self::Texture(t.into())
}
}
)*}
}
crate::with_all_texture_types!(gen_any_texture_uniform);
#[enum_dispatch]
pub trait AnyTextureUniformOps {
}
@ -147,19 +270,11 @@ impl<Value:UniformValue> {
// === AnyUniform ===
// ==================
/// Existentially typed uniform value.
#[allow(non_camel_case_types)]
#[enum_dispatch(AnyUniformOps)]
#[derive(Clone,Debug)]
pub enum AnyUniform {
Variant_i32 (Uniform<i32>),
Variant_f32 (Uniform<f32>),
Variant_Vector3_of_f32(Uniform<Vector3<f32>>),
Variant_Matrix4_of_f32(Uniform<Matrix4<f32>>)
Prim(AnyPrimUniform),
Texture(AnyTextureUniform)
}
/// Set of operations exposed by the `AnyUniform` value.
#[enum_dispatch]
pub trait AnyUniformOps {
fn upload(&self, context:&Context, location:&WebGlUniformLocation);
}
crate::with_all_prim_types!([[gen_prim_conversions][]]);
crate::with_all_texture_types!(gen_texture_conversions);

View File

@ -0,0 +1,155 @@
//! This module defines abstraction for uniform uploading. WebGL defines a lot of functions for
//! uploading particular data shapes. Fortunately, Rust is strongly typed, so we can establish a
//! single abstraction for data uploading.
use web_sys::WebGlUniformLocation;
use crate::system::gpu::Context;
use crate::system::gpu::data::prim::*;
// =====================
// === UniformUpload ===
// =====================
/// Abstraction for uploading uniforms to GPU based on their types.
pub trait UniformUpload {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation);
}
impl UniformUpload for bool {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
let value = if *self {1} else {0};
context.uniform1i(Some(location),value);
}
}
impl UniformUpload for i32 {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
context.uniform1i(Some(location),*self);
}
}
impl UniformUpload for f32 {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
context.uniform1f(Some(location),*self);
}
}
impl UniformUpload for Vector2<f32> {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
context.uniform2fv_with_f32_array(Some(location),self.data.as_slice());
}
}
impl UniformUpload for Vector3<f32> {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
context.uniform3fv_with_f32_array(Some(location),self.data.as_slice());
}
}
impl UniformUpload for Vector4<f32> {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
context.uniform4fv_with_f32_array(Some(location),self.data.as_slice());
}
}
impl UniformUpload for Vector2<i32> {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
context.uniform2iv_with_i32_array(Some(location),self.data.as_slice());
}
}
impl UniformUpload for Vector3<i32> {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
context.uniform3iv_with_i32_array(Some(location),self.data.as_slice());
}
}
impl UniformUpload for Vector4<i32> {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
context.uniform4iv_with_i32_array(Some(location),self.data.as_slice());
}
}
impl UniformUpload for Vector2<bool> {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
let v:Vec<i32> = self.data.as_slice().iter().cloned().map(|t| if t {1} else {0}).collect();
context.uniform2iv_with_i32_array(Some(location),&v);
}
}
impl UniformUpload for Vector3<bool> {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
let v:Vec<i32> = self.data.as_slice().iter().cloned().map(|t| if t {1} else {0}).collect();
context.uniform3iv_with_i32_array(Some(location),&v);
}
}
impl UniformUpload for Vector4<bool> {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
let v:Vec<i32> = self.data.as_slice().iter().cloned().map(|t| if t {1} else {0}).collect();
context.uniform4iv_with_i32_array(Some(location),&v);
}
}
impl UniformUpload for Matrix2<f32> {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
context.uniform_matrix2fv_with_f32_array(Some(location),false,self.data.as_slice());
}
}
impl UniformUpload for Matrix3<f32> {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
context.uniform_matrix3fv_with_f32_array(Some(location),false,self.data.as_slice());
}
}
impl UniformUpload for Matrix4<f32> {
fn upload_uniform(&self, context:&Context, location:&WebGlUniformLocation) {
context.uniform_matrix4fv_with_f32_array(Some(location),false,self.data.as_slice());
}
}
impl UniformUpload for Matrix2x3<f32> {
fn upload_uniform(&self, _context:&Context, _location:&WebGlUniformLocation) {
todo!() // FIXME: https://github.com/rustwasm/wasm-bindgen/issues/1956
// context.uniform_matrix2x3fv_with_f32_array(Some(location),false,self.data.as_slice());
}
}
impl UniformUpload for Matrix2x4<f32> {
fn upload_uniform(&self, _context:&Context, _location:&WebGlUniformLocation) {
todo!() // FIXME: https://github.com/rustwasm/wasm-bindgen/issues/1956
// context.uniform_matrix2x4fv_with_f32_array(Some(location),false,self.data.as_slice());
}
}
impl UniformUpload for Matrix3x2<f32> {
fn upload_uniform(&self, _context:&Context, _location:&WebGlUniformLocation) {
todo!() // FIXME: https://github.com/rustwasm/wasm-bindgen/issues/1956
// context.uniform_matrix3x2fv_with_f32_array(Some(location),false,self.data.as_slice());
}
}
impl UniformUpload for Matrix3x4<f32> {
fn upload_uniform(&self, _context:&Context, _location:&WebGlUniformLocation) {
todo!() // FIXME: https://github.com/rustwasm/wasm-bindgen/issues/1956
// context.uniform_matrix3x4fv_with_f32_array(Some(location),false,self.data.as_slice());
}
}
impl UniformUpload for Matrix4x2<f32> {
fn upload_uniform(&self, _context:&Context, _location:&WebGlUniformLocation) {
todo!() // FIXME: https://github.com/rustwasm/wasm-bindgen/issues/1956
// context.uniform_matrix4x2fv_with_f32_array(Some(location),false,self.data.as_slice());
}
}
impl UniformUpload for Matrix4x3<f32> {
fn upload_uniform(&self, _context:&Context, _location:&WebGlUniformLocation) {
todo!() // FIXME: https://github.com/rustwasm/wasm-bindgen/issues/1956
// context.uniform_matrix4x3fv_with_f32_array(Some(location),false,self.data.as_slice());
}
}

View File

@ -13,6 +13,20 @@ use web_sys::WebGlShader;
// ===============
// === Exports ===
// ===============
/// Common types.
pub mod types {
pub use super::glsl;
pub use glsl::Glsl;
pub use glsl::traits::*;
}
pub use types::*;
// =============
// === Types ===
// =============

View File

@ -6,8 +6,102 @@
use crate::prelude::*;
use crate::data::container::Add;
use code_builder::{CodeBuilder, HasCodeRepr};
use nalgebra::*;
use shapely::derive_clone_plus;
use crate::system::gpu::data::buffer::item::MatrixCtx;
// =================================================================================================
// === Glsl ========================================================================================
// =================================================================================================
/// A GLSL code representation.
#[derive(Clone,Debug,Shrinkwrap)]
#[shrinkwrap(mutable)]
pub struct Glsl {
/// Raw, textual code representation.
pub str: String,
}
impl Display for Glsl {
fn fmt(&self, f:&mut std::fmt::Formatter<'_>) -> std::fmt::Result {
Display::fmt(&self.str,f)
}
}
// === Conversions from Glsl ===
impl From<Glsl> for String {
fn from(t:Glsl) -> Self {
t.str
}
}
impl From<&Glsl> for String {
fn from(t:&Glsl) -> Self {
t.str.clone()
}
}
// === Conversions to Glsl ===
impl From<&Glsl> for Glsl {
fn from(t:&Glsl) -> Self {
t.clone()
}
}
impl From<String> for Glsl {
fn from(t:String) -> Self {
Self {str:t}
}
}
impl From<&String> for Glsl {
fn from(t:&String) -> Self {
Self {str:t.into()}
}
}
impl From<&str> for Glsl {
fn from(t:&str) -> Self {
Self {str:(*t).into()}
}
}
impl From<bool> for Glsl {
fn from(t:bool) -> Self {
t.to_string().into()
}
}
impl From<i32> for Glsl {
fn from(t:i32) -> Self {
t.to_string().into()
}
}
impl From<f32> for Glsl {
fn from(t:f32) -> Self {
let is_int = t.fract() == 0.0;
if is_int { iformat!("{t}.0").into() }
else { iformat!("{t}").into() }
}
}
impl<T,R,C> From<MatrixMN<T,R,C>> for Glsl
where Self:MatrixCtx<T,R,C>, PhantomData<MatrixMN<T,R,C>>:Into<PrimType> {
fn from(t:MatrixMN<T,R,C>) -> Self {
let type_name = PrimType::phantom_from::<MatrixMN<T,R,C>>().to_code();
let vals:Vec<String> = t.as_slice().iter().cloned().map(|t|format!("{:?}",t)).collect();
format!("{}({})",type_name,vals.join(",")).into()
}
}
@ -341,14 +435,14 @@ pub enum PrimType {
Mat4x2, Mat4x3, Mat4x4,
Vec2, Vec3, Vec4, IVec2, IVec3, IVec4, BVec2, BVec3, BVec4,
UInt, UVec2, UVec3, UVec4,
Sampler2D, Sampler3D, SamplerCube,
Sampler2DShadow, SamplerCubeShadow,
Sampler2DArray,
Sampler2DArrayShadow,
ISampler2D, ISampler3D, ISamplerCube,
ISampler2DArray,
USampler2D, USampler3D, USamplerCube,
USampler2DArray,
Sampler2d, Sampler3d, SamplerCube,
Sampler2dShadow, SamplerCubeShadow,
Sampler2dArray,
Sampler2dArrayShadow,
ISampler2d, ISampler3d, ISamplerCube,
ISampler2dArray,
USampler2d, USampler3d, USamplerCube,
USampler2dArray,
Struct(Identifier),
}
@ -384,26 +478,38 @@ impl HasCodeRepr for PrimType {
Self::UVec2 => builder.add("uvec2"),
Self::UVec3 => builder.add("uvec3"),
Self::UVec4 => builder.add("uvec4"),
Self::Sampler2D => builder.add("sampler2d"),
Self::Sampler3D => builder.add("sampler3d"),
Self::Sampler2d => builder.add("sampler2d"),
Self::Sampler3d => builder.add("sampler3d"),
Self::SamplerCube => builder.add("samplerCube"),
Self::Sampler2DShadow => builder.add("sampler2DShadow"),
Self::Sampler2dShadow => builder.add("sampler2DShadow"),
Self::SamplerCubeShadow => builder.add("samplerCubeShadow"),
Self::Sampler2DArray => builder.add("sampler2DArray"),
Self::Sampler2DArrayShadow => builder.add("sampler2DArrayShadow"),
Self::ISampler2D => builder.add("isampler2D"),
Self::ISampler3D => builder.add("isampler3D"),
Self::Sampler2dArray => builder.add("sampler2DArray"),
Self::Sampler2dArrayShadow => builder.add("sampler2DArrayShadow"),
Self::ISampler2d => builder.add("isampler2D"),
Self::ISampler3d => builder.add("isampler3D"),
Self::ISamplerCube => builder.add("isamplerCube"),
Self::ISampler2DArray => builder.add("isampler2DArray"),
Self::USampler2D => builder.add("usampler2D"),
Self::USampler3D => builder.add("usampler3D"),
Self::ISampler2dArray => builder.add("isampler2DArray"),
Self::USampler2d => builder.add("usampler2D"),
Self::USampler3d => builder.add("usampler3D"),
Self::USamplerCube => builder.add("usamplerCube"),
Self::USampler2DArray => builder.add("usampler2DArray"),
Self::USampler2dArray => builder.add("usampler2DArray"),
Self::Struct(ident) => builder.add(ident),
};
}
}
impl From<PrimType> for String {
fn from(t:PrimType) -> Self {
t.to_code()
}
}
impl Display for PrimType {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f,"{}",self.to_code())
}
}
// =================
@ -446,6 +552,7 @@ pub struct LinkageStorage {
#[derive(Clone,Debug)]
pub enum InterpolationStorage {Smooth, Flat}
// === Printers ===
impl HasCodeRepr for Layout {
@ -633,3 +740,85 @@ impl HasCodeRepr for Module {
builder.add(&self.main);
}
}
// ============================
// === PrimType Conversions ===
// ============================
macro_rules! define_glsl_prim_type_conversions {
($($ty:ty => $name:ident),* $(,)?) => {$(
impl From<PhantomData<$ty>> for PrimType {
fn from(_:PhantomData<$ty>) -> Self {
Self::$name
}
}
impl From<PhantomData<$ty>> for Type {
fn from(_:PhantomData<$ty>) -> Self {
PrimType::$name.into()
}
}
)*}
}
define_glsl_prim_type_conversions! {
bool => Bool,
i32 => Int,
f32 => Float,
Vector2<f32> => Vec2,
Vector3<f32> => Vec3,
Vector4<f32> => Vec4,
Vector2<i32> => IVec2,
Vector3<i32> => IVec3,
Vector4<i32> => IVec4,
Vector2<bool> => BVec2,
Vector3<bool> => BVec3,
Vector4<bool> => BVec4,
Matrix2<f32> => Mat2,
Matrix3<f32> => Mat3,
Matrix4<f32> => Mat4,
Matrix2x3<f32> => Mat2x3,
Matrix2x4<f32> => Mat2x4,
Matrix3x2<f32> => Mat3x2,
Matrix3x4<f32> => Mat3x4,
Matrix4x2<f32> => Mat4x2,
Matrix4x3<f32> => Mat4x3,
}
// === Smart accessors ===
/// Extension methods.
pub mod traits {
use super::*;
/// Extension methods for every type which could be converted to `PrimType`.
pub trait PhantomIntoPrimType: Sized + PhantomInto<PrimType> {
/// `PrimType` representation of the current type.
fn glsl_prim_type() -> PrimType {
Self::phantom_into()
}
}
impl<T:PhantomInto<PrimType>> PhantomIntoPrimType for T {}
pub trait IntoGlsl<'a> where Self:'a, &'a Self:Into<Glsl> {
fn glsl(&'a self) -> Glsl {
self.into()
}
}
impl<'a,T> IntoGlsl<'a> for T where T:'a, &'a T:Into<Glsl> {}
pub trait IntoGlsl2 where Self:Into<Glsl> {
fn glsl(self) -> Glsl {
self.into()
}
}
impl<T> IntoGlsl2 for T where T:Into<Glsl> {}
}
pub use traits::*;

View File

@ -0,0 +1,5 @@
//! Root module for web-based functionalities.
pub mod dom;
pub use basegl_system_web::*;

View File

@ -2,7 +2,7 @@
use crate::prelude::*;
use crate::display::render::css3d::Object;
use crate::system::web::dom::Object;
use nalgebra::base::Matrix4;
use nalgebra::geometry::Perspective3;

View File

@ -2,7 +2,7 @@
use crate::prelude::*;
use crate::display::render::css3d::Object;
use crate::system::web::dom::Object;
use crate::system::web::create_element;
use crate::system::web::dyn_into;
use crate::system::web::Result;

View File

@ -2,12 +2,12 @@
use crate::prelude::*;
use crate::display::render::css3d::GraphicsRenderer;
use crate::display::render::css3d::Scene;
use crate::display::render::css3d::Camera;
use crate::display::render::css3d::CameraType;
use crate::display::render::css3d::html::HTMLObject;
use crate::system::gpu::data::JSBufferView;
use crate::system::web::dom::GraphicsRenderer;
use crate::system::web::dom::Scene;
use crate::system::web::dom::Camera;
use crate::system::web::dom::CameraType;
use crate::system::web::dom::html::HTMLObject;
use crate::system::gpu::data::JsBufferView;
use crate::system::web::Result;
use crate::system::web::create_element;
use crate::system::web::dyn_into;
@ -29,7 +29,7 @@ use web_sys::HtmlElement;
mod js {
use super::*;
#[wasm_bindgen(module = "/src/display/render/css3d/html/snippets.js")]
#[wasm_bindgen(module = "/src/system/web/dom/html/snippets.js")]
extern "C" {
pub fn set_object_transform(dom:&JsValue, matrix_array:&Object);
pub fn setup_perspective(dom: &JsValue, znear: &JsValue);

View File

@ -2,7 +2,7 @@
use crate::prelude::*;
use crate::display::render::css3d::Transform;
use crate::system::web::dom::Transform;
use crate::animation::position::HasPosition;
use nalgebra::UnitQuaternion;

View File

@ -18,10 +18,10 @@ extern "C" {
#[cfg(test)]
mod tests {
use basegl::display::render::css3d::Scene;
use basegl::display::render::css3d::Camera;
use basegl::display::render::css3d::html::HTMLObject;
use basegl::display::render::css3d::html::HTMLRenderer;
use basegl::system::web::dom::Scene;
use basegl::system::web::dom::Camera;
use basegl::system::web::dom::html::HTMLObject;
use basegl::system::web::dom::html::HTMLRenderer;
use basegl::system::web::StyleSetter;
use basegl::system::web::get_performance;
use basegl::animation::position::HasPosition;

View File

@ -7,10 +7,10 @@ web_configure!(run_in_browser);
#[cfg(test)]
mod tests {
use basegl::display::render::css3d::Scene;
use basegl::display::render::css3d::Camera;
use basegl::display::render::css3d::html::HTMLObject;
use basegl::display::render::css3d::html::HTMLRenderer;
use basegl::system::web::dom::Scene;
use basegl::system::web::dom::Camera;
use basegl::system::web::dom::html::HTMLObject;
use basegl::system::web::dom::html::HTMLRenderer;
use basegl::system::web::StyleSetter;
use basegl::display::navigation::navigator::Navigator;
use basegl::animation::position::HasPosition;

View File

@ -13,10 +13,10 @@ mod tests {
use basegl::animation::physics::inertia::PhysicsSimulator;
use basegl::animation::physics::inertia::PhysicsProperties;
use basegl::animation::animator::fixed_step::FixedStepAnimator;
use basegl::display::render::css3d::html::HTMLRenderer;
use basegl::display::render::css3d::html::HTMLObject;
use basegl::display::render::css3d::Scene;
use basegl::display::render::css3d::Camera;
use basegl::system::web::dom::html::HTMLRenderer;
use basegl::system::web::dom::html::HTMLObject;
use basegl::system::web::dom::Scene;
use basegl::system::web::dom::Camera;
use basegl::animation::position::HasPosition;
use web_test::*;
use nalgebra::{zero, Vector3};

17
gui/lib/logger/Cargo.toml Normal file
View File

@ -0,0 +1,17 @@
[package]
name = "logger"
version = "0.1.0"
authors = ["Enso Team <contact@luna-lang.org>"]
edition = "2018"
[lib]
[features]
default = []
[dependencies]
wasm-bindgen = { version = "^0.2", features = ["nightly"] }
[dependencies.web-sys]
version = "0.3.4"
features = ['console']

190
gui/lib/logger/src/lib.rs Normal file
View File

@ -0,0 +1,190 @@
#![feature(trait_alias)]
#![feature(set_stdio)]
use std::fmt::Debug;
use wasm_bindgen::JsValue;
#[cfg(target_arch = "wasm32")]
use web_sys::console;
// ==============
// === LogMsg ===
// ==============
pub trait LogMsg {
fn with_log_msg<F: FnOnce(&str) -> T, T>(&self, f:F) -> T;
}
impl LogMsg for &str {
fn with_log_msg<F: FnOnce(&str) -> T, T>(&self, f:F) -> T {
f(self)
}
}
impl<F: Fn() -> S, S: AsRef<str>> LogMsg for F {
fn with_log_msg<G: FnOnce(&str) -> T, T>(&self, f:G) -> T {
f(self().as_ref())
}
}
// ==============
// === Logger ===
// ==============
#[derive(Clone,Debug,Default)]
pub struct Logger {
pub path: String,
}
#[allow(dead_code)]
impl Logger {
pub fn new<T: AsRef<str>>(path:T) -> Self {
let path = path.as_ref().to_string();
Self { path }
}
pub fn sub<T: AsRef<str>>(&self, path: T) -> Self {
Self::new(format!("{}.{}", self.path, path.as_ref()))
}
pub fn group<M: LogMsg, T, F: FnOnce() -> T>(&self, msg: M, f: F) -> T {
self.group_begin(msg);
let out = f();
self.group_end();
out
}
fn format<M: LogMsg>(&self, msg: M) -> JsValue {
msg.with_log_msg(|s| format!("[{}] {}", self.path, s)).into()
}
}
#[cfg(target_arch = "wasm32")]
impl Logger {
pub fn trace<M: LogMsg>(&self, _msg: M) {
// console::debug_1(&self.format(msg));
}
pub fn info<M: LogMsg>(&self, _msg: M) {
// console::group_1(&self.format(msg));
// console::group_end();
}
pub fn warning<M: LogMsg>(&self, msg: M) {
console::warn_1(&self.format(msg));
}
pub fn error<M: LogMsg>(&self, msg: M) {
console::error_1(&self.format(msg));
}
pub fn group_begin<M: LogMsg>(&self, _msg: M) {
// console::group_1(&self.format(msg));
}
pub fn group_end(&self) {
// console::group_end();
}
}
// FIXME: Add the non-wasm impl
#[cfg(not(target_arch = "wasm32"))]
impl Logger {
pub fn trace<M: LogMsg>(&self, _msg: M) {}
pub fn info<M: LogMsg>(&self, _msg: M) {}
pub fn warning<M: LogMsg>(&self, _msg: M) {}
pub fn error<M: LogMsg>(&self, _msg: M) {}
pub fn group_begin<M: LogMsg>(&self, _msg: M) {}
pub fn group_end(&self) {}
}
// ====================
// === Logger Utils ===
// ====================
#[macro_export]
macro_rules! fmt {
($($arg:tt)*) => (||(format!($($arg)*)))
}
#[macro_export]
macro_rules! group {
($logger:expr, $message:tt, {$($body:tt)*}) => {{
let __logger = $logger.clone();
__logger.group_begin(|| iformat!{$message});
let out = {$($body)*};
__logger.group_end();
out
}};
}
#[macro_export]
macro_rules! log_template {
($method:ident $logger:expr, $message:tt $($rest:tt)*) => {
$crate::log_template_impl! {$method $logger, iformat!($message) $($rest)*}
};
}
#[macro_export]
macro_rules! log_template_impl {
($method:ident $logger:expr, $expr:expr) => {{
$logger.$method(|| $expr);
}};
($method:ident $logger:expr, $expr:expr, $body:tt) => {{
let __logger = $logger.clone();
__logger.group_begin(|| $expr);
let out = $body;
__logger.group_end();
out
}};
}
#[macro_export]
macro_rules! with_internal_bug_message { ($f:ident $($args:tt)*) => { $crate::$f! {
"This is a bug. We will be thankful if you report it and provide us with as much information as \
possible at https://github.com/luna/enso/issues. Thank you!"
$($args)*
}};}
#[macro_export]
macro_rules! log_internal_bug_template {
($($toks:tt)*) => {
$crate::with_internal_bug_message! { log_internal_bug_template_impl $($toks)* }
};
}
#[macro_export]
macro_rules! log_internal_bug_template_impl {
($note:tt $method:ident $logger:expr, $message:tt $($rest:tt)*) => {
$crate::log_template_impl! {$method $logger,
format!("Internal Error. {}\n\n{}",iformat!($message),$note) $($rest)*
}
};
}
#[macro_export]
macro_rules! info {
($($toks:tt)*) => {
$crate::log_template! {info $($toks)*}
};
}
#[macro_export]
macro_rules! warning {
($($toks:tt)*) => {
$crate::log_template! {warning $($toks)*}
};
}
#[macro_export]
macro_rules! internal_warning {
($($toks:tt)*) => {
$crate::log_internal_bug_template! {warning $($toks)*}
};
}

View File

@ -9,7 +9,7 @@ edition = "2018"
[dependencies]
boolinator = "2.4.0"
derivative = "1.0.3"
derive_more = "0.15.0"
derive_more = "0.99.2"
failure = "0.1.5"
itertools = "0.8"
num = "0.2.0"

View File

@ -150,6 +150,60 @@ impl<T, P> WithPhantom<T, P> {
// ==========================
// === PhantomConversions ===
// ==========================
/// A utility for easy driving of type-level computations from value level. Often we've got some
/// type level relations, like a few singleton types, and for each such type we've got an associated
/// value. For example, we can define types `Int` and `Float` and associate with them
/// `WebGlContext::Int` and `WebGlContext::Float` constants encoded as `GlEnum`. In order to convert
/// `Int` or `Float` to the `GlEnum` we do not need the instance of the types, only the information
/// what type it was. So we can define:
///
/// ```compile_fail
/// impl From<PhantomData<Int>> for u32 {
/// from(_:PhantomData<Int>>) {
/// GlEnum(WebGlContext::Int)
/// }
/// }
/// ```
///
/// And use it like:
///
/// ```compile_fail
/// let val = GlEnum::from(PhantomData::<Int>)
/// ```
///
/// Using this utility we can always write the following code instead:
///
/// ```compile_fail
/// let val = GlEnum::phantom_from::<Int>()
/// ```
pub trait PhantomConversions: Sized {
fn phantom_into<P>() -> P where Self:PhantomInto<P> {
PhantomData::<Self>.into()
}
fn phantom_from<P:PhantomInto<Self>>() -> Self {
PhantomData::<P>.into()
}
}
impl<T> PhantomConversions for T {}
/// Like `Into` but for phantom types.
pub trait PhantomInto<T> = where PhantomData<Self>: Into<T>;
/// Provides method `to`, which is just like `into` but allows fo superfish syntax.
pub trait ToImpl: Sized {
fn to<P>(self) -> P where Self:Into<P> {
self.into()
}
}
impl<T> ToImpl for T {}
// =====================
// === Rc Extensions ===
// =====================

View File

@ -12,4 +12,3 @@ default = []
[dependencies]
shapely-macros = { version = "0.1.0" , path = "../macros" }
basegl-prelude = { version = "0.1.0" , path = "../../prelude" }

View File

@ -0,0 +1,45 @@
/// Computes a cartesian product of the provided input.
///
/// For the following expression:
/// ```compile_fail
/// cartesian!(f [g] [a b c] [x y z]);
/// ```
///
/// It expands to:
/// ```compile_fail
/// f! { [g] [ [a x] [a y] [a z] [b x] [b y] [b z] [c x] [c y] [c z] ] }
/// ```
///
/// If you provide underscore as second argument, it is skipped in the ouput macro:
///
/// ```compile_fail
/// cartesian!(f _ [a b c] [x y z]);
/// ```
///
/// Expands to:
/// ```compile_fail
/// f! { [ [a x] [a y] [a z] [b x] [b y] [b z] [c x] [c y] [c z] ] }
/// ```
#[macro_export]
macro_rules! cartesian {
($f:tt [$($a:tt)*] [$($b:tt)*]) => {
$crate::_cartesian_impl!{ $f [] [$($a)*] [$($b)*] [$($b)*] }
};
}
/// Internal helper for `cartesian` macro.
#[macro_export]
macro_rules! _cartesian_impl {
([[$f:path]] $out:tt [] $b:tt $init_b:tt) => {
$f!{ $out }
};
([[$f:path] $args:tt] $out:tt [] $b:tt $init_b:tt) => {
$f!{ $args $out }
};
($f:tt $out:tt [$a:ident $($at:tt)*] [] $init_b:tt) => {
$crate::_cartesian_impl!{ $f $out [$($at)*] $init_b $init_b }
};
($f:tt [$($out:tt)*] [$a:ident $($at:tt)*] [$b:ident $($bt:tt)*] $init_b:tt) => {
$crate::_cartesian_impl!{ $f [$($out)* [$a $b]] [$a $($at)*] [$($bt)*] $init_b }
};
}

View File

@ -10,6 +10,8 @@
#![feature(overlapping_marker_traits)]
pub mod shared;
pub mod singleton;
pub mod cartesian;
pub use shapely_macros::*;
@ -19,6 +21,54 @@ use std::pin::Pin;
use basegl_prelude::*;
/// Generates a newtype wrapper for the provided types. It also generates a lot of impls,
/// including Copy, Clone, Debug, Default, Display, From, Into, Deref, and DerefMut.
///
/// For the following input:
/// ```compile_fail
/// newtype_copy! {
/// AttributeIndex(usize)
/// }
/// ```
///
/// The following code is generated:
/// ```compile_fail
/// #[derive(Copy, Clone, Debug, Default, Display, From, Into)]
/// pub struct AttributeIndex(usize);
/// impl Deref for AttributeIndex {
/// type Target = usize;
/// fn deref(&self) -> &Self::Target {
/// &self.0
/// }
/// }
/// impl DerefMut for AttributeIndex {
/// fn deref_mut(&mut self) -> &mut Self::Target {
/// &mut self.0
/// }
/// }
/// ```
#[macro_export]
macro_rules! newtype_copy {
($( $(#$meta:tt)* $name:ident($type:ty); )*) => {$(
$(#$meta)*
#[derive(Copy,Clone,Debug,Default,Display,From,Into)]
pub struct $name($type);
impl Deref for $name {
type Target = $type;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for $name {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
)*}
}
#[macro_export]
macro_rules! derive_clone_plus {
($name:ident) => {

View File

@ -114,14 +114,17 @@ macro_rules! shared_bracket_impl {
([impl [$($impl_params:tt)*] $name:ident $name_mut:ident $([$($params:tt)*])?] [
$(
$(#[$($meta:tt)*])*
pub fn $fn_name:ident $([$($fn_params:tt)*])? ($($fn_args:tt)*) $(-> $fn_type:ty)? {
pub fn $fn_name:ident
$([$($fn_params:tt)*])? ($($fn_args:tt)*) $(-> $fn_type:ty)? {
$($fn_body:tt)*
})*
}
)*
]) => {
impl <$($impl_params)*> $name_mut $(<$($params)*>)? {
$(
$(#[$($meta)*])*
pub fn $fn_name $(<$($fn_params)*>)* ($($fn_args)*) $(-> $fn_type)? {$($fn_body)*}
pub fn $fn_name $(<$($fn_params)*>)*
($($fn_args)*) $(-> $fn_type)? {$($fn_body)*}
)*
}
@ -164,7 +167,7 @@ macro_rules! shared_bracket_normalized {
( [$name:ident] [
$(#[$($meta:tt)*])*
pub struct $name_mut:ident $params:tt {
$($field:ident : $field_type:ty),* $(,)?
$($(#[$($field_meta:tt)*])* $field:ident : $field_type:ty),* $(,)?
}
$(impl $([$($impl_params:tt)*])? {$($impl_body:tt)*})*
@ -172,7 +175,7 @@ macro_rules! shared_bracket_normalized {
$crate::shared_struct! {
$(#[$($meta)*])*
pub struct $name $name_mut $params {
$($field : $field_type),*
$($(#[$($field_meta)*])* $field : $field_type),*
}
}
@ -187,14 +190,28 @@ macro_rules! shared_struct {
(
$(#[$($meta:tt)*])*
pub struct $name:ident $name_mut:ident [$($params:tt)*] {
$($field:ident : $field_type:ty),* $(,)?
$($(#[$($field_meta:tt)*])* $field:ident : $field_type:ty),* $(,)?
}
) => {
$(#[$($meta)*])*
pub struct $name <$($params)*> { rc: Rc<RefCell<$name_mut<$($params)*>>> }
$(#[$($meta)*])*
pub struct $name_mut <$($params)*> { $($field : $field_type),* }
pub struct $name_mut <$($params)*> { $($(#[$($field_meta)*])* $field : $field_type),* }
impl<$($params)*> Clone for $name <$($params)*> {
fn clone(&self) -> Self {
let rc = self.rc.clone();
Self {rc}
}
}
impl<$($params)*> $name <$($params)*> {
/// Cheap clone of the structure. Implemented as the `Rc::clone` under the hood.
pub fn clone_ref(&self) -> Self {
self.clone()
}
}
};
}

View File

@ -0,0 +1,143 @@
//! This module defines helpers for defining singletons and associated enum types. A singleton is
//! a type with one possible value. It is used mainly for a type level programming purposes.
/// Defines singleton types. For the following input:
/// ```compile_fail
/// define_singletons!{
/// /// A Foo!
/// Foo,
/// /// A Bar!
/// Bar,
/// }
/// ```
///
/// It expands to:
///
/// ```
/// #[allow(missing_docs)]
/// #[derive(Copy, Clone, Debug)]
/// #[doc = r###"A Foo!"###]
/// pub struct Foo;
/// impl Default for Foo {
/// fn default() -> Self {
/// Self
/// }
/// }
/// #[allow(missing_docs)]
/// #[derive(Copy, Clone, Debug)]
/// #[doc = r###"A Bar!"###]
/// pub struct Bar;
/// impl Default for Bar {
/// fn default() -> Self {
/// Self
/// }
/// }
///
/// ```
#[macro_export]
macro_rules! define_singletons {
( $( $(#$meta:tt)* $name:ident ),* $(,)? ) => {$(
#[allow(missing_docs)]
#[derive(Copy,Clone,Debug)]
$(#$meta)*
pub struct $name;
impl Default for $name {
fn default() -> Self {
Self
}
}
)*}
}
/// Defines an associated enum type for predefined singletons.
///
/// For the following input:
/// ```compile_fail
/// define_singleton_enum!{
/// MyEnum {
/// /// A Foo!
/// Foo,
/// /// A Bar!
/// Bar,
/// }
/// }
/// ```
///
/// It expands to:
///
/// ```compile_fail
/// #[allow(missing_docs)]
/// #[derive(Copy, Clone, Debug)]
/// pub enum MyEnum {
/// #[doc = r###"A Foo!"###]
/// Foo,
/// #[doc = r###"A Bar!"###]
/// Bar,
/// }
/// impl From<Foo> for MyEnum {
/// fn from(_: Foo) -> Self {
/// Self::Foo
/// }
/// }
/// impl From<PhantomData<Foo>> for MyEnum {
/// fn from(_: PhantomData<Foo>) -> Self {
/// Self::Foo
/// }
/// }
/// impl From<Bar> for MyEnum {
/// fn from(_: Bar) -> Self {
/// Self::Bar
/// }
/// }
/// impl From<PhantomData<Bar>> for MyEnum {
/// fn from(_: PhantomData<Bar>) -> Self {
/// Self::Bar
/// }
/// }
/// ```
#[macro_export]
macro_rules! define_singleton_enum_from {
(
$(#$meta:tt)*
$name:ident {
$( $(#$field_meta:tt)* $field:ident ),* $(,)?
}
) => {
#[allow(missing_docs)]
#[derive(Copy,Clone,Debug)]
$(#$meta)*
pub enum $name {
$( $(#$field_meta)* $field ),*
}
$(
impl From<$field> for $name {
fn from(_:$field) -> Self {
Self::$field
}
}
impl From<PhantomData<$field>> for $name {
fn from(_:PhantomData<$field>) -> Self {
Self::$field
}
}
)*
}
}
/// Defines singletons and an associated enum type.
/// It expands to the same as `define_singletons` and `define_singleton_enum_from`.
#[macro_export]
macro_rules! define_singleton_enum {
(
$(#$meta:tt)*
$name:ident {
$( $(#$field_meta:tt)* $field:ident ),* $(,)?
}
) => {
$crate::define_singletons! { $($(#$field_meta)* $field),* }
$crate::define_singleton_enum_from! { $(#$meta)* $name {$($(#$field_meta)* $field),*}}
}
}

Some files were not shown because too many files have changed in this diff Show More