* Extend scaffolding for Native and HTML based visualizations.
* Use nicer dataset as an example.
* Define better S wrapper data interface.
* Refactor structs into submodules.
* Add examples of JS-based visualization.

Original commit: 48665e0498
This commit is contained in:
Michael Mauderer 2020-05-14 14:41:24 +02:00 committed by GitHub
parent 24961ca674
commit e454c125d6
14 changed files with 1099 additions and 309 deletions

View File

@ -963,8 +963,10 @@ dependencies = [
"enso-frp 0.1.0",
"enso-prelude 0.1.0",
"ensogl 0.1.0",
"js-sys 0.3.35 (registry+https://github.com/rust-lang/crates.io-index)",
"logger 0.1.0",
"nalgebra 0.19.0 (registry+https://github.com/rust-lang/crates.io-index)",
"serde 1.0.106 (registry+https://github.com/rust-lang/crates.io-index)",
"serde_json 1.0.51 (registry+https://github.com/rust-lang/crates.io-index)",
"shapely 0.1.0",
"span-tree 0.1.0",

View File

@ -5,17 +5,19 @@ authors = ["Enso Team <contact@luna-lang.org>"]
edition = "2018"
[dependencies]
ast = { version = "0.1.0" , path = "../../ide/ast/impl" }
span-tree = { version = "0.1.0" , path = "../../ide/span-tree" }
shapely = { version = "0.1.0" , path = "../shapely/impl" }
ensogl = { version = "0.1.0" , path = "../../ensogl" }
enso-prelude = { version = "0.1.0" , path = "../prelude" }
logger = { version = "0.1.0" , path = "../logger" }
enso-frp = { version = "0.1.0" , path = "../frp" }
ast = { version = "0.1.0" , path = "../../ide/ast/impl" }
span-tree = { version = "0.1.0" , path = "../../ide/span-tree" }
shapely = { version = "0.1.0" , path = "../shapely/impl" }
ensogl = { version = "0.1.0" , path = "../../ensogl" }
enso-prelude = { version = "0.1.0" , path = "../prelude" }
logger = { version = "0.1.0" , path = "../logger" }
enso-frp = { version = "0.1.0" , path = "../frp" }
wasm-bindgen = { version = "=0.2.58" , features = ["nightly"] }
nalgebra = { version = "0.19.0" }
serde_json = { version = "1.0" }
wasm-bindgen = { version = "=0.2.58" , features = ["nightly","serde-serialize"] }
nalgebra = { version = "0.19.0" , features = ["serde-serialize"] }
serde_json = { version = "1.0" }
serde = { version = "1.0" , features = ["derive"] }
js-sys = { version = "0.3.28" }
[dependencies.web-sys]
version = "0.3.4"

View File

@ -474,7 +474,7 @@ impl Node {
let visualization_container = visualization::Container::new();
visualization_container.mod_position(|t| {
t.x = 60.0;
t.y = -60.0;
t.y = -120.0;
});
display_object.add_child(&visualization_container);

View File

@ -1,276 +1,29 @@
//! This module defines the visualization widgets and related functionality.
//!
//! At the core of this functionality is the `Visualisation` that takes in data and renders an
//! output visualisation which is displayed in a `Container`. The `Container` provides generic UI
//! elements that facilitate generic interactions, for example, visualisation selection. The
//! `Container` also provides the FRP API that allows internal interaction with the
//! `Visualisation`. Data for a visualisation has to be provided wrapped in the `Data` struct.
//! The overall architecture of visualizations consists of three parts:
//!
//! 1. The `DataRenderer` trait provides the functionality to render the actual visualization view
//! that implements `display::Object`. It is provided with data and itself provides frp streams
//! of its output if there is some, for example, if it acts as a widget.
//!
//! 2. The `Visualization` is a struct that wraps the `DataRenderer` and implements the generic
//! tasks that are the same for all visualisations. That is, interfacing with the other UI
//! elements, the visualization registry, as well as propagating frp messages.
//!
//! 3. The `Container` wraps the `Visualisation` and provides the UI elements that facilitate
//! user interactions. For example, selecting a visualisation or connecting it to nodes in the
//! graph editor scene.
//!
//! In addition this module also contains a `Data` struct that provides a dynamically typed way to
//! handle data for visualisations. This allows the `Visualisation` struct to be without type
//! parameters and simplifies the FRP communication and complexity of the node system.
use crate::prelude::*;
pub mod class;
pub mod container;
pub mod renderer;
pub mod data;
use crate::frp;
use ensogl::display::DomSymbol;
use ensogl::display;
use ensogl::system::web;
use serde_json;
use web::StyleSetter;
use ensogl::display::object::traits::*;
// ============================================
// === Wrapper for Visualisation Input Data ===
// ============================================
/// Wrapper for data that can be consumed by a visualisation.
// TODO replace with better typed data wrapper.
#[derive(Clone,CloneRef,Debug)]
#[allow(missing_docs)]
pub enum Data {
JSON { content : Rc<serde_json::Value> },
Binary,
}
impl Data {
/// Render the data as JSON.
pub fn as_json(&self) -> String {
match &self {
Data::JSON { content } => content.to_string(),
_ => "{}".to_string(),
}
}
}
// =============================================
// === Internal Visualisation Representation ===
// =============================================
/// Inner representation of a visualisation.
#[derive(Clone,CloneRef,Debug)]
#[allow(missing_docs)]
pub struct Visualization {
content : DomSymbol
}
impl display::Object for Visualization {
fn display_object(&self) -> &display::object::Instance {
&self.content.display_object()
}
}
impl Visualization {
/// Update the visualisation with the given data.
// TODO remove dummy functionality and use an actual visualisation
pub fn set_data(&self, data:Data){
self.content.dom().set_inner_html(
&format!(r#"
<svg>
<circle style="fill: #69b3a2" stroke="black" cx=50 cy=50 r={}></circle>
</svg>
"#, data.as_json()));
}
}
impl From<DomSymbol> for Visualization {
fn from(symbol:DomSymbol) -> Self {
Visualization { content : symbol }
}
}
// =========================
// === Visualization FRP ===
// =========================
/// Visualization events.
#[derive(Clone,CloneRef,Debug)]
#[allow(missing_docs)]
pub struct ContainerFrp {
pub network : frp::Network,
pub set_visibility : frp::Source<bool>,
pub toggle_visibility : frp::Source,
pub set_visualization : frp::Source<Option<Visualization>>,
pub set_data : frp::Source<Option<Data>>,
}
impl Default for ContainerFrp {
fn default() -> Self {
frp::new_network! { visualization_events
def set_visibility = source();
def toggle_visibility = source();
def set_visualization = source();
def set_data = source();
};
let network = visualization_events;
Self {network,set_visibility,set_visualization,toggle_visibility,set_data }
}
}
// ================================
// === Visualizations Container ===
// ================================
/// Container that wraps a `Visualization` for rendering and interaction in the GUI.
///
/// The API to interact with the visualisation is exposed through the `ContainerFrp`.
#[derive(Clone,CloneRef,Debug,Shrinkwrap)]
#[allow(missing_docs)]
pub struct Container {
// The internals are split into two structs: `ContainerData` and `ContainerFrp`. The
// `ContainerData` contains the actual data and logic for the `Container`. The `ContainerFrp`
// contains the FRP api and network. This split is required to avoid creating cycles in the FRP
// network: the FRP network holds `Rc`s to the `ContainerData` and thus must not live in the
// same struct.
#[shrinkwrap(main_field)]
data : Rc<ContainerData>,
pub frp : Rc<ContainerFrp>,
}
/// Internal data of a `Container`.
#[derive(Debug,Clone)]
#[allow(missing_docs)]
pub struct ContainerData {
logger : Logger,
display_object : display::object::Instance,
size : Cell<Vector2<f32>>,
visualization : RefCell<Option<Visualization>>,
}
impl ContainerData {
/// Set whether the visualisation should be visible or not.
pub fn set_visibility(&self, visibility:bool) {
if let Some(vis) = self.visualization.borrow().as_ref() {
if visibility { self.add_child(&vis) } else { vis.unset_parent() }
}
}
/// Indicates whether the visualisation is visible.
pub fn is_visible(&self) -> bool {
self.visualization.borrow().as_ref().map(|t| t.has_parent()).unwrap_or(false)
}
/// Toggle visibility.
pub fn toggle_visibility(&self) {
self.set_visibility(!self.is_visible())
}
/// Update the data in the inner visualisation.
pub fn set_data(&self, data:Data) {
self.visualization.borrow().for_each_ref(|vis| vis.set_data(data));
}
/// Set the visualization shown in this container..
pub fn set_visualisation(&self, visualization:Visualization) {
let size = self.size.get();
visualization.content.set_size(size);
self.display_object.add_child(&visualization);
self.visualization.replace(Some(visualization));
self.set_visibility(false);
}
}
impl display::Object for ContainerData {
fn display_object(&self) -> &display::object::Instance {
&self.display_object
}
}
impl Container {
/// Constructor.
pub fn new() -> Self {
let logger = Logger::new("visualization_container");
let visualization = default();
let size = Cell::new(Vector2::new(100.0, 100.0));
let display_object = display::object::Instance::new(&logger);
let data = ContainerData {logger,visualization,size,display_object};
let data = Rc::new(data);
let frp = default();
Self {data, frp} . init_frp()
}
fn init_frp(self) -> Self {
let frp = &self.frp;
let network = &self.frp.network;
frp::extend! { network
let container_data = &self.data;
def _set_visibility = frp.set_visibility.map(f!((container_data)(is_visible) {
container_data.set_visibility(*is_visible);
}));
def _toggle_visibility = frp.toggle_visibility.map(f!((container_data)(_) {
container_data.toggle_visibility()
}));
def _set_visualization = frp.set_visualization.map(f!((container_data)(visualisation) {
if let Some(visualisation) = visualisation.as_ref() {
container_data.set_visualisation(visualisation.clone_ref());
}
}));
def _set_data = frp.set_data.map(f!((container_data)(data) {
if let Some(data) = data.as_ref() {
container_data.set_data(data.clone_ref());
}
}));
}
self
}
}
impl Default for Container {
fn default() -> Self {
Container::new()
}
}
impl display::Object for Container {
fn display_object(&self) -> &display::object::Instance {
&self.data.display_object
}
}
// =================
// === Mock Data ===
// =================
/// Dummy content for testing.
// FIXME[mm] remove this when actual content is available.
pub(crate) fn default_content() -> DomSymbol {
let div = web::create_div();
div.set_style_or_panic("width","100px");
div.set_style_or_panic("height","100px");
let content = web::create_element("div");
content.set_inner_html(
r#"<svg>
<circle style="fill: #69b3a2" stroke="black" cx=50 cy=50 r=20></circle>
</svg>
"#);
content.set_attribute("width","100%").unwrap();
content.set_attribute("height","100%").unwrap();
div.append_child(&content).unwrap();
let r = 102_u8;
let g = 153_u8;
let b = 194_u8;
let color = iformat!("rgb({r},{g},{b})");
div.set_style_or_panic("background-color",color);
let symbol = DomSymbol::new(&div);
symbol.dom().set_attribute("id","vis").unwrap();
symbol.dom().style().set_property("overflow","hidden").unwrap();
symbol
}
pub use class::*;
pub use data::*;
pub use container::*;
pub use renderer::*;

View File

@ -0,0 +1,156 @@
//! This module defines the `Visualization` struct and related functionality.
use crate::prelude::*;
use crate::frp;
use crate::visualization::*;
use ensogl::display;
// ====================
// === Helper Types ===
// ====================
/// Type alias for a string containing enso code.
#[derive(Clone,CloneRef,Debug)]
pub struct EnsoCode {
content: Rc<String>
}
/// Type alias for a string representing an enso type.
#[derive(Clone,CloneRef,Debug)]
pub struct EnsoType {
content: Rc<String>
}
// =========================
// === Visualization FRP ===
// =========================
/// Events that are used by the visualization.
#[derive(Clone,CloneRef,Debug)]
#[allow(missing_docs)]
pub struct Frp {
/// Can be sent to set the data of the visualization.
pub set_data : frp::Source<Option<Data>>,
/// Will be emitted if the visualization has new data (e.g., through UI interaction).
/// Data is provides encoded as EnsoCode.
pub on_change : frp::Stream<Option<EnsoCode>>,
/// Will be emitted if the visualization changes it's preprocessor code.
pub on_preprocess_change : frp::Stream<Option<EnsoCode>>,
/// Will be emitted if the visualization has been provided with invalid data.
pub on_invalid_data : frp::Stream<()>,
// Internal sources that feed the public streams.
change : frp::Source<Option<EnsoCode>>,
preprocess_change : frp::Source<Option<EnsoCode>>,
invalid_data : frp::Source<()>,
}
impl Frp {
fn new(network: &frp::Network) -> Self {
frp::extend! { network
def change = source();
def preprocess_change = source();
def invalid_data = source();
def set_data = source();
let on_change = change.clone_ref().into();
let on_preprocess_change = preprocess_change.clone_ref().into();
let on_invalid_data = invalid_data.clone_ref().into();
};
Self { on_change,on_preprocess_change,set_data,on_invalid_data,change
,preprocess_change,invalid_data}
}
}
// ===========================
// === Visualization Model ===
// ===========================
/// Internal data of Visualization.
#[derive(Clone,CloneRef,Debug)]
#[allow(missing_docs)]
pub struct State {
pub renderer : Rc<dyn DataRenderer>,
pub preprocessor : Rc<RefCell<Option<EnsoCode>>>,
}
impl display::Object for State {
fn display_object(&self) -> &display::object::Instance {
&self.renderer.display_object()
}
}
// =====================
// === Visualization ===
// =====================
/// A visualization that can be rendered and interacted with. Provides an frp API.
#[derive(Clone,CloneRef,Debug)]
#[allow(missing_docs)]
pub struct Visualization {
pub network : frp::Network,
pub frp : Frp,
state : State
}
impl display::Object for Visualization {
fn display_object(&self) -> &display::object::Instance {
&self.state.display_object()
}
}
impl Visualization {
/// Create a new `Visualization` with the given `DataRenderer`.
pub fn new<T: DataRenderer + 'static>(renderer:T) -> Self {
let preprocessor = default();
let network = default();
let frp = Frp::new(&network);
let renderer = Rc::new(renderer);
let internal = State {preprocessor,renderer};
Visualization{frp, state: internal,network}.init()
}
fn init(self) -> Self {
let network = &self.network;
let visualization = &self.state;
let frp = &self.frp;
frp::extend! { network
def _set_data = self.frp.set_data.map(f!((frp,visualization)(data) {
if let Some(data) = data {
if visualization.renderer.receive_data(data.clone_ref()).is_err() {
frp.invalid_data.emit(())
}
}
}));
}
let renderer_frp = self.state.renderer.frp();
let renderer_network = &renderer_frp.network;
frp::new_bridge_network! { [network,renderer_network]
def _on_changed = renderer_frp.on_change.map(f!((frp)(data) {
frp.change.emit(data)
}));
def _on_preprocess_change = renderer_frp.on_preprocess_change.map(f!((frp)(data) {
frp.preprocess_change.emit(data.as_ref().map(|code|code.clone_ref()))
}));
}
self
}
/// Set the viewport size of the visualization.
pub fn set_size(&self, size:Vector2<f32>) {
self.state.renderer.set_size(size)
}
}

View File

@ -0,0 +1,173 @@
//! This module defines the `Container` struct and related functionality.
use crate::prelude::*;
use crate::frp;
use crate::visualization::*;
use ensogl::display::traits::*;
use ensogl::display;
// ===========
// === FRP ===
// ===========
/// Event system of the `Container`.
#[derive(Clone,CloneRef,Debug)]
#[allow(missing_docs)]
pub struct ContainerFrp {
pub network : frp::Network,
pub set_visibility : frp::Source<bool>,
pub toggle_visibility : frp::Source,
pub set_visualization : frp::Source<Option<Visualization>>,
pub set_data : frp::Source<Option<Data>>,
}
impl Default for ContainerFrp {
fn default() -> Self {
frp::new_network! { visualization_events
def set_visibility = source();
def toggle_visibility = source();
def set_visualization = source();
def set_data = source();
};
let network = visualization_events;
Self {network,set_visibility,set_visualization,toggle_visibility,set_data }
}
}
// ================================
// === Visualizations Container ===
// ================================
/// Container that wraps a `Visualization` for rendering and interaction in the GUI.
///
/// The API to interact with the visualisation is exposed through the `ContainerFrp`.
#[derive(Clone,CloneRef,Debug,Shrinkwrap)]
#[allow(missing_docs)]
pub struct Container {
// The internals are split into two structs: `ContainerData` and `ContainerFrp`. The
// `ContainerData` contains the actual data and logic for the `Container`. The `ContainerFrp`
// contains the FRP api and network. This split is required to avoid creating cycles in the FRP
// network: the FRP network holds `Rc`s to the `ContainerData` and thus must not live in the
// same struct.
#[shrinkwrap(main_field)]
data : Rc<ContainerData>,
pub frp : ContainerFrp,
}
/// Internal data of a `Container`.
#[derive(Debug,Clone)]
#[allow(missing_docs)]
pub struct ContainerData {
logger : Logger,
display_object : display::object::Instance,
size : Cell<Vector2<f32>>,
visualization : RefCell<Option<Visualization>>,
}
impl ContainerData {
/// Set whether the visualisation should be visible or not.
pub fn set_visibility(&self, is_visible:bool) {
if let Some(vis) = self.visualization.borrow().as_ref() {
if is_visible {
vis.display_object().set_parent(&self.display_object);
} else {
vis.display_object().unset_parent();
}
}
}
/// Indicates whether the visualisation is visible.
fn is_visible(&self) -> bool {
if let Some(vis) = self.visualization.borrow().as_ref() {
vis.has_parent()
} else {
false
}
}
/// Toggle visibility.
fn toggle_visibility(&self) {
self.set_visibility(!self.is_visible())
}
/// Update the content properties with the values from the `ContainerData`.
///
/// Needs to called when a visualisation has been set.
fn init_visualisation_properties(&self) {
let size = self.size.get();
if let Some(vis) = self.visualization.borrow().as_ref() {
vis.set_size(size);
};
self.set_visibility(true);
}
/// Set the visualization shown in this container..
fn set_visualisation(&self, visualization:Visualization) {
visualization.display_object().set_parent(&self.display_object);
self.visualization.replace(Some(visualization));
self.init_visualisation_properties();
}
}
impl Container {
/// Constructor.
pub fn new() -> Self {
let logger = Logger::new("visualization");
let visualization = default();
let size = Cell::new(Vector2::new(100.0, 100.0));
let display_object = display::object::Instance::new(&logger);
let data = ContainerData {logger,visualization,size,display_object};
let data = Rc::new(data);
let frp = default();
Self {data,frp} . init_frp()
}
fn init_frp(self) -> Self {
let frp = &self.frp;
let network = &self.frp.network;
frp::extend! { network
let container_data = &self.data;
def _f_hide = frp.set_visibility.map(f!((container_data)(is_visible) {
container_data.set_visibility(*is_visible);
}));
def _f_toggle = frp.toggle_visibility.map(f!((container_data)(_) {
container_data.toggle_visibility()
}));
def _f_set_vis = frp.set_visualization.map(f!((container_data)(visualisation) {
if let Some(visualisation) = visualisation.as_ref() {
container_data.set_visualisation(visualisation.clone());
}
}));
def _f_set_data = frp.set_data.map(f!((container_data)(data) {
container_data.visualization.borrow()
.for_each_ref(|vis| vis.frp.set_data.emit(data));
}));
}
self
}
}
impl Default for Container {
fn default() -> Self {
Container::new()
}
}
impl display::Object for Container {
fn display_object(&self) -> &display::object::Instance {
&self.data.display_object
}
}

View File

@ -0,0 +1,108 @@
//! This module defines the `Data` struct and related functionality.
use crate::prelude::*;
use crate::component::visualization::EnsoType;
use serde::Deserialize;
// ======================================
// === Wrapper for Visualisation Data ===
// =======================================
/// Type indicator
pub type DataType = EnsoType;
/// Wrapper for data that can be consumed by a visualisation.
/// TODO[mm] consider static versus dynamic typing for visualizations and data!
#[derive(Clone,CloneRef,Debug)]
#[allow(missing_docs)]
pub enum Data {
JSON { content : Rc<serde_json::Value> },
// TODO replace with actual binary data stream.
Binary { content : Rc<dyn Any> },
}
impl Data {
/// Returns the data as as JSON. If the data cannot be returned as JSON, it will return a
/// `DataError` instead.
pub fn as_json(&self) -> Result<Rc<serde_json::Value>, DataError> {
match &self {
Data::JSON { content } => Ok(Rc::clone(content)),
_ => { Err(DataError::InvalidDataType{}) },
}
}
/// Returns the wrapped data in Rust format. If the data cannot be returned as rust datatype, a
/// `DataError` is returned instead.
pub fn as_binary<T>(&self) -> Result<Rc<T>, DataError>
where for<'de> T:Deserialize<'de> + 'static {
match &self {
Data::JSON { content } => {
// We try to deserialize here. Just in case it works.
// This is useful for simple data types where we don't want to care to much about
// representation, e.g., a list of numbers.
let value : serde_json::Value = content.as_ref().clone();
if let Ok(result) = serde_json::from_value(value) {
Ok(Rc::new(result))
} else {
Err(DataError::InvalidDataType)
}
},
Data::Binary { content } => { Rc::clone(content).downcast()
.or(Err(DataError::InvalidDataType))},
}
}
}
// ==============
// === Errors ===
// ==============
/// Indicates a problem with the provided data. That is, the data has the wrong format, or maybe
/// violates some other assumption of the visualization.
// TODO[mm] add more information to errors once typing is defined.
#[derive(Copy,Clone,Debug)]
pub enum DataError {
/// Indicates that that the provided data type does not match the expected data type.
InvalidDataType,
/// The data caused an error in the computation of the visualisation.
InternalComputationError,
}
// =============================
// === Sample Data Generator ===
// =============================
// TODO this will go away once we have real data
#[derive(Clone,CloneRef,Debug,Default)]
pub(crate) struct MockDataGenerator3D {
counter: Rc<Cell<f32>>
}
impl MockDataGenerator3D {
pub fn generate_data(&self) -> Vec<Vector3<f32>> {
let current_value = self.counter.get();
self.counter.set(current_value + 0.1);
let delta1 = current_value.sin() * 10.0;
let delta2 = current_value.cos() * 10.0;
vec![
Vector3::new(25.0, 75.0, 25.0 + delta1),
Vector3::new(25.0, 25.0, 25.0 + delta2),
Vector3::new(75.0 - 12.5, 75.0 + delta1, 5.0 ),
Vector3::new(75.0 + 12.5, 75.0 + delta2, 15.0 ),
Vector3::new(75.0 - 12.5 + delta1, 25.0 + delta2, 5.0 ),
Vector3::new(75.0 + 12.5 + delta2, 25.0 + delta1, 15.0 ),
]
}
}

View File

@ -0,0 +1,9 @@
//! This module defines the `DataRenderer` trait, related functionality and examples of how to use
//! the `DataRenderer`.
mod class;
mod js;
pub mod example;
pub use class::*;
pub use js::*;

View File

@ -0,0 +1,79 @@
//! This module defines the `DataRenderer` trait and related functionality.
use crate::prelude::*;
use crate::visualization::*;
use crate::frp;
use ensogl::display;
// ===========
// === FRP ===
// ===========
/// FRP api of a `DataRenderer`.
#[derive(Clone,Debug)]
#[allow(missing_docs)]
pub struct DataRendererFrp {
pub network : frp::Network,
/// This is emitted if the state of the renderer has been changed by UI interaction.
/// It contains the output data of this visualisation if there is some.
pub on_change : frp::Stream<Option<EnsoCode>>,
/// Will be emitted if the visualization changes it's preprocessor. Transmits the new
/// preprocessor code.
pub on_preprocess_change : frp::Stream<Option<EnsoCode>>,
// Internal sources that feed the public streams.
change : frp::Source<Option<EnsoCode>>,
preprocess_change : frp::Source<Option<EnsoCode>>,
}
impl Default for DataRendererFrp {
fn default() -> Self {
frp::new_network! { renderer_events
def change = source();
def preprocess_change = source();
let on_change = change.clone_ref().into();
let on_preprocess_change = preprocess_change.clone_ref().into();
};
let network = renderer_events;
Self {network,on_change,on_preprocess_change,change,preprocess_change}
}
}
// ====================
// === DataRenderer ===
// ====================
/// At the core of the visualization system sits a `DataRenderer`. The DataRenderer is in charge of
/// producing a `display::Object` that will be shown in the scene. It will create FRP events to
/// indicate updates to its output data (e.g., through user interaction).
///
/// A DataRenderer can indicate what kind of data it can use to create a visualisation through the
/// `valid_input_types` method. This serves as a hint, it will also reject invalid input in the
/// `set_data` method with a `DataError`. The owner of the `DataRenderer` is in charge of producing
/// UI feedback to indicate a problem with the data.
pub trait DataRenderer: display::Object + Debug {
/// Indicate which `DataType`s can be rendered by this visualization.
fn valid_input_types(&self) -> Vec<DataType> {
// TODO this will need to be implemented by each Renderer once we get to the registry.
unimplemented!()
}
/// Receive the data that should be rendered. If the data is valid, it will return the data as
/// processed by this `DataRenderer`, if the data is of an invalid data type, it violates other
/// assumptions of this `DataRenderer`, a `DataError` is returned.
fn receive_data(&self, data:Data) -> Result<(), DataError>;
/// Set the size of viewport of the visualization. The visualisation must not render outside of
/// this viewport.
fn set_size(&self, size:Vector2<f32>);
/// Return a ref to the internal FRP network. This replaces a potential callback mechanism.
///
/// Note: the presence of this functions imposes the requirement that a `DataRendererFrp` is
/// owned by whoever implements this trait.
fn frp(&self) -> &DataRendererFrp;
}

View File

@ -0,0 +1,5 @@
//! The `example` modules contains some examples of visualisations.
//! TODO further describe the examples, how they work and how to extend them.
pub mod native;
pub mod js;

View File

@ -0,0 +1,139 @@
//! Example of the visualisation JS wrapper API usage
// TODO remove once we have proper visualizations or replace with a nice d3 example.
// These implementations are neither efficient nor pretty, but get the idea across.
use crate::component::visualization::JsRenderer;
/// Returns a simple bubble chart implemented in vanilla JS. uses single functions to implement the
/// visualization.
pub fn function_sample_js_bubble_chart() -> JsRenderer {
let fn_set_data = r#"{
const xmlns = "http://www.w3.org/2000/svg";
const root = arguments[0];
while (root.firstChild) {
root.removeChild(root.lastChild);
}
const svgElem = document.createElementNS(xmlns, "svg");
svgElem.setAttributeNS(null, "id" , "vis-svg");
svgElem.setAttributeNS(null, "viewBox", "0 0 " + 100 + " " + 100);
svgElem.setAttributeNS(null, "width" , 100);
svgElem.setAttributeNS(null, "height" , 100);
root.appendChild(svgElem);
const data = arguments[1];
data.forEach(data => {
const bubble = document.createElementNS(xmlns,"circle");
bubble.setAttributeNS(null,"stroke", "black");
bubble.setAttributeNS(null,"fill" , "red");
bubble.setAttributeNS(null,"r" , data[2]);
bubble.setAttributeNS(null,"cx" , data[0]);
bubble.setAttributeNS(null,"cy" , data[1]);
svgElem.appendChild(bubble);
});
}
"#;
let fn_set_size = r#"{
const root = arguments[0];
const width = arguments[1][0];
const height = arguments[1][1];
const svgElem = root.firstChild;
svgElem.setAttributeNS(null, "viewBox", "0 0 " + width + " " + height);
svgElem.setAttributeNS(null, "width" , width);
svgElem.setAttributeNS(null, "height" , height);
}"#;
JsRenderer::from_functions(fn_set_data, fn_set_size)
}
/// Returns a simple bubble chart implemented in vanilla JS. Uses an object to implement the
/// visualization logic.
pub fn object_sample_js_bubble_chart() -> JsRenderer {
let fn_prototype = r#"
(() => {
class BubbleVisualisation {
onDataReceived(root, data) {
const xmlns = "http://www.w3.org/2000/svg";
while (root.firstChild) {
root.removeChild(root.lastChild);
}
const svgElem = document.createElementNS(xmlns, "svg");
svgElem.setAttributeNS(null, "id" , "vis-svg");
svgElem.setAttributeNS(null, "viewBox", "0 0 " + 100 + " " + 100);
svgElem.setAttributeNS(null, "width" , 100);
svgElem.setAttributeNS(null, "height" , 100);
root.appendChild(svgElem);
data.forEach(data => {
const bubble = document.createElementNS(xmlns,"circle");
bubble.setAttributeNS(null,"stroke", "black");
bubble.setAttributeNS(null,"fill" , "red");
bubble.setAttributeNS(null,"r" , data[2]);
bubble.setAttributeNS(null,"cx" , data[0]);
bubble.setAttributeNS(null,"cy" , data[1]);
svgElem.appendChild(bubble);
});
}
setSize(root, size) {
const width = size[0];
const height = size[1];
const svgElem = root.firstChild;
svgElem.setAttributeNS(null, "viewBox", "0 0 " + width + " " + height);
svgElem.setAttributeNS(null, "width" , width);
svgElem.setAttributeNS(null, "height" , height);
}
}
return new BubbleVisualisation();
})()
"#;
JsRenderer::from_object(fn_prototype).unwrap()
}
/// Returns a simple bubble chart implemented in vanilla JS. uses single functions to implement the
/// visualization.
pub fn constructor_sample_js_bubble_chart() -> JsRenderer {
let fn_constructor = r#"
class BubbleVisualisation {
onDataReceived(root, data) {
const xmlns = "http://www.w3.org/2000/svg";
while (root.firstChild) {
root.removeChild(root.lastChild);
}
const svgElem = document.createElementNS(xmlns, "svg");
svgElem.setAttributeNS(null, "id" , "vis-svg");
svgElem.setAttributeNS(null, "viewBox", "0 0 " + 100 + " " + 100);
svgElem.setAttributeNS(null, "width" , 100);
svgElem.setAttributeNS(null, "height" , 100);
root.appendChild(svgElem);
data.forEach(data => {
const bubble = document.createElementNS(xmlns,"circle");
bubble.setAttributeNS(null,"stroke", "black");
bubble.setAttributeNS(null,"fill" , "red");
bubble.setAttributeNS(null,"r" , data[2]);
bubble.setAttributeNS(null,"cx" , data[0]);
bubble.setAttributeNS(null,"cy" , data[1]);
svgElem.appendChild(bubble);
});
}
setSize(root, size) {
const width = size[0];
const height = size[1];
const svgElem = root.firstChild;
svgElem.setAttributeNS(null, "viewBox", "0 0 " + width + " " + height);
svgElem.setAttributeNS(null, "width" , width);
svgElem.setAttributeNS(null, "height" , height);
}
}
return new BubbleVisualisation();
"#;
JsRenderer::from_constructor(fn_constructor).unwrap()
}

View File

@ -0,0 +1,103 @@
//! Examples of defining visualisation in Rust using web_sys or ensogl.
use crate::prelude::*;
use crate::component::visualization::*;
use ensogl::data::color::Rgba;
use ensogl::display::layout::alignment;
use ensogl::display::scene::Scene;
use ensogl::display;
use ensogl::gui::component;
// ==========================
// === Native BubbleChart ===
// ==========================
/// Bubble shape definition.
pub mod shape {
use super::*;
use ensogl::display::shape::*;
use ensogl::display::scene::Scene;
use ensogl::display::Sprite;
use ensogl::display::Buffer;
use ensogl::display::Attribute;
ensogl::define_shape_system! {
(position:Vector2<f32>,radius:f32) {
let node = Circle(radius);
let node = node.fill(Rgba::new(0.17,0.46,0.15,1.0));
let node = node.translate(("input_position.x","input_position.y"));
node.into()
}
}
}
/// Sample implementation of a Bubble Chart using the ensogl shape system.
#[derive(Debug)]
#[allow(missing_docs)]
pub struct BubbleChart {
pub display_object : display::object::Instance,
pub scene : Scene,
frp : DataRendererFrp,
views : RefCell<Vec<component::ShapeView<shape::Shape>>>,
logger : Logger,
size : Cell<Vector2<f32>>,
}
#[allow(missing_docs)]
impl BubbleChart {
pub fn new(scene:&Scene) -> Self {
let logger = Logger::new("bubble");
let display_object = display::object::Instance::new(&logger);
let views = RefCell::new(vec![]);
let frp = default();
let size = Cell::new(Vector2::zero());
let scene = scene.clone_ref();
BubbleChart { display_object,views,logger,frp,size,scene }
}
}
impl DataRenderer for BubbleChart {
fn receive_data(&self, data:Data) -> Result<(),DataError> {
let data_inner: Rc<Vec<Vector3<f32>>> = data.as_binary()?;
// Avoid re-creating views, if we have already created some before.
let mut views = self.views.borrow_mut();
views.resize_with(data_inner.len(),|| component::ShapeView::new(&self.logger,&self.scene));
// TODO[mm] this is somewhat inefficient, as the canvas for each bubble is too large.
// But this ensures that we can get a cropped view area and avoids an issue with the data
// and position not matching up.
views.iter().zip(data_inner.iter()).for_each(|(view,item)| {
let shape_system = self.scene.shapes.shape_system(PhantomData::<shape::Shape>);
shape_system.shape_system.set_alignment(
alignment::HorizontalAlignment::Left, alignment::VerticalAlignment::Bottom);
view.display_object.set_parent(&self.display_object);
view.shape.sprite.size().set(self.size.get());
view.shape.radius.set(item.z);
view.shape.position.set(Vector2::new(item.x,item.y));
});
Ok(())
}
fn set_size(&self, size:Vector2<f32>) {
self.size.set(size);
}
fn frp(&self) -> &DataRendererFrp {
&self.frp
}
}
impl display::Object for BubbleChart {
fn display_object(&self) -> &display::object::Instance {
&self.display_object.display_object()
}
}

View File

@ -0,0 +1,228 @@
//! This module contains functionality that allows the usage of JavaScript to define visualizations.
//!
//! The `JsRenderer` defines a generic way to wrap JS function calls and allow interaction with
//! JS code and the visualisation system.
//!
//! There are at the moment three way to generate a `JsRenderer`:
//! 1. `JsRenderer::from_functions` where the bodies of the required functions are provided as
//! source code.
//! 2. `JsRenderer::from_object` where the a piece of JS code is provided that must evaluate to an
//! object that has the required methods that will be called at runtime.
//! 3. `JsRenderer::from_constructor`where the body of a constructor function needs to be
//! provided. The returned object needs to fulfill the same specification as in (2).
//!
//! Right now the only functions required on the wrapped object are
//! * `onDataReceived(root, data)`, which receives the html element that the visualisation should be
//! appended on, as well as the data that should be rendered.
//! * `setSize(root, size)`, which receives the node that the visualisation should be appended on,
//! as well as the intended size.
//!
//! TODO: refine spec and add functions as needed, e.g., init, callback hooks or type indicators.
use crate::prelude::*;
use crate::component::visualization::Data;
use crate::component::visualization::DataError;
use crate::component::visualization::DataRenderer;
use crate::component::visualization::DataRendererFrp;
use ensogl::display::DomScene;
use ensogl::display::DomSymbol;
use ensogl::display;
use ensogl::system::web::JsValue;
use ensogl::system::web;
use js_sys;
// ==============
// === Errors ===
// ==============
/// Errors that can occur when transforming JS source to a visualization.
#[derive(Clone,Debug)]
#[allow(missing_docs)]
pub enum JsVisualisationError {
NotAnObject { inner:JsValue },
NotAFunction { inner:JsValue },
/// An unknown error occurred on the JS side. Inspect the content for more information. .
Unknown { inner:JsValue }
}
impl From<JsValue> for JsVisualisationError {
fn from(value:JsValue) -> Self {
// TODO add differentiation if we encounter specific errors and return new variants.
JsVisualisationError::Unknown {inner:value}
}
}
// ==================
// === JsRenderer ===
// ==================
/// `JsVisualizationGeneric` allows the use of arbitrary javascript to create visualisations. It
/// takes function definitions as strings and proved those functions with data.
#[derive(Clone,Debug)]
#[allow(missing_docs)]
pub struct JsRenderer {
pub root_node : DomSymbol,
pub logger : Logger,
on_data_received : js_sys::Function,
set_size : js_sys::Function,
frp : DataRendererFrp,
}
impl JsRenderer {
/// Constructor from single functions.
///
/// `fn_set_data` and `fn_set_size` need to be strings that contain valid JavaScript code. This
/// code will be executed as the function body of the respective functions.
///
/// `fn_set_data` will be called with two arguments: the first argument (`root) )will be the
/// root node that the visualisation should use to build its output, the second argument
/// (`data`)will be the data that it should visualise.
///
/// `fn_set_size` will be called with a tuple of floating point values indicating the desired
/// width and height. This can be used by the visualisation to ensure proper scaling.
///
/// For a full example see
/// `crate::component::visualization::renderer::example::function_sample_js_bubble_chart`
pub fn from_functions(fn_set_data:&str, fn_set_size:&str) -> Self {
let set_data = js_sys::Function::new_no_args(fn_set_data);
let set_size = js_sys::Function::new_no_args(fn_set_size);
let logger = Logger::new("JsRendererGeneric");
let frp = default();
let div = web::create_div();
let root_node = DomSymbol::new(&div);
root_node.dom().set_attribute("id","vis").unwrap();
JsRenderer { on_data_received: set_data,set_size,root_node,frp,logger }
}
/// Internal helper that tries to convert a JS object into a `JsRenderer`.
fn from_object_js(object:js_sys::Object) -> Result<JsRenderer,JsVisualisationError> {
let set_data = js_sys::Reflect::get(&object,&"onDataReceived".into())?;
let set_size = js_sys::Reflect::get(&object,&"setSize".into())?;
if !set_data.is_function() {
return Err(JsVisualisationError::NotAFunction { inner:set_data })
}
if !set_size.is_function() {
return Err(JsVisualisationError::NotAFunction { inner:set_size })
}
let set_data:js_sys::Function = set_data.into();
let set_size:js_sys::Function = set_size.into();
let logger = Logger::new("JsRenderer");
let frp = default();
let div = web::create_div();
let root_node = DomSymbol::new(&div);
root_node.dom().set_attribute("id","vis")?;
Ok(JsRenderer { on_data_received: set_data,set_size,root_node,frp,logger })
}
/// Constructor from a source that evaluates to an object with specific methods.
///
/// Example:
/// --------
///
/// ```no_run
/// use graph_editor::component::visualization::JsRenderer;
///
/// let renderer = JsRenderer::from_object("function() {
/// class Visualization {
/// onDataReceived(root, data) {};
/// setSize(root, size) {};
/// }
/// return new Visualisation();
/// }()").unwrap();
///
/// ```
///
/// For a full example see
/// `crate::component::visualization::renderer::example::object_sample_js_bubble_chart`
pub fn from_object(source: &str) -> Result<JsRenderer,JsVisualisationError> {
let object = js_sys::eval(source)?;
if !object.is_object() {
return Err(JsVisualisationError::NotAnObject { inner:object } )
}
Self::from_object_js(object.into())
}
/// Constructor from function body that returns a object with specific functions.
///
/// Example:
/// --------
///
/// ```no_run
/// use graph_editor::component::visualization::JsRenderer;
///
/// let renderer = JsRenderer::from_constructor("
/// class Visualization {
/// onDataReceived(root, data) {};
/// setSize(root, size) {};
/// }
/// return new Visualisation();
/// ").unwrap();
///
/// ```
/// For a full example see
/// `crate::component::visualization::renderer::example::constructor_sample_js_bubble_chart`
pub fn from_constructor(source:&str) -> Result<JsRenderer,JsVisualisationError> {
let context = JsValue::NULL;
let constructor = js_sys::Function::new_no_args(source);
let object = constructor.call0(&context)?;
if !object.is_object() {
return Err(JsVisualisationError::NotAnObject { inner:object } )
}
Self::from_object_js(object.into())
}
/// Hooks the root node into the given scene.
///
/// MUST be called to make this visualisation visible.
// TODO[mm] find a better mechanism to ensure this. Probably through the registry later on.
pub fn set_dom_layer(&self, scene:&DomScene) {
scene.manage(&self.root_node);
}
}
impl DataRenderer for JsRenderer {
fn receive_data(&self, data:Data) -> Result<(),DataError> {
let context = JsValue::NULL;
let data_json = data.as_json()?;
let data_js = match JsValue::from_serde(&data_json) {
Ok(value) => value,
Err(_) => return Err(DataError::InvalidDataType),
};
if let Err(error) = self.on_data_received.call2(&context, &self.root_node.dom(), &data_js) {
self.logger.warning(
|| format!("Failed to set data in {:?} with error: {:?}",self,error));
return Err(DataError::InternalComputationError)
}
Ok(())
}
fn set_size(&self, size:Vector2<f32>) {
let context = JsValue::NULL;
let data_json = JsValue::from_serde(&size).unwrap();
if let Err(error) = self.set_size.call2(&context, &self.root_node.dom(), &data_json) {
self.logger.warning(
|| format!("Failed to set size in {:?} with error: {:?}", self, error));
}
}
fn frp(&self) -> &DataRendererFrp {
&self.frp
}
}
impl display::Object for JsRenderer {
fn display_object(&self) -> &display::object::Instance {
&self.root_node.display_object()
}
}

View File

@ -56,9 +56,9 @@ use ensogl::display::Scene;
use crate::component::node::port::Expression;
use crate::component::visualization::Visualization;
use crate::component::visualization;
use serde_json::json;
use crate::component::visualization::example::js::constructor_sample_js_bubble_chart;
use crate::component::visualization::MockDataGenerator3D;
use crate::component::visualization::example::native;
// =====================
@ -241,20 +241,24 @@ ensogl::def_command_api! { Commands
toggle_visualization_visibility,
/// Set the data for the selected nodes. // TODO only has dummy functionality at the moment.
debug_set_data_for_selected_node,
/// Cycle the visualization for the selected nodes. TODO only has dummy functionality at the moment.
debug_cycle_visualisation_for_selected_node,
}
impl Commands {
pub fn new(network:&frp::Network) -> Self {
frp::extend! { network
def add_node = source();
def add_node_at_cursor = source();
def remove_selected_nodes = source();
def remove_all_nodes = source();
def toggle_visualization_visibility = source();
def debug_set_data_for_selected_node = source();
def add_node = source();
def add_node_at_cursor = source();
def remove_selected_nodes = source();
def remove_all_nodes = source();
def toggle_visualization_visibility = source();
def debug_set_data_for_selected_node = source();
def debug_cycle_visualisation_for_selected_node = source();
}
Self {add_node,add_node_at_cursor,remove_selected_nodes,remove_all_nodes
,toggle_visualization_visibility,debug_set_data_for_selected_node}
,toggle_visualization_visibility,debug_set_data_for_selected_node
,debug_cycle_visualisation_for_selected_node}
}
}
@ -281,6 +285,8 @@ pub struct FrpInputs {
pub set_node_position : frp::Source<(NodeId,Position)>,
pub set_visualization_data : frp::Source<NodeId>,
pub translate_selected_nodes : frp::Source<Position>,
pub cycle_visualization : frp::Source<NodeId>,
pub set_visualization : frp::Source<(NodeId,Option<Visualization>)>,
}
impl FrpInputs {
@ -299,12 +305,14 @@ impl FrpInputs {
def set_node_position = source();
def set_visualization_data = source();
def translate_selected_nodes = source();
def cycle_visualization = source();
def set_visualization = source();
}
let commands = Commands::new(&network);
Self {commands,remove_edge,press_node_port,set_visualization_data
,connect_detached_edges_to_node,connect_edge_source,connect_edge_target
,set_node_position,select_node,translate_selected_nodes,set_node_expression
,connect_nodes,deselect_all_nodes}
,connect_nodes,deselect_all_nodes,cycle_visualization,set_visualization}
}
}
@ -721,14 +729,11 @@ impl GraphEditorModelWithNetwork {
}));
}
let dummy_content = visualization::default_content();
let chart = constructor_sample_js_bubble_chart();
let dom_layer = model.scene.dom.layers.front.clone_ref();
dom_layer.manage(&dummy_content);
chart.set_dom_layer(&dom_layer);
let vis:Visualization = dummy_content.into();
let vis = Visualization::new(chart);
node.view.frp.set_visualization.emit(Some(vis));
@ -1017,6 +1022,7 @@ impl application::shortcut::DefaultShortcutProvider for GraphEditor {
, Self::self_shortcut(&[Key::Backspace] , "remove_selected_nodes")
, Self::self_shortcut(&[Key::Character(" ".into())] , "toggle_visualization_visibility")
, Self::self_shortcut(&[Key::Character("d".into())] , "debug_set_data_for_selected_node")
, Self::self_shortcut(&[Key::Character("f".into())] , "debug_cycle_visualisation_for_selected_node")
]
}
}
@ -1200,31 +1206,58 @@ impl application::View for GraphEditor {
})
}));
// === Vis Cycling ===
def _cycle_vis= inputs.debug_cycle_visualisation_for_selected_node.map(f!((inputs,nodes)(_) {
nodes.selected.for_each(|node| inputs.cycle_visualization.emit(node));
}));
// === Vis Set ===
def _update_vis_data = inputs.set_visualization.map(f!((nodes)((node_id,vis)) {
if let Some(node) = nodes.get_cloned_ref(node_id) {
node.view.visualization_container.frp.set_visualization.emit(vis)
}
}));
// === Vis Update Data ===
// TODO remove this once real data is available.
let dummy_counter = Rc::new(Cell::new(1.0_f32));
def _update_vis_data = inputs.debug_set_data_for_selected_node.map(f!((nodes)(_) {
let dc = dummy_counter.get();
dummy_counter.set(dc + 0.1);
let content = Rc::new(json!(format!("{}", 20.0 + 10.0 * dummy_counter.get().sin())));
let dummy_data = Some(visualization::Data::JSON { content });
let dummy_switch = Rc::new(Cell::new(false));
let sample_data_generator = MockDataGenerator3D::default();
def _set_dumy_data = inputs.debug_set_data_for_selected_node.map(f!((nodes)(_) {
nodes.selected.for_each(|node_id| {
if let Some(node) = nodes.get_cloned_ref(node_id) {
node.view.visualization_container.frp.set_data.emit(&dummy_data);
let data = Rc::new(sample_data_generator.generate_data());
let content = Rc::new(serde_json::to_value(data).unwrap());
let data = visualization::Data::JSON{ content };
if let Some(node) = nodes.get_cloned(node_id) {
node.view.visualization_container.frp.set_data.emit(Some(data));
}
})
}));
def _set_dumy_data = inputs.cycle_visualization.map(f!((scene,nodes)(node_id) {
// TODO remove dummy cycling once we have the visualization registry.
let dc = dummy_switch.get();
dummy_switch.set(!dc);
let vis = if dc {
Visualization::new(native::BubbleChart::new(&scene))
} else {
let chart = constructor_sample_js_bubble_chart();
let dom_layer = scene.dom.layers.front.clone_ref();
chart.set_dom_layer(&dom_layer);
Visualization::new(chart)
};
if let Some(node) = nodes.get_cloned_ref(node_id) {
node.view.visualization_container.frp.set_visualization.emit(Some(vis));
}
}));
// === Toggle Visualization Visibility ===
def _toggle_selected = inputs.toggle_visualization_visibility.map(f!((nodes)(_) {
nodes.selected.for_each(|node_id| {
if let Some(node) = nodes.get_cloned_ref(node_id) {
node.view.visualization_container.toggle_visibility();
node.view.visualization_container.frp.toggle_visibility.emit(());
}
});
}));