1. Changes how we do monadic state – rather than a haskelly solution, we now have an implicit env with mutable data inside. It's better for the JVM. It also opens the possibility to have state ratained on exceptions (previously not possible) – both can now be implemented.
2. Introduces permission check system for IO actions.
We've had an old attempt at integrating a Rust parser with our Scala/Java projects. It seems to have been abandoned and is not used anywhere - it is also superseded by the new integration of the Rust parser. I think it was used as an experiment to see how to approach such an integration.
Since it is not used anymore - it make sense to remove it, because it only adds some (slight, but non-zero) maintenance effort. We can always bring it back from git history if necessary.
- Reimplement the `Duration` type to a built-in type.
- `Duration` is an interop type.
- Allow Enso method dispatch on `Duration` interop coming from different languages.
# Important Notes
- The older `Duration` type should now be split into new `Duration` builtin type and a `Period` type.
- This PR does not implement `Period` type, so all the `Period`-related functionality is currently not working, e.g., `Date - Period`.
- This PR removes `Integer.milliseconds`, `Integer.seconds`, ..., `Integer.years` extension methods.
Use an `ArraySlice` to slice `Vector`.
Avoids memory copying for the slice function.
# Important Notes
| Test | Ref | New |
| --- | --- | --- |
| New Vector | 71.9 | 71.0 |
| Append Single | 26.0 | 27.7 |
| Append Large | 15.1 | 14.9 |
| Sum | 156.4 | 165.8 |
| Drop First 20 and Sum | 171.2 | 165.3 |
| Drop Last 20 and Sum | 170.7 | 163.0 |
| Filter | 76.9 | 76.9 |
| Filter With Index | 166.3 | 168.3 |
| Partition | 278.5 | 273.8 |
| Partition With Index | 392.0 | 393.7 |
| Each | 101.9 | 102.7 |
- Note: the performance of New and Append has got slower from previous tests.
This PR adds a possibility to generate native-image for engine-runner.
Note that due to on-demand loading of stdlib, programs that make use of it are currently not yet supported
(that will be resolved at a later point).
The purpose of this PR is only to make sure that we can generate a bare minimum runner because due to lack TruffleBoundaries or misconfiguration in reflection config, this can get broken very easily.
To generate a native image simply execute:
```
sbt> engine-runner-native/buildNativeImage
... (wait a few minutes)
```
The executable is called `runner` and can be tested via a simple test that is in the resources. To illustrate the benefits
see the timings difference between the non-native and native one:
```
>time built-distribution/enso-engine-0.0.0-dev-linux-amd64/enso-0.0.0-dev/bin/enso --no-ir-caches --in-project test/Tests/ --run engine/runner-native/src/test/resources/Factorial.enso 6
720
real 0m4.503s
user 0m9.248s
sys 0m1.494s
> time ./runner --run engine/runner-native/src/test/resources/Factorial.enso 6
720
real 0m0.176s
user 0m0.042s
sys 0m0.038s
```
# Important Notes
Notice that due to a [bug in GraalVM](https://github.com/oracle/graal/issues/4200), which is already fixed in 22.x, and us still being on 21.x for the time being, I had to add a workaround to our sbt build to build a different fat jar for native image. To workaround it I had to exclude sqlite jar. Hence native image task is on `engine-runner-native` and not on `engine-runner`.
Will need to add the above command to CI.
`Vector` type is now a builtin type. This requires a bunch of additional builtin methods for its creation:
- Use `Vector.from_array` to convert any array-like structure into a `Vector` [by copy](f628b28f5f)
- Use (already existing) `Vector.from_polyglot_array` to convert any array-like structure into a `Vector` **without** copying
- Use (already existing) `Vector.fill 1 item` to create a singleton `Vector`
Additional, for pattern matching purposes, we had to implement a `VectorBranchNode`. Use following to match on `x` being an instance of `Vector` type:
```
import Standard.Base.Data.Vector
size = case x of
Vector.Vector -> x.length
_ -> 0
```
Finally, `VectorLiterals` pass that transforms `[1,2,3]` to (roughly)
```
a1 = 1
a2 = 2
a3 = 3
Vector (Array (a1,a2, a3))
```
had to be modified to generate
```
a1 = 1
a2 = 2
a3 = 3
Vector.from_array (Array (a1, a2, a3))
```
instead to accomodate to the API changes. As of 025acaa676 all the known CI checks passes. Let's start the review.
# Important Notes
Matching in `case` statement is currently done via `Vector_Data`. Use:
```
case x of
Vector.Vector_Data -> True
```
until a better alternative is found.
This is a step towards the new language spec. The `type` keyword now means something. So we now have
```
type Maybe a
Some (from_some : a)
None
```
as a thing one may write. Also `Some` and `None` are not standalone types now – only `Maybe` is.
This halfway to static methods – we still allow for things like `Number + Number` for backwards compatibility. It will disappear in the next PR.
The concept of a type is now used for method dispatch – with great impact on interpreter code density.
Some APIs in the STDLIB may require re-thinking. I take this is going to be up to the libraries team – some choices are not as good with a semantically different language. I've strived to update stdlib with minimal changes – to make sure it still works as it did.
It is worth mentioning the conflicting constructor name convention I've used: if `Foo` only has one constructor, previously named `Foo`, we now have:
```
type Foo
Foo_Data f1 f2 f3
```
This is now necessary, because we still don't have proper statics. When they arrive, this can be changed (quite easily, with SED) to use them, and figure out the actual convention then.
I have also reworked large parts of the builtins system, because it did not work at all with the new concepts.
It also exposes the type variants in SuggestionBuilder, that was the original tiny PR this was based on.
PS I'm so sorry for the size of this. No idea how this could have been smaller. It's a breaking language change after all.
- Added `Zone`, `Date_Time` and `Time_Of_Day` to `Standard.Base`.
- Renamed `Zone` to `Time_Zone`.
- Added `century`.
- Added `is_leap_year`.
- Added `length_of_year`.
- Added `length_of_month`.
- Added `quarter`.
- Added `day_of_year`.
- Added `Day_Of_Week` type and `day_of_week` function.
- Updated `week_of_year` to support ISO.
# Important Notes
- Had to pass locale to formatter for date/time tests to work on my PC.
- Changed default of `week_of_year` to use ISO.
* Builtin Date_Time, Time_Of_Day, Zone
Improved polyglot support for Date_Time (formerly Time), Time_Of_Day and
Zone. This follows the pattern introduced for Enso Date.
Minor caveat - in tests for Date, had to bend a lot for JS Date to pass.
This is because JS Date is not really only a Date, but also a Time and
Timezone, previously we just didn't consider the latter.
Also, JS Date does not deal well with setting timezones so the trick I
used is to first call foreign function returning a polyglot JS Date,
which is converted to ZonedDateTime and only then set the correct
timezone. That way none of the existing tests had to be changes or
special cased.
Additionally, JS deals with milliseconds rather than nanoseconds so
there is loss in precision, as noted in Time_Spec.
* Add tests for Java's LocalTime
* changelog
* Make date formatters in table happy
* PR review, add more tests for zone
* More tests and fixed a bug in column reader
Column reader didn't take into account timezone but that was a mistake
since then it wouldn't map to Enso's Date_Time.
Added tests that check it now.
* remove redundant conversion
* Update distribution/lib/Standard/Base/0.0.0-dev/src/Data/Time.enso
Co-authored-by: Radosław Waśko <radoslaw.wasko@enso.org>
* First round of addressing PR review
* don't leak java exceptions in Zone
* Move Date_Time to top-level module
* PR review
Co-authored-by: Radosław Waśko <radoslaw.wasko@enso.org>
Co-authored-by: Jaroslav Tulach <jaroslav.tulach@enso.org>
Importing individual methods didn't work as advertised because parser
would allow them but later drop that information. This slipped by because we never had mixed atoms and methods in stdlib.
# Important Notes
Added some basic tests but we need to ensure that the new parser allows for this.
@jdunkerley will be adding some changes to stdlib that will be testing this functionality as well.
This change allows for importing modules using a qualified name and deals with any conflicts on the way.
Given a module C defined at `A/B/C.enso` with
```
type C
type C a
```
it is now possible to import it as
```
import project.A
...
val x = A.B.C 10
```
Given a module located at `A/B/C/D.enso`, we will generate
intermediate, synthetic, modules that only import and export the successor module along the path.
For example, the contents of a synthetic module B will look like
```
import <namespace>.<pkg-name>.A.B.C
export <namespace>.<pkg-name>.A.B.C
```
If module B is defined already by the developer, the compiler will _inject_ the above statements to the IR.
Also removed the last elements of some lowercase name resolution that managed to survive recent
changes (`Meta.Enso_Project` would now be ambiguous with `enso_project` method).
Finally, added a pass that detects shadowing of the synthetic module by the type defined along the path.
We print a warning in such a situation.
Related to https://www.pivotaltracker.com/n/projects/2539304
# Important Notes
There was an additional request to fix the annoying problem with `from` imports that would always bring
the module into the scope. The changes in stdlib demonstrate how it is now possible to avoid the workaround of
```
from X.Y.Z as Z_Module import A, B
```
(i.e. `as Z_Module` part is almost always unnecessary).
Fixes random timeout failures on CI.
```
INFO ide_ci::program::command: sbtℹ️ up to date, audited 98 packages in 3s
```
`npm install` takes 3s of test time doing unnecessary package auditing. On CI the command is executed once before running the tests and redundant `npm install` calls can be omitted.
This change modifies the current language by requiring explicit `self` parameter declaration
for methods. Methods without `self` parameter in the first position should be treated as statics
although that is not yet part of this PR. We add an implicit self to all methods
This obviously required updating the whole stdlib and its components, tests etc but the change
is pretty straightforward in the diff.
Notice that this change **does not** change method dispatch, which was removed in the last changes.
This was done on purpose to simplify the implementation for now. We will likely still remove all
those implicit selfs to bring true statics.
Minor caveat - since `main` doesn't actually need self, already removed that which simplified
a lot of code.
Significantly improves the polyglot Date support (as introduced by #3374). It enhances the `Date_Spec` to run it in four flavors:
- with Enso Date (as of now)
- with JavaScript Date
- with JavaScript Date wrapped in (JavaScript) array
- with Java LocalDate allocated directly
The code is then improved by necessary modifications to make the `Date_Spec` pass.
# Important Notes
James has requested in [#181755990](https://www.pivotaltracker.com/n/projects/2539304/stories/181755990) - e.g. _Review and improve InMemory Table support for Dates, Times, DateTimes, BigIntegers_ the following program to work:
```
foreign js dateArr = """
return [1, new Date(), 7]
main =
IO.println <| (dateArr.at 1).week_of_year
```
the program works with here in provided changes and prints `27` as of today.
@jdunkerley has provided tests for proper behavior of date in `Table` and `Column`. Those tests are working as of [f16d07e](f16d07e640). One just needs to accept `List<Value>` and then query `Value` for `isDate()` when needed.
Last round of changes is related to **exception handling**. 8b686b12bd makes sure `makePolyglotError` accepts only polyglot values. Then it wraps plain Java exceptions into `WrapPlainException` with `has_type` method - 60da5e70ed - the remaining changes in the PR are only trying to get all tests working in the new setup.
The support for `Time` isn't part of this PR yet.
Modified UppercaseNames to now resolve methods without an explicit `here` to point to the current module.
`here` was also often used instead of `self` which was allowed by the compiler.
Therefore UppercaseNames pass is now GlobalNames and does some extra work -
it translated method calls without an explicit target into proper applications.
# Important Notes
There was a long-standing bug in scopes usage when compiling standalone expressions.
This resulted in AliasAnalysis generating incorrect graphs and manifested itself only in unit tests
and when running `eval`, thus being a bit hard to locate.
See `runExpression` for details.
Additionally, method name resolution is now case-sensitive.
Obsolete passes like UndefinedVariables and ModuleThisToHere were removed. All tests have been adapted.
A semi-manual s/this/self appied to the whole standard library.
Related to https://www.pivotaltracker.com/story/show/182328601
In the compiler promoted to use constants instead of hardcoded
`this`/`self` whenever possible.
# Important Notes
The PR **does not** require explicit `self` parameter declaration for methods as this part
of the design is still under consideration.
Auto-generate all builtin methods for builtin `File` type from method signatures.
Similarly, for `ManagedResource` and `Warning`.
Additionally, support for specializations for overloaded and non-overloaded methods is added.
Coverage can be tracked by the number of hard-coded builtin classes that are now deleted.
## Important notes
Notice how `type File` now lacks `prim_file` field and we were able to get rid off all of those
propagating method calls without writing a single builtin node class.
Similarly `ManagedResource` and `Warning` are now builtins and `Prim_Warnings` stub is now gone.
Drop `Core` implementation (replacement for IR) as it (sadly) looks increasingly
unlikely this effort will be continued. Also, it heavily relies
on implicits which increases some compilation time (~1sec from `clean`)
Related to https://www.pivotaltracker.com/story/show/182359029
This change introduces a custom LogManager for console that allows for
excluding certain log messages. The primarily reason for introducing
such LogManager/Appender is to stop issuing hundreds of pointless
warnings coming from the analyzing compiler (wrapper around javac) for
classes that are being generated by annotation processors.
The output looks like this:
```
[info] Cannot install GraalVM MBean due to Failed to load org.graalvm.nativebridge.jni.JNIExceptionWrapperEntryPoints
[info] compiling 129 Scala sources and 395 Java sources to /home/hubert/work/repos/enso/enso/engine/runtime/target/scala-2.13/classes ...
[warn] Unexpected javac output: warning: File for type 'org.enso.interpreter.runtime.type.ConstantsGen' created in the last round will not be subject to annotation processing.
[warn] 1 warning.
[info] [Use -Dgraal.LogFile=<path> to redirect Graal log output to a file.]
[info] Cannot install GraalVM MBean due to Failed to load org.graalvm.nativebridge.jni.JNIExceptionWrapperEntryPoints
[info] foojavac Filer
[warn] Could not determine source for class org.enso.interpreter.node.expression.builtin.number.decimal.CeilMethodGen
[warn] Could not determine source for class org.enso.interpreter.node.expression.builtin.resource.TakeNodeGen
[warn] Could not determine source for class org.enso.interpreter.node.expression.builtin.error.ThrowErrorMethodGen
[warn] Could not determine source for class org.enso.interpreter.node.expression.builtin.number.smallInteger.MultiplyMethodGen
[warn] Could not determine source for class org.enso.interpreter.node.expression.builtin.warning.GetWarningsNodeGen
[warn] Could not determine source for class org.enso.interpreter.node.expression.builtin.number.smallInteger.BitAndMethodGen
[warn] Could not determine source for class org.enso.interpreter.node.expression.builtin.error.ErrorToTextNodeGen
[warn] Could not determine source for class org.enso.interpreter.node.expression.builtin.warning.GetValueMethodGen
[warn] Could not determine source for class org.enso.interpreter.runtime.callable.atom.AtomGen$MethodDispatchLibraryExports$Cached
....
```
The output now has over 500 of those and there will be more. Much more
(generated by our and Truffle processors).
There is no way to tell SBT that those are OK. One could potentially
think of splitting compilation into 3 stages (Java processors, Java and
Scala) but that will already complicate the non-trivial build definition
and we may still end up with the initial problem.
This is a fix to make it possible to get reasonable feedback from
compilation without scrolling mutliple screens *every single time*.
Also fixed a spurious warning in javac processor complaining about
creating files in the last round.
Related to https://www.pivotaltracker.com/story/show/182138198
@radeusgd discovered that no formatting was being applied to std-bits projects.
This was caused by the fact that `enso` project didn't aggregate them. Compilation and
packaging still worked because one relied on the output of some tasks but
```
sbt> javafmtAll
```
didn't apply it to `std-bits`.
# Important Notes
Apart from `build.sbt` no manual changes were made.
This is the 2nd part of DSL improvements that allow us to generate a lot of
builtins-related boilerplate code.
- [x] generate multiple method nodes for methods/constructors with varargs
- [x] expanded processing to allow for @Builtin to be added to classes and
and generate @BuiltinType classes
- [x] generate code that wraps exceptions to panic via `wrapException`
annotation element (see @Builtin.WrapException`
Also rewrote @Builtin annotations to be more structured and introduced some nesting, such as
@Builtin.Method or @Builtin.WrapException.
This is part of incremental work and a follow up on https://github.com/enso-org/enso/pull/3444.
# Important Notes
Notice the number of boilerplate classes removed to see the impact.
For now only applied to `Array` but should be applicable to other types.
A low-hanging fruit where we can automate the generation of many
@BuiltinMethod nodes simply from the runtime's methods signatures.
This change introduces another annotation, @Builtin, to distinguish from
@BuiltinType and @BuiltinMethod processing. @Builtin processing will
always be the first stage of processing and its output will be fed to
the latter.
Note that the return type of Array.length() is changed from `int` to
`long` because we probably don't want to add a ton of specializations
for the former (see comparator nodes for details) and it is fine to cast
it in a small number of places.
Progress is visible in the number of deleted hardcoded classes.
This is an incremental step towards #181499077.
# Important Notes
This process does not attempt to cover all cases. Not yet, at least.
We only handle simple methods and constructors (see removed `Array` boilerplate methods).
In order to analyse why the `runner.jar` is slow to start, let's _"self sample"_ it using the [sampler library](https://bits.netbeans.org/dev/javadoc/org-netbeans-modules-sampler/org/netbeans/modules/sampler/Sampler.html). As soon as the `Main.main` is launched, the sampling starts and once the server is up, it writes its data into `/tmp/language-server.npss`.
Open the `/tmp/language-server.npss` with [VisualVM](https://visualvm.github.io) - you should have one copy in your
GraalVM `bin/jvisualvm` directory and there has to be a GraalVM to run Enso.
#### Changelog
- add: the `MethodsSampler` that gathers information in `.npss` format
- add: `--profiling` flag that enables the sampler
- add: language server processes the updates in batches
This PR replaces hard-coded `@Builtin_Method` and `@Builtin_Type` nodes in Builtins with an automated solution
that a) collects metadata from such annotations b) generates `BuiltinTypes` c) registers builtin methods with corresponding
constructors.
The main differences are:
1) The owner of the builtin method does not necessarily have to be a builtin type
2) You can now mix regular methods and builtin ones in stdlib
3) No need to keep track of builtin methods and types in various places and register them by hand (a source of many typos or omissions as it found during the process of this PR)
Related to #181497846
Benchmarks also execute within the margin of error.
### Important Notes
The PR got a bit large over time as I was moving various builtin types and finding various corner cases.
Most of the changes however are rather simple c&p from Builtins.enso to the corresponding stdlib module.
Here is the list of the most crucial updates:
- `engine/runtime/src/main/java/org/enso/interpreter/runtime/builtin/Builtins.java` - the core of the changes. We no longer register individual builtin constructors and their methods by hand. Instead, the information about those is read from 2 metadata files generated by annotation processors. When the builtin method is encountered in stdlib, we do not ignore the method. Instead we lookup it up in the list of registered functions (see `getBuiltinFunction` and `IrToTruffle`)
- `engine/runtime/src/main/java/org/enso/interpreter/runtime/callable/atom/AtomConstructor.java` has now information whether it corresponds to the builtin type or not.
- `engine/runtime/src/main/scala/org/enso/compiler/codegen/RuntimeStubsGenerator.scala` - when runtime stubs generator encounters a builtin type, based on the @Builtin_Type annotation, it looks up an existing constructor for it and registers it in the provided scope, rather than creating a new one. The scope of the constructor is also changed to the one coming from stdlib, while ensuring that synthetic methods (for fields) also get assigned correctly
- `engine/runtime/src/main/scala/org/enso/compiler/codegen/IrToTruffle.scala` - when a builtin method is encountered in stdlib we don't generate a new function node for it, instead we look it up in the list of registered builtin methods. Note that Integer and Number present a bit of a challenge because they list a whole bunch of methods that don't have a corresponding method (instead delegating to small/big integer implementations).
During the translation new atom constructors get initialized but we don't want to do it for builtins which have gone through the process earlier, hence the exception
- `lib/scala/interpreter-dsl/src/main/java/org/enso/interpreter/dsl/MethodProcessor.java` - @Builtin_Method processor not only generates the actual code fpr nodes but also collects and writes the info about them (name, class, params) to a metadata file that is read during builtins initialization
- `lib/scala/interpreter-dsl/src/main/java/org/enso/interpreter/dsl/MethodProcessor.java` - @Builtin_Method processor no longer generates only (root) nodes but also collects and writes the info about them (name, class, params) to a metadata file that is read during builtins initialization
- `lib/scala/interpreter-dsl/src/main/java/org/enso/interpreter/dsl/TypeProcessor.java` - Similar to MethodProcessor but handles @Builtin_Type annotations. It doesn't, **yet**, generate any builtin objects. It also collects the names, as present in stdlib, if any, so that we can generate the names automatically (see generated `types/ConstantsGen.java`)
- `engine/runtime/src/main/java/org/enso/interpreter/node/expression/builtin` - various classes annotated with @BuiltinType to ensure that the atom constructor is always properly registered for the builitn. Note that in order to support types fields in those, annotation takes optional `params` parameter (comma separated).
- `engine/runtime/src/bench/scala/org/enso/interpreter/bench/fixtures/semantic/AtomFixtures.scala` - drop manual creation of test list which seemed to be a relict of the old design
* Initial integration with Frgaal in sbt
Half-working since it chokes on generated classes from annotation
processor.
* Replace AutoService with ServiceProvider
For reasons unknown AutoService would fail to initialize and fail to
generate required builtin method classes.
Hidden error message is not particularly revealing on the reason for
that:
```
[error] error: Bad service configuration file, or exception thrown while constructing Processor object: javax.annotation.processing.Processor: Provider com.google.auto.service.processor.AutoServiceProcessor could not be instantiated
```
The sample records is only to demonstrate that we can now use newer Java
features.
* Cleanup + fix benchmark compilation
Bench requires jmh classes which are not available because we obviously
had to limit `java.base` modules to get Frgaal to work nicely.
For now, we default to good ol' javac for Benchmarks.
Limiting Frgaal to runtime for now, if it plays nicely, we can expand it
to other projects.
* Update CHANGELOG
* Remove dummy record class
* Update licenses
* New line
* PR review
* Update legal review
Co-authored-by: Radosław Waśko <radoslaw.wasko@enso.org>
Changelog:
- fix: `search/completion` request with the position parameter.
- fix: `refactoring/renameProject` request. Previously it did not take into account the library namespace (e.g. `local.`)
Result of automatic formatting with `scalafmtAll` and `javafmtAll`.
Prerequisite for https://github.com/enso-org/enso/pull/3394
### Important Notes
This touches a lot of files and might conflict with existing PRs that are in progress. If that's the case, just run
`scalafmtAll` and `javafmtAll` after merge and everything should be in order since formatters should be deterministic.
Changelog:
- add: component groups to package descriptions
- add: `executionContext/getComponentGroups` method that returns component groups of libraries that are currently loaded
- doc: cleanup unimplemented undo/redo commands
- refactor: internal component groups datatype