The `sysinfo` crate returns now bytes, not kilobytes.
This was changed in `sysinfo`'s `0.26.0` version. I have missed this change previously while bumping CI code dependencies.
The effects were not drastic as both fast and slow paths were meant to be generally equivalent.
Removes a bulk of rust crates that we no longer need, but that added significant install, build and testing time to the Rust parser.
Most significantly, removed `enso-web` and `enso-shapely`, and got rid of many no longer necessary `#![feature]`s. Moved two still used proc-macros from shapely to prelude. The last remaining usage of `web-sys` is within the logger (`console.log`), but we may actually want to keep that one.
- Closes#9284
- Now our tests run without the default `AWS_` config, thus ensuring that the tested setups work in a clean environment.
- After all, more complicated logic was needed for buckets access - apparently the AWS SDK only allows for some operations on buckets to happen if the client is connected to the correct region. Thus detection of bucket regions had to be implemented.
- Added `AWS_Region` widget based on autoscoping.
- Fixed `AWS_Credential.profile_names` crashing if no AWS config was found. Now it returns no profiles if not found. Added a regression test.
This PR updates the Rust toolchain to recent nightly.
Most of the changes are related to fixing newly added warnings and adjusting the feature flags. Also the formatter changed its behavior slightly, causing some whitespace changes.
Other points:
* Changed debug level of the `buildscript` profile to `lint-tables-only` — this should improve the build times and space usage somewhat.
* Moved lint configuration to the worksppace `Cargo.toml` definition. Adjusted the formatter appropriately.
* Removed auto-generated IntelliJ run configurations, as they are not useful anymore.
* Added a few trivial stdlib nightly functions that were removed to our codebase.
* Bumped many dependencies but still not all:
* `clap` bump encountered https://github.com/clap-rs/clap/issues/5407 — for now the warnings were silenced by the lint config.
* `octocrab` — our forked diverged to far with the original, needs more refactoring.
* `derivative` — is unmaintained and has no updated version, despite introducing warnings in the generated code. There is no direct replacement.
This PR removes enso-pack (ensogl-pack) crate.
It still keeps the `enso-runner` JS package, as it is used for CLI argument parser and logger. The runner should be probably refactored (and possible removed altogether).
# Important Notes
I've temporarily extracted the `enso-runner` to `lib/js` directory, as I wanted to avoid keeping pure JS library under `lib/rust`. Attempts at integrating this with `app/ide-desktop` and family caused too much trouble for this PR. The expectation is that the package will be removed or moved elsewhere soon anyway.
If some benchmark fails in dry-run (compileOnly) mode, the whole process exits with non-zero return code. Also fixes failing engine compiler benchmarks.
# Important Notes
Manually added failure:
```diff
diff --git a/engine/runtime-benchmarks/src/main/java/org/enso/interpreter/bench/benchmarks/semantic/ArrayProxyBenchmarks.java b/engine/runtime-benchmarks/src/main/java/org/enso/interpreter/bench/benchmarks/semantic/ArrayProxyBenchmarks.java
index c8d86cecc..f9f4d7cbc 100644
--- a/engine/runtime-benchmarks/src/main/java/org/enso/interpreter/bench/benchmarks/semantic/ArrayProxyBenchmarks.java
+++ b/engine/runtime-benchmarks/src/main/java/org/enso/interpreter/bench/benchmarks/semantic/ArrayProxyBenchmarks.java
@@ -95,7 +95,8 @@ public class ArrayProxyBenchmarks {
@Benchmark
public void sumOverComputingProxy(Blackhole matter) {
- performBenchmark(matter);
+ //performBenchmark(matter);
+ throw new AssertionError("My error");
}
@Benchmark
```
Run with `sbt "-Dbench.compileOnly=true runtime-benchmarks/benchOnly org.enso.interpreter.bench.benchmarks.semantic.ArrayProxyBenchmarks.sumOverComputingProxy"` fails with:
```
[info] Running benchmarks [org.enso.interpreter.bench.benchmarks.semantic.ArrayProxyBenchmarks.sumOverComputingProxy] in compileOnly mode
[info] # JMH version: 1.36
[info] # VM version: JDK 21.0.2, Java HotSpot(TM) 64-Bit Server VM, 21.0.2+13-LTS-jvmci-23.1-b30
[info] # VM invoker: /home/pavel/.sdkman/candidates/java/21.0.2-graal/bin/java
[info] # VM options: -XX:ThreadPriorityPolicy=1 -XX:+UnlockExperimentalVMOptions -XX:+EnableJVMCIProduct -XX:-UnlockExperimentalVMOptions -Dslf4j.provider=org.slf4j.nop.NOPServiceProvider -Dbench.compileOnly=true --module-path=/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/sdk/nativeimage/23.1.2/nativeimage-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/sdk/word/23.1.2/word-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/sdk/jniutils/23.1.2/jniutils-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/sdk/collections/23.1.2/collections-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/polyglot/polyglot/23.1.2/polyglot-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/truffle/truffle-api/23.1.2/truffle-api-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/truffle/truffle-runtime/23.1.2/truffle-runtime-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/truffle/truffle-compiler/23.1.2/truffle-compiler-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/js/js-language/23.1.2/js-language-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/regex/regex/23.1.2/regex-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/shadowed/icu4j/23.1.2/icu4j-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/python/python-language/23.1.2/python-language-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/python/python-resources/23.1.2/python-resources-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/bouncycastle/bcutil-jdk18on/1.76/bcutil-jdk18on-1.76.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/bouncycastle/bcpkix-jdk18on/1.76/bcpkix-jdk18on-1.76.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/bouncycastle/bcprov-jdk18on/1.76/bcprov-jdk18on-1.76.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/llvm/llvm-api/23.1.2/llvm-api-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/truffle/truffle-nfi/23.1.2/truffle-nfi-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/truffle/truffle-nfi-libffi/23.1.2/truffle-nfi-libffi-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/tools/profiler-tool/23.1.2/profiler-tool-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/graalvm/shadowed/json/23.1.2/json-23.1.2.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/tukaani/xz/1.9/xz-1.9.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/slf4j/slf4j-api/2.0.9/slf4j-api-2.0.9.jar:/home/pavel/.cache/coursier/v1/https/repo1.maven.org/maven2/org/slf4j/slf4j-nop/2.0.9/slf4j-nop-2.0.9.jar:/home/pavel/dev/enso/runtime.jar --add-modules=org.enso.runtime --add-exports=org.slf4j.nop/org.slf4j.nop=org.slf4j
[info] # Blackhole mode: compiler (auto-detected, use -Djmh.blackhole.autoDetect=false to disable)
[info] # Warmup: <none>
[info] # Measurement: 1 iterations, 1 s each
[info] # Timeout: 10 min per iteration
[info] # Threads: 1 thread, will synchronize iterations
[info] # Benchmark mode: Average time, time/op
[info] # Benchmark: org.enso.interpreter.bench.benchmarks.semantic.ArrayProxyBenchmarks.sumOverComputingProxy
[info] # Run progress: 0.00% complete, ETA 00:00:01
[info] # Fork: N/A, test runs in the host VM
[info] # *** WARNING: Non-forked runs may silently omit JVM options, mess up profilers, disable compiler hints, etc. ***
[info] # *** WARNING: Use non-forked runs only for debugging purposes, not for actual performance runs. ***
[error] SLF4J: Attempting to load provider "org.slf4j.nop.NOPServiceProvider" specified via "slf4j.provider" system property
[info] Iteration 1: <failure>
[info] java.lang.AssertionError: My error
[info] at org.enso.interpreter.bench.benchmarks.semantic.ArrayProxyBenchmarks.sumOverComputingProxy(ArrayProxyBenchmarks.java:99)
[info] at org.enso.interpreter.bench.benchmarks.semantic.jmh_generated.ArrayProxyBenchmarks_sumOverComputingProxy_jmhTest.sumOverComputingProxy_avgt_jmhStub(ArrayProxyBenchmarks_sumOverComputingProxy_jmhTest.java:232)
[info] at org.enso.interpreter.bench.benchmarks.semantic.jmh_generated.ArrayProxyBenchmarks_sumOverComputingProxy_jmhTest.sumOverComputingProxy_AverageTime(ArrayProxyBenchmarks_sumOverComputingProxy_jmhTest.java:173)
[info] at java.base/jdk.internal.reflect.DirectMethodHandleAccessor.invoke(DirectMethodHandleAccessor.java:103)
[info] at java.base/java.lang.reflect.Method.invoke(Method.java:580)
[info] at org.openjdk.jmh.runner.BenchmarkHandler$BenchmarkTask.call(BenchmarkHandler.java:475)
[info] at org.openjdk.jmh.runner.BenchmarkHandler$BenchmarkTask.call(BenchmarkHandler.java:458)
[info] at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:317)
[info] at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:572)
[info] at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:317)
[info] at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1144)
[info] at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:642)
[error] Benchmark run failed: Benchmark caught the exception
[info] at java.base/java.lang.Thread.run(Thread.java:1583)
[error] org.openjdk.jmh.runner.RunnerException: Benchmark caught the exception
[error] at org.openjdk.jmh.runner.Runner.runBenchmarks(Runner.java:575)
[error] at org.openjdk.jmh.runner.Runner.internalRun(Runner.java:310)
[error] at org.openjdk.jmh.runner.Runner.run(Runner.java:209)
[error] at org.enso.interpreter.bench.BenchmarksRunner.runCompileOnly(BenchmarksRunner.java:93)
[error] at org.enso.interpreter.bench.BenchmarksRunner.run(BenchmarksRunner.java:36)
[error] at org.enso.interpreter.bench.benchmarks.RuntimeBenchmarksRunner.main(RuntimeBenchmarksRunner.java:8)
[error] Caused by: org.openjdk.jmh.runner.BenchmarkException: Benchmark error during the run
[error] at org.openjdk.jmh.runner.BenchmarkHandler.runIteration(BenchmarkHandler.java:424)
[error] at org.openjdk.jmh.runner.BaseRunner.runBenchmark(BaseRunner.java:281)
[error] at org.openjdk.jmh.runner.BaseRunner.runBenchmark(BaseRunner.java:233)
[error] at org.openjdk.jmh.runner.BaseRunner.doSingle(BaseRunner.java:138)
[error] at org.openjdk.jmh.runner.BaseRunner.runBenchmarksEmbedded(BaseRunner.java:110)
[error] at org.openjdk.jmh.runner.Runner.runBenchmarks(Runner.java:555)
[error] ... 5 more
[error] Suppressed: java.lang.AssertionError: My error
[error] at org.enso.interpreter.bench.benchmarks.semantic.ArrayProxyBenchmarks.sumOverComputingProxy(ArrayProxyBenchmarks.java:99)
[error] at org.enso.interpreter.bench.benchmarks.semantic.jmh_generated.ArrayProxyBenchmarks_sumOverComputingProxy_jmhTest.sumOverComputingProxy_avgt_jmhStub(ArrayProxyBenchmarks_sumOverComputingProxy_jmhTest.java:232)
[error] at org.enso.interpreter.bench.benchmarks.semantic.jmh_generated.ArrayProxyBenchmarks_sumOverComputingProxy_jmhTest.sumOverComputingProxy_AverageTime(ArrayProxyBenchmarks_sumOverComputingProxy_jmhTest.java:173)
[error] at java.base/jdk.internal.reflect.DirectMethodHandleAccessor.invoke(DirectMethodHandleAccessor.java:103)
[error] at java.base/java.lang.reflect.Method.invoke(Method.java:580)
[error] at org.openjdk.jmh.runner.BenchmarkHandler$BenchmarkTask.call(BenchmarkHandler.java:475)
[error] at org.openjdk.jmh.runner.BenchmarkHandler$BenchmarkTask.call(BenchmarkHandler.java:458)
[error] at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:317)
[error] at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:572)
[error] at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:317)
[error] at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1144)
[error] at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:642)
[error] at java.base/java.lang.Thread.run(Thread.java:1583)
[error] Nonzero exit code returned from runner: 1
[error] (Compile / run) Nonzero exit code returned from runner: 1
[error] Total time: 5 s, completed Mar 13, 2024, 12:49:59 PM
```
This PR:
* removes much of logic related to building and packaging the gui1;
* made `./run gui` and `./run ide` work with the new gui;
* rename numerous references to the "gui2" or "new gui" in favor of simply "gui", same for "ide".
Adds `Oracle GraalVM` configuration for some backend jobs. `Oracle GraalVM` jobs run only on Linux so far. The old jobs use `GraalVM CE`.
### Important Notes
- The JDK to download and use is deduced from the `JAVA_VENDOR` environment variable. By default, `GraalVM CE` is used.
- sbt can be started with both GraalVM CE and Oracle GraalVM without any warnings.
- If you try to start sbt with JDK from a different vendor, but with the same Java version, a warning is printed.
Current list of jobs in the `Engine CI` workflow (these jobs are visible on this PR, because they are scheduled to run on every PR):
- Engine (GraalVM CE) (linux, x86_64)
- Engine (GraalVM CE) (macos, x86_64)
- Engine (GraalVM CE) (windows, x86_64)
- **Engine (Oracle GraalVM) (linux, x86_64)**
- Scala Tests (GraalVM CE) (linux, x86_64)
- Scala Tests (GraalVM CE) (macos, x86_64)
- Scala Tests (GraalVM CE) (windows, x86_64)
- **Scala Tests (Oracle GraalVM) (linux, x86_64)**
- Standard Library Tests (GraalVM CE) (linux, x86_64)
- Standard Library Tests (GraalVM CE) (macos, x86_64)
- Standard Library Tests (GraalVM CE) (windows, x86_64)
- **Standard Library Tests (Oracle GraalVM) (linux x86_64)**
- Verify License Packages (linux, x86_64)
Benchmark Engine workflow (not visible on this PR, cannot schedule manually yet):
- Benchmark Engine (GraalVM CE)
- **Benchmark Engine (Oracle GraalVM)**
Benchmark Standard Libraries workflow (not visible on this PR, cannot schedule manually yet):
- Benchmark Standard Libraries (GraalVM CE)
- **Benchmark Standard Libraries (Oracle GraalVM)**
Removed `enso-types` crate which had only one reference in unused part of the code. Removed some unused dependencies from `Cargo.toml` files.
# Important Notes
CI has a similar hiccup as before. Please disregard this for now in the review.
- Close https://github.com/enso-org/cloud-v2/issues/866
- Remove *all* references to client keys and API base URLs from the codebase.
- The app can still be built by external contributors. *However*, the cloud backend (among some other things) will be completely disabled, as the required keys and base URLs will be missing.
- Add entry to `.gitignore` to allow `*.env` files in `app/ide-desktop/lib/dashboard/`
# Important Notes
- Tested (no `.env`; `.env` with prod backend; `.pbuchu.env`) on:
- `npm run dev` in `app/ide-desktop/lib/dashboard/`
- `./run ide build`
- `./run ide2 build`
- `./run gui watch`
Removes the old GUI1 code base and reduces the Rust code footprint by removing unused code.
# Important Notes
Updates build scripts and reformats part of the codebase with the autoformatter.
I have created PR with the first set of changes for the Engine CI. The changes are small and effectively consist of:
1. Spltting the `verifyLicensePackages`. It is now run only on Linux. There are hardly any time benefits, as the actual job cost is dominated by the overhead of spinning a new job — but it is not expensive in the big picture.
2. Splitting the Scala Tests into separate job. This is probably the biggest "atomic" piece of work we have.
3. Splitting the Standard Library Tests into a separate job.
The time is nicely split across the jobs now. The last run has:
* 27 min for Scala tests;
* 25 min for Standard Library tests;
* 24 min for the "rest": the old job containing everything that has not been split.
While total CPU time has increased (as jobs are not effectively reusing the same build context), the wall time has decreased significantly. Previously we had ~1 hour of wall time for the old monolithic job, so we are getting more than 2x speedup.
The now-slowest Scala tests job is currently comparable with the native Rust tests (and they should improve when the old gui is gone) — which are the slowest job across all CI checks.
The PR is pretty minimal. Several future improvements can be made:
* Reorganizing and splitting other "heavy" jobs, like the native image generation.
* Reusing the built Engine distribution. However, this is probably a lower priority than I initially thought.
* Building package takes several minutes, so duplicating this job is not that expensive.
* The package is OS-specific.
* Scala tests don't really benefit from it, they'd need way more compilation artifacts.
It'd make sense to reuse the distribution if we, for example, decided to split more jobs that actually benefit from it, like Standard Library tests.
* Reusing the Rust build script binary.
* As our self-hosted runners reuse environment, we effectively get this for free. Especially when Rust part of codebase is less frequently changed.
* This is however significant cost for the GitHub-hosted runners, affecting our macOS runners. Reusing the binary does not save wall time for jobs that are run in parallel (as we have enough runners), but if we introduce job dependencies that'd force sequential execution of jobs on macOS, this would be a significant need.
This PR allows requesting a clean build when triggering the workflow through the manual dispatch.
Previously it was possible only by creating PR and adding the label to it.
After investigating some errors, I found another two missing awaits in our tests. Because those are so easy to overlook, I added a lint rule which makes failure on unhandled promise (for e2e tests only).
Also, enabled HTML reports again, with traces this time, to enable closer investigation of any failure in the future. @mwu-tow added code for uploading them in GH.
- Closes#9120
- Reorders CI steps to do the license check last (to avoid it preventing tests from running which are more important than the license check)
- Tries to reword the warnings to be clearer
- Adds some CSS to the report to more clearly indicate which elements can be clicked.
In PR #8953, in commit ba0a69de6e, I have introduced argument files to the `native-image`. In this PR, let's try to upload these argfiles as artifacts on GH, so that we can inspect them later.
CI currently manually compiles standard library. However, this became redundant since the `buildEngineDistribution` included the very same behavior.
Because of that, we ended up compiling the libraries twice.
* Use glob pattern to discover stdlib tests (rather than a hardcoded list).
* Don't fail CI check immediately after failing Scala test.
* Remove meta test suite tests.
# Important Notes
The meta test suite tests are removed following the discussion with @radeusgd. In short, these were failing anyway and were supposed to be rewritten (probably using a different technology, like JUnit). The current code will be a useful reference but it doesn't have to be kept on a repository head. The relevant information and references shall be added to the task.
This has been observed to be the most random error-prone part of the Rust build scripts.
This adds several retries to the patching of the artifact size (which finalizes the upload).
Additional diagnostics was added, so we observe if the retries are actually helping, so we can better understand the issue if this is not enough to fix it.
This PR adds a native aarch64 target to our release process.
It also includes refactoring of workflow generation and minor tweaks:
* removing some workarounds in the generated action code that are not needed anymore;
* some version bumps that are harmless;
* release builds have cleaning enabled unconditionally.
- Close#8911
- Add dashboard unit tests to GUI2 CI
- Add dashboard E2E tests to GUI2 CI
- Fix (minor) issues in dashboard unit tests
# Important Notes
None
Now the `clean` CI steps are run always for benchmarking jobs. We run the full `./run git-clean` before and after benchmarks. Benchmarks take long enough to make any savings by not cleaning negligible.
### Important Notes
This PR brings partial refactoring in the workflow generating code which was very dirty. I'll build on this further soon when adding proper aarch64 macOS support.
Also, some minor tweaks to the generation were made:
* not writing `always() &&` twice;
* run only the latter cleaning step for canceled jobs.
Refactor `test/Table_Test` to the builder API. The builder API is in a new library called `Test_New` that is alongside the old `Test` library. There will be follow-up PRs that will migrate the rest of the tests. Meanwhile, let's keep these two libraries, and merge them after the last PR.
# Important Notes
- For a brief introduction into the new API, see **Prototype 1** section in https://github.com/enso-org/enso/pull/8622#issuecomment-1889706168
- When executing all the tests, the behavior should be the same as with the old library. With the only exception that if `ENSO_TEST_ANSI_COLORS` env var is set, the output is more colorful than it used to be.
Replace our port-finding code with `portpicker` crate.
We expect that it'll greatly reduce possibility of race conditions, as the port will be picked at random, so they won't collide as easily when we use the routine more than once.
This is required because `index.ts` was renamed to `entrypoint.ts` in order to avoid colliding with the main export of the `enso-dashboard` module, which is used by `gui2` as `dashboard.run()`. This file was renamed in #8587, causing the issue.
Build script changes also included thanks to @mwu-tow.
# Important Notes
This should only affect projects opened against the remote (cloud) backend, meaning that to test this, you should open a project against the cloud backend.
- Closes#8354
- Extends `simple-httpbin` with a simple mock of the Cloud API (currently it checks the token and serves the `/users` endpoint).
- Renames `simple-httpbin` to `http-test-helper`.
Fixes#8433
* Adds E2E test to `test` script in gui2 (without server)
* Add options to `run` script to specify what test should be run: `unit` (default), `e2e`, or `ci` (which runs both unit and e2e without watching/spawning report server).
* The CI test step now checks e2e tests.
### Important Notes
~~One of e2e tests was disabled because it caught the regression on develop: #8476 ~~
Adds these JAR modules to the `component` directory inside Engine distribution:
- `graal-language-23.1.0`
- `org.bouncycastle.*` - these need to be added for graalpy language
# Important Notes
- Remove `org.bouncycastle.*` packages from `runtime.jar` fat jar.
- Make sure that the `./run` script preinstalls GraalPy standalone distribution before starting engine tests
- Note that using `python -m venv` is only possible from standalone distribution, we cannot distribute `graalpython-launcher`.
- Make sure that installation of `numpy` and its polyglot execution example works.
- Convert `Text` to `TruffleString` before passing to GraalPy - 8ee9a2816f
Upgrade to GraalVM JDK 21.
```
> java -version
openjdk version "21" 2023-09-19
OpenJDK Runtime Environment GraalVM CE 21+35.1 (build 21+35-jvmci-23.1-b15)
OpenJDK 64-Bit Server VM GraalVM CE 21+35.1 (build 21+35-jvmci-23.1-b15, mixed mode, sharing)
```
With SDKMan, download with `sdk install java 21-graalce`.
# Important Notes
- After this PR, one can theoretically run enso with any JRE with version at least 21.
- Removed `sbt bootstrap` hack and all the other build time related hacks related to the handling of GraalVM distribution.
- `project-manager` remains backward compatible - it can open older engines with runtimes. New engines now do no longer require a separate runtime to be downloaded.
- sbt does not support compilation of `module-info.java` files in mixed projects - https://github.com/sbt/sbt/issues/3368
- Which means that we can have `module-info.java` files only for Java-only projects.
- Anyway, we need just a single `module-info.class` in the resulting `runtime.jar` fat jar.
- `runtime.jar` is assembled in `runtime-with-instruments` with a custom merge strategy (`sbt-assembly` plugin). Caching is disabled for custom merge strategies, which means that re-assembly of `runtime.jar` will be more frequent.
- Engine distribution contains multiple JAR archives (modules) in `component` directory, along with `runner/runner.jar` that is hidden inside a nested directory.
- The new entry point to the engine runner is [EngineRunnerBootLoader](https://github.com/enso-org/enso/pull/7991/files#diff-9ab172d0566c18456472aeb95c4345f47e2db3965e77e29c11694d3a9333a2aa) that contains a custom ClassLoader - to make sure that everything that does not have to be loaded from a module is loaded from `runner.jar`, which is not a module.
- The new command line for launching the engine runner is in [distribution/bin/enso](https://github.com/enso-org/enso/pull/7991/files#diff-0b66983403b2c329febc7381cd23d45871d4d555ce98dd040d4d1e879c8f3725)
- [Newest version of Frgaal](https://repo1.maven.org/maven2/org/frgaal/compiler/20.0.1/) (20.0.1) does not recognize `--source 21` option, only `--source 20`.
close#7871close#7698
Changelog:
- fix: the `run` script logic to place the GraalVM runtime in the expected directory when building the bundle
- fix: the `makeBundles` SBT logic to place the GraalVM runtime in the expected directory
This PR adds support for the new Vue-based GUI (aka `gui2`).
The user-facing changes are primarily:
* support for `./run gui2` and `./run ide2` commands (that build just the new GUI and the whole IDE package with new GUI embedded — respectively);
* the top-level `test` and `lint` commands will now invoke the relevant commands on the new GUI
---------
Co-authored-by: Paweł Grabarz <frizi09@gmail.com>
Reorder steps of Engine tests, run dry-run benchmarks only on Linux.
---------
Co-authored-by: Pavel Marek <pavel.marek@enso.org>
Co-authored-by: Michał W. Urbańczyk <mwu-tow@gazeta.pl>
# Important Notes
- Binary LS endpoint is not yet handled.
- The parsing of provided source is not entirely correct, as each line (including imports) is treated as node. The usage of actual enso AST for nodes is not yet implemented.
- Modifications to the graph state are not yet synchronized back to the language server.
- Added a `FileSystemSPI` allowing protocol resolution to a target type.
- Separated `Input_Stream` and `Output_Stream` from `File` to allow use in other spaces.
- `File_Format` types `read_web` changed to be `read_stream` working with `InputStream`.
- Added directory listing to `Auto_Detect` allowing for `Data.read` to list a folder.
- Adjusted HTTP to return an `InputStream` not a `byte[]`:
- `Response_Body` adjusted to wrap an `InputStream`.
- Added ability to materialize to either and in-memory vector (<4KB) or a temporary file.
- `Data.fetch` will materialize if not a recognized mime-type.
- Added `HTTP_Error` to handle IO exceptions from the stream.
- `Excel_Format` now supports mime-type and reading a stream.
- `Excel_Workbook` can now get a `Excel_Section` using `read_section`.
- Added S3 APIs:
- `parse_uri`: splits an S3 URI into bucket and key.
- `list_objects`: list the items in a S3 bucket with specified prefix.
- `read_bucket`: list prefixes and keys with a delimiter in a S3 bucket with specified prefix.
- `head`: either head_bucket (tests existance) or head_object API (reads object meta data).
- `get_object`: gets an object from S3 returning as a `Response_Body`.
- Added `S3_File` type acting like a `File`:
- No support for writing in this PR.
- **ToDo:** recursive listing, glob filtering, exists, size.
- Fixed a few invalid type signature line.
- Moved `create` methods for `Postgres_Connection` and `SQLite_Connection` into type instead of module.
- Renamed `Column_Fetcher.Builder` to `Column_Fetcher_Builder`.
- Fixed bug with `select_into` in Dry Run mode creating permanent tables.
**ToDo:** Unit tests.
Use the new Enso Font; also change the anti-aliasing logic to be based on device pixel ratio, rather than platform. This will improve the clarity of font rendering on Windows/Linux machines with high pixel densities.
Design reference:
![image](https://github.com/enso-org/enso/assets/1047859/934ec9ac-52c3-4a81-a9f9-143378ecb658)
Tested on various combinations of DPR/platform:
OS X, `devicePixelRatio` = 2 (should look similar to how we were already rendering *mplus1* on OS X):
<img width="1440" alt="Screenshot 2023-08-07 at 5 46 11 PM" src="https://github.com/enso-org/enso/assets/1047859/2fdf251a-ba5e-426f-b6c4-194347a9cee4">
Windows, `devicePixelRatio` = 1.25 (should look similar to how we were already rendering *mplus1* on this platform/DPR):
![image](https://github.com/enso-org/enso/assets/1047859/55c4a129-4fff-4a9b-8e55-51a5d206e659)
Linux, `devicePixelRatio` = 1 (should look similar to how we were already rendering *mplus1* on this platform/DPR):
![image](https://github.com/enso-org/enso/assets/1047859/c5ac61f0-e3c5-43ca-8ee7-e1e04e84d35e)
# Important Notes
Style changes:
- Use the Enso Font for code in Rust, replacing the DejaVu fonts.
- Use the Enso Font in HTML: code in documentation, and error visualizations.
- Change SpanWidgets from Bold to Extra Bold, to match the design.
Implementation improvements:
- The new font download is cached (and Github-authenticated); this should eliminate a "rate limit" build failure I've
encountered in the past.
- Clean up DocSection HTML rendering a bit.
- Remove a CSS file that seems to have been superseded.
Fixes#6552Fixes#6910Fixes#6872
Implementation of new node design. Includes many changes related to stylesheet update handling and per-style FRP construction, as well as refactoring of scene layers used by graph editor. Some additional components were migrated to use `Rectangle` shape and new mouse handling events. Fixed text rendering, where random thin lines appeared at the borders of glyph sprites. Refined edge layout to match new node sizes and not leave any visible gaps between line segments.
The node colors are currently randomly selected from predefined list. Later this will be improved to use group information from the suggestion database, once that is fully migrated to use the documentation tags, thus removing the dependency on the execution context.
https://github.com/enso-org/enso/assets/919491/aa687e53-a2fa-4e95-a15f-132c05e6337a
<img width="653" alt="image" src="https://github.com/enso-org/enso/assets/919491/30f3e897-62fc-40ea-b57b-124ac923bafd">
Introduce new APIs for managing focus and using focus to inform delivery of keyboard events.
Use new APIs to implement the following behavior:
Focus:
- If the component browser is opened, its initial state is *focused*.
- If the node input area's text component is clicked, the component browser's state becomes *blurred*.
- If a click occurs anywhere in the component browser, the component browser's state becomes *focused*.
Event dispatch:
- When the component browser is in the *focused* state, it handles certain keyboard events (chiefly, arrow keys).
- If the component browser handles an event, the event is not received by other components.
- If an event occurs that the component browser doesn't handle, the node input area's text component receives the event.
[vokoscreenNG-2023-06-29_10-55-00.webm](https://github.com/enso-org/enso/assets/1047859/f1d9d07c-8c32-4482-ba32-15b6e4e20ae7)
# Important Notes
Changes to display object interface:
- **`display::Object` can now be derived.**
- Introduce display object *focus receiver* concept. Many components, when receiving focus, should actually be focused indirectly by focusing a descendant.
- For example, when the CB Panel receives focus, its descendant at `self.model().grid.model().grid` should be focused, because that's the underlying Grid View, which has its own event handlers. By allowing each level of the hierarchy to define a `focus_receiver`, focus can reach the right object without the CB panel having to know structural details of its descendants.
- When delegating to a field's `display::Object` implementation, the derived implementation uses the child's `focus_receiver`, which will normally be the correct behavior.
**Changes to `shortcut` API**:
- New `View::focused_shortcuts()` is a focus-aware alternative to `View::default_shortcuts()` (which should now only be used for global shortcuts, i.e. shortcuts that don't depend on whether the component is focused). It's based on the *Keyboard Event* API (see below), so events propagate up the focus hierarchy until a shortcut is executed and `stop_propagation()` is called; this allows sensible resolution of event targets when more than one component is capable of handling the same keypress.
Keypress dataflow overview:
DOM -> KeyboardManager -> FrpKeyboard -> KeyboardEvents -> Shortcut.
Low-level keyboard changes to support Focus:
- New `KeyboardManager`: Attaches DOM event handlers the same way as `MouseManager`.
- New *Keyboard Event* API: `on_event::<KeyDown>()`. Events propagate up the focus hierarchy. This API is used for low-level keyboard listeners such a `Text`, which may need complex logic to determine whether a key is handled (rather than having a closed set of bindings, which can be handled by `shortcut`).
- FRP keyboard: Now attaches to the `KeyboardManager` API. It now serves primarily to produce Keyboard Events (it still performs the role of making `KeyUp` events saner in a couple different ways). The FRP keyboard can also be used directly as a global keyboard, for such things as reacting to modifier state.
Misc:
- Updated the workspace `syn` to version 2. Crates still depending on legacy `syn` now do so through the workspace-level `syn_1` alias.
This PR consists of two primary changes:
1. I've replaced `react-hot-toast` with `react-toastify` library. Both serve the same purpose — sending popup notifications (so-called "toasts"). However, the latter comes with a richer feature set that matches our requirements much better.
2. I've exposed the relevant API surface to the Rust. Now Rust code can easily send notifications.
### Important Notes
At this point, no attempt at customizing style of notifications was made (other than selecting the "light" theme).
Likely we should consider this soon after integration as a separate task.
Follow-up of recent GraalVM update #7176 that fixes downloading of GraalVM for Mac - instead of "darwin", the releases are now named "macos"
# Important Notes
Also re-enables the JDK/GraalVM version check as onLoad hook to the `sbt` process. We used to have that check a long time ago. Provides errors like this one if the `sbt` is run with a different JVM version:
```
[error] GraalVM version mismatch - you are running Oracle GraalVM 20.0.1+9.1 but GraalVM 17.0.7 is expected.
[error] GraalVM version check failed.
```
- Previous GraalVM update: https://github.com/enso-org/enso/pull/6750
Removed warnings:
- Remove deprecated `ConditionProfile.createCountingProfile()`.
- Add `@Shared` to some `@Cached` parameters (Truffle now emits warnings about potential `@Share` usage).
- Specialization method names should not start with execute
- Add limit attribute to some specialization methods
- Add `@NeverDefault` for some cached initializer expressions
- Add `@Idempotent` or `@NonIdempotent` where appropriate
BigInteger and potential Node inlining are tracked in follow-up issues.
# Important Notes
For `SDKMan` users:
```
sdk install java 17.0.7-graalce
sdk use java 17.0.7-graalce
```
For other users - download link can be found at https://github.com/graalvm/graalvm-ce-builds/releases/tag/jdk-17.0.7
Release notes: https://www.graalvm.org/release-notes/JDK_17/
R component was dropped from the release 23.0.0, only `python` is available to install via `gu install python`.
* Run typecheck and eslint on Lint CI
* Address reviews; fix type errors in `.d.ts` files
* Remove unused parameter
* Run prettier
* Fix lint error
---------
Co-authored-by: Paweł Buchowski <pawel.buchowski@enso.org>
* Revert "Fix lint CI (#6567)"
This reverts commit 0a8f80959f.
* Revert "Run typecheck and eslint on `./run lint` (#6314)"
This reverts commit 7885145b6e.
This PR fixes#6560.
The fix has a few elements:
1) Bumps the Engine requirement to the latest release, namely `2023.1.1`.
2) Changed the logic of checking whether a given version matches the requirement. Previously, we relied on `VersionReq` from `semver` crate which did not behave intuitively when the required version had a prerelease suffix. Now we rely directly on Semantic Versioning rules of precedence.
3) Code cleanups, including deduplicating 3 copies of the version-checking code, and moving some tests to more sensible places.
Engine Benchmark job runs only engine benchmarks, not Enso benchmarks.
Enso benchmarks do not report their output anywhere, and take more than 5 hours to run nowadays.
We might define a new job in the future and probably rename it to "Library benchmarks".
But that is the responsibility of the lib team.
Rewrites node input component. Now the input is composed of multiple widget components arranged in a tree of views with automatic layout. That allows creating complex UI elements on top of the node itself, and further widget positions will be automatically adapted to that. The tree roughly follow the span tree, as it is built by consuming its nodes and eagerly creating widgets from them. The tree is rebuilt every time the expression changes, but that rebuild process reuses as much previously created widgets as possible, and only updates their configuration as needed. Each widget type can have its own configuration options that can be passed to it from the parent, or assigned based on configuration received from the language server.
<img width="773" alt="image" src="https://user-images.githubusercontent.com/919491/233439310-9c39ea88-19bc-43da-9baf-1bb176e2724e.png">
# Important Notes
For now, all span-tree updates are sent over to the shared Frp endpoint of the whole tree, so there is no mechanism for intercepting them by the parent widgets. One idea would be to use existing bubbling/capturing events on widget display objects for that purpose, but I think existing implementation is simpler and more convenient, and we can always easily change that if we have a use for it.
There are some issues with performance due to much more display objects being created on the graph. Expect it to be a little worse, especially at initialization time.