This PR does not add anything visual for the user: it's a first part of making efficient Component Browser using fresh Grid View implementation.
The Layout is an intermediate model, which keeps the information how the groups are laid out in the Component browser, and allows querying for group entry by location and location of specific group entry (or header).
The layout is meant for the new design, where there are no section separators and Local Scope section is below Favorites.
# Important Notes
The new structure is not used in action, but tested with unit tests.
* Builtin Date_Time, Time_Of_Day, Zone
Improved polyglot support for Date_Time (formerly Time), Time_Of_Day and
Zone. This follows the pattern introduced for Enso Date.
Minor caveat - in tests for Date, had to bend a lot for JS Date to pass.
This is because JS Date is not really only a Date, but also a Time and
Timezone, previously we just didn't consider the latter.
Also, JS Date does not deal well with setting timezones so the trick I
used is to first call foreign function returning a polyglot JS Date,
which is converted to ZonedDateTime and only then set the correct
timezone. That way none of the existing tests had to be changes or
special cased.
Additionally, JS deals with milliseconds rather than nanoseconds so
there is loss in precision, as noted in Time_Spec.
* Add tests for Java's LocalTime
* changelog
* Make date formatters in table happy
* PR review, add more tests for zone
* More tests and fixed a bug in column reader
Column reader didn't take into account timezone but that was a mistake
since then it wouldn't map to Enso's Date_Time.
Added tests that check it now.
* remove redundant conversion
* Update distribution/lib/Standard/Base/0.0.0-dev/src/Data/Time.enso
Co-authored-by: Radosław Waśko <radoslaw.wasko@enso.org>
* First round of addressing PR review
* don't leak java exceptions in Zone
* Move Date_Time to top-level module
* PR review
Co-authored-by: Radosław Waśko <radoslaw.wasko@enso.org>
Co-authored-by: Jaroslav Tulach <jaroslav.tulach@enso.org>
Use Proxy_Polyglot_Array as a proxy for polyglot arrays, thus unifying
the way the underlying array is accessed in Vector.
Used the opportunity to cleanup builtin lookup, which now actually
respects what is defined in the body of @Builtin_Method annotation.
Also discovered that polyglot null values (in JS, Python and R) were leaking to Enso.
Fixed that by doing explicit translation to `Nothing`.
https://www.pivotaltracker.com/story/show/181123986
[ci no changelog needed]
[Task link](https://www.pivotaltracker.com/story/show/182955595)
This PR implements variable column widths in the new Grid View component. We need this feature to quickly implement various parts of the UI, including the breadcrumbs panel of the component browser.
There are two ways to change the width of the specific column:
1. "From the outside", using the `set_column_width` endpoint of the Grid View
2. "From the inside", using the `override_column_width` endpoint of the EntryFrp.
Both ways work similarly, but the latter is helpful for our breadcrumbs implementation, as it allows for entry to decide on the width of the column by its content.
See the screencast with three grid views. The top-left one has every even column shrunk by GridView API. Every grid view has a second column extended by EntryFrp API.
https://user-images.githubusercontent.com/6566674/185060985-7b7df076-c659-41fa-977a-22875493f8d4.mp4
First of all this PR demonstrates how to implement _lazy visualization_:
- one needs to write/enhance Enso visualization libraries - this PR adds two optional parameters (`bounds` and `limit`) to `process_to_json_text` function.
- the `process_to_json_text` can be tested by standard Enso test harness which this PR also does
- then one has to modify JavaScript on the IDE side to construct `setPreprocessor` expression using the optional parameters
The idea of _scatter plot lazy visualization_ is to limit the amount of points the IDE requests. Initially the limit is set to `limit=1024`. The `Scatter_Plot.enso` then processes the data and selects/generates the `limit` subset. Right now it includes `min`, `max` in both `x`, `y` axis plus randomly chosen points up to the `limit`.
![Zooming In](https://user-images.githubusercontent.com/26887752/185336126-f4fbd914-7fd8-4f0b-8377-178095401f46.png)
The D3 visualization widget is capable of _zooming in_. When that happens the JavaScript widget composes new expression with `bounds` set to the newly visible area. By calling `setPreprocessor` the engine recomputes the visualization data, filters out any data outside of the `bounds` and selects another `limit` points from the new data. The IDE visualization then updates itself to display these more detailed data. Users can zoom-in to see the smallest detail where the number of points gets bellow `limit` or they can select _Fit all_ to see all the data without any `bounds`.
# Important Notes
Randomly selecting `limit` samples from the dataset may be misleading. Probably implementing _k-means clustering_ (where `k=limit`) would generate more representative approximation.
This PR reenables code signing on Windows.
Each Windows package built on CI should be now signed.
Additionally, some refactorings were done around electron-builder config, so it is easier to use outside the build script and offers more configuration options.
- Removed various unnecessary `Standard.Base` imports still left behind.
- Added `Regex` to default `Standard.Base`.
- Removed aliasing from the examples as no longer needed (case coercion no long occurs).
- Remove `import Standard.Table` from within the Table library (directly importing types).
- Reviewed what was in `Standard.Database` - a few tweaks and removals.
- Removed various un-needed aliasing following Hubert's import work.
So far, when opening the searcher with no node selected, an empty input without an associated AST node was created. This input was manipulated by the user and the final expression from the input was used to create a new node when the user confirmed their input. This PR changes this, so that when the searcher is opened without a selected node, a new AST node is created right away with some placeholder content, and this node is updated when the user confirms their input.
The only change visible to the user, is that if the text editor is opened during editing, a new node will appear in the source when the searcher is opened to create a new node. All other behaviour should stay the same.
Rather than using `Date.parse`, which is already being tested in other
tests, we use `LocalDate.parse`. Making use of a helper class to
mitigate API differences.
[ci no changelog needed]
This PR fixes a [regression](https://www.pivotaltracker.com/story/show/182972359) found in the `interface` debug the scene. It was caused by multiple `Navigator`s that were present in the demo scene and conflict with each other.
Also, this PR includes a fix for the invalid logic of the new component browser. We disable `Navigator` when the mouse hovers the component browser. Still, due to a mistake in the code, the component browser was considered visible at all times and therefore blocked the navigator in certain mouse positions.
To reproduce this bug (before this PR):
1. Open a default project
2. Place the mouse somewhere in the middle of the screen (near one of the nodes)
3. Try panning or zooming the scene (you won't be able because of this bug)
This change adds support for matching on constants by:
1) extending parser to allow literals in patterns
2) generate branch node for literals
Related to https://www.pivotaltracker.com/story/show/182743559
Add functionality to revert a node that was changed during editing through the searcher.
Note that currently, nodes are not edited by the searcher, except upon confirmation, Thus this functionality results in a no-op at the moment.
# Important Notes
[ci no changelog needed]
This change adds Autosave action for open buffers. The action is scheduled
after every edit request and is cancelled by every explicit save file request, if
necessary. Successful autosave also notifies any active clients of the buffer.
Related to https://www.pivotaltracker.com/story/show/182721656
# Important Notes
WIP
Execution of `sbt runtime/bench` doesn't seem to be part of the gate. As such it can happen a change into the Enso language syntax, standard libraries, runtime & co. can break the benchmarks suite without being noticed. Integrating such PR causes unnecessary disruptions to others using the benchmarks.
Let's make sure verification of the benchmarks (e.g. that they compile and can execute without error) is part of the CI.
# Important Notes
Currently the gate shall fail. The fix is being prepared in parallel PR - #3639. When the two PRs are combined, the gate shall succeed again.
PR allows to attach metod pointers as a visualization expressions. This way it allows to attach a runtime instrument that enables caching of intermediate expressions.
# Important Notes
ℹ️ API is backward compatible.
To attach the visualization with caching support, the same `executionContext/attachVisualisation` method is used, but `VisualisationConfig` message should contain the message pointer.
While `VisualisationConfiguration` message has changed, the language server accepts both new and old formats to keep visualisations working in IDE.
#### Old format
```json
{
"executionContextId": "UUID",
"visualisationModule": "local.Unnamed.Main",
"expression": "x -> x.to_text"
}
```
#### New format
```json
{
"executionContextId": "UUID",
"expression": {
"module": "local.Unnamed.Main",
"definedOnType": "local.Unnamed.Main",
"name": "encode"
}
}
```
This PR replaces webpack with esbuild, as our bundler.
The change leads to out-of-the-box ~5x improvement in bundling times, reducing the latency in watch-based workflows.
Along with this a new development server (with live reload capacity) has been introduced to support watch command.
[ci no changelog needed]
### Important Notes
* workflow for checking docs has been removed because it was using outdated prettier version and caused troubles; while the same check is performed in a better way by the GUI/Lint job.
* introduced little more typescript in the scripts in place of js, usually with minimal changes.
[ci no changelog needed]
[Task link](https://www.pivotaltracker.com/story/show/181870555)
This PR changes the relative position of the edited node in such a way that it is left-aligned to the component browser window. This change reflects the most recent version of the [design doc](https://github.com/enso-org/design/blob/main/epics/component-browser/design.md#overview)
<img width="1157" alt="Screenshot 2022-08-08 at 19 15 47" src="https://user-images.githubusercontent.com/6566674/183454192-81960e0a-ab69-43a4-b7df-d13320a9d16d.png">
As an additional change, the FRP implementation of the `Camera2d` was extended with a new output (screen dimensions) and fixed. With the old implementation, there was a possibility of panic at runtime because of non-exclusive borrows of `RefCell`. The FRP event for camera position was emited inside the scope with a mutable `RefCell` borrow. Any attempt to borrow the camera one more time (e.g., by calling one of the getters, such as `zoom()`) caused panic at runtime.
`main` method is now special because it is trully static i.e. no
implicit `self` is being generated for it.
But since REPL's `main` isn't called `main` its invocation was missing
an argument.
Follow up on https://github.com/enso-org/enso/pull/3569
# Important Notes
Will work on adding a CI test for REPL to avoid problems with REPL in a
follow up PR.
Importing individual methods didn't work as advertised because parser
would allow them but later drop that information. This slipped by because we never had mixed atoms and methods in stdlib.
# Important Notes
Added some basic tests but we need to ensure that the new parser allows for this.
@jdunkerley will be adding some changes to stdlib that will be testing this functionality as well.
[ci no changelog needed]
[Task link](https://www.pivotaltracker.com/story/show/182713338).
This PR fixes the implementation of the entries highlight (selection box) in the component list panel of the component browser. The previous behavior was caused by the dumb implementation of keeping the selection inside the borders of the component list panel. Now the selection is correctly clipped and is hovering over entries at all times.
Screencasts:
https://user-images.githubusercontent.com/6566674/182196585-02ab5ec4-7d12-4d7a-8563-ac95aec3c9f4.mp4https://user-images.githubusercontent.com/6566674/182196768-9d28e83d-6c77-4ef6-abb0-98d50c4e74b7.mp4
# Important Notes
- This PR does not change the fact that after opening the component browser, the selection hovers over a random entry. See a [dedicated task](#182729573) for that.
- The selection box shape was moved from the `component_group` module because it depends heavily on list panel view implementation.
- The selection was removed from the `component_group` demo scene. We have a `component_list_panel_view` demo scene instead.
Based on usage; I believe this handles every case in current `.enso` files.
# Important Notes
- `import` is a built-in macro, so an import statement parses as a `MultiSegmentApp`.
- Every `import` syntax will have a segment whose leading keyword is `import`; however `import` macros can be identified more efficiently by looking at only the first keyword. A `MultiSegmentApp` is an import if and only if its first keyword is in the set { "polyglot", "from", "import" }.
Show custom icons in Component Browser for entries that have a non-empty `Icon` section in their docs with the section's body containing a name of a predefined icon.
https://www.pivotaltracker.com/story/show/182584336
#### Visuals
A screenshot of a couple custom icons in the Component Browser:
<img width="346" alt="Screenshot 2022-07-27 at 15 55 33" src="https://user-images.githubusercontent.com/273837/181265249-d57f861f-8095-4933-9ef6-e62644e11da3.png">
# Important Notes
- The PR assigns icon names to four items in the standard library, but only three of them are shown in the Component Browser because of [a parsing bug in the Engine](https://www.pivotaltracker.com/story/show/182781673).
- Icon names are assigned only to four items in the standard library because only two currently predefined icons match entries in the currently defined Virtual Component Groups. Adjusting the definitions of icons and Virtual Component Groups is covered by [a different task](https://www.pivotaltracker.com/story/show/182584311).
- A bug in the documentation of the Enso protocol message `DocSection` is fixed. A `text` field in the `Tag` interface is renamed to `body` (this is the field name used in Engine).
This PR adds a new variant of selection, where the mouse-hovered entry is highlighted and may be selected by clicking.
In the video below, we have three grid views with slightly different settings:
* In the left-top corner, both hover and selection highlight is just a shape under the label. Such a grid view does not require additional layers (when compared to non-selectable grid view).
* In the left-bottom corner the hover is normal shape, but selection is a _masked layer_ which allows us to have different text color. This setting requires three more layers to render.
* In the right-top corner, both hover and selection are displayed in the masked layer, creating 6 additional layers.
https://user-images.githubusercontent.com/3919101/181514178-f243bfeb-f2dd-4507-adc3-5344ae0579b7.mp4
This change allows for importing modules using a qualified name and deals with any conflicts on the way.
Given a module C defined at `A/B/C.enso` with
```
type C
type C a
```
it is now possible to import it as
```
import project.A
...
val x = A.B.C 10
```
Given a module located at `A/B/C/D.enso`, we will generate
intermediate, synthetic, modules that only import and export the successor module along the path.
For example, the contents of a synthetic module B will look like
```
import <namespace>.<pkg-name>.A.B.C
export <namespace>.<pkg-name>.A.B.C
```
If module B is defined already by the developer, the compiler will _inject_ the above statements to the IR.
Also removed the last elements of some lowercase name resolution that managed to survive recent
changes (`Meta.Enso_Project` would now be ambiguous with `enso_project` method).
Finally, added a pass that detects shadowing of the synthetic module by the type defined along the path.
We print a warning in such a situation.
Related to https://www.pivotaltracker.com/n/projects/2539304
# Important Notes
There was an additional request to fix the annoying problem with `from` imports that would always bring
the module into the scope. The changes in stdlib demonstrate how it is now possible to avoid the workaround of
```
from X.Y.Z as Z_Module import A, B
```
(i.e. `as Z_Module` part is almost always unnecessary).
This is a partial workaround for https://www.pivotaltracker.com/story/show/182713407
Because some entries' names are too long to be displayed inside the Component List Panel, the user may have no clue what the method is. Therefore, we add a title to each doc page.
There is also code introduced for displaying name of modules when submodule header is selected. However, it does not work, and it's hard to fix without significant changes in the Component List Panel API and implementation. Because those will be altered when implementing [Efficient Component List Panel](https://www.pivotaltracker.com/story/show/182561072), fixing is postponed until then.
![image](https://user-images.githubusercontent.com/3919101/179717147-00329637-1f87-42ae-b54a-63840766099f.png)
# Important Notes
The code contains some significant refactoring. Removed long functions obtaining entries from the component::List - instead you can get group, and then entry from group. They return an option, which is turned to Result in the presenter (where we actually take advantage of having Result instead of Option).