This PR changes build script's `ide watch` and `ide start` commands, so they don't use `electron-builder` to package. Instead, they invoke `electron` directly, significantly reducing time overhead.
`ide watch` will now start Electron process, while continuously rebuilding gui and the client in the background. Changes can be puilled by reloading within the electron, or closing the electron and letting it start once again. To stop, the script should be interrupted with `Ctrl+C`.
This change adds serialization and deserialization of library bindings.
In order to be functional, one needs to first generate IR and
serialize bindings using `--compiled <path-to-library>` command. The bindings
will be stored under the library with `.bindings` suffix.
Bindings are being generated during `buildEngineDistribution` task, thus not
requiring any extra steps.
When resolving import/exports the compiler will first try to load
module's bindings from cache. If successful, it will not schedule its
imports/exports for immediate compilation, as we always did, but use the
bindings info to infer the dependent modules.
The current change does not make any optimizations when it comes to
compiling the modules, yet. It only delays the actual
compilation/loading IR from cache so that it can be done in bulk.
Further optimizations will come from this opportunity such as parallel
loading of caches or lazily inferring only the necessary modules.
Part of https://github.com/enso-org/enso/issues/5568 work.
Fixes#5188
Added a new method `ShapeOps::recolorize` which changes color depending on values on r, g, b channels. It should be explained more in the docs. It will allow us using colored cached icons in the Component Browser.
Fixes#5023
This PR adds the ability to add a parameter to shapes defined, with `shape!` macro being a reference to a cached shape.
The API and results may be read [in the example scene](33b6f5937e/lib/rust/ensogl/example/cached-shape/src/lib.rs)
It also contains many other changes, required to have it working:
* We render cached shapes to texture in a different mode than normal shapes: the alpha channel is replaced with information about signed distance. That allows us using cached shapes as normal shapes, i.e. translate them, add to other shapes etc.
* We initialize and arrange shapes as a part of Word initialization, not in pass.
* We keep and blend colors in RGBA instead of LCHA - this is preparation for replacing colors in the next task, and also speeds up our shaders a bit.
The code was refactored in the process: the cached-shape related things were moved to a single module.
Visualizations closing right after opening was caused by the GUI being unresponsive during loading of some visualizations. This caused the timer for measuring the time between space bar press and space bar release to be inflated. The delayed events triggered the "visualization preview mode”, thus closing the visualization has it seemed that the space bar was held down, even though the events just arrived with some delay.
The problem is mitigated by considering the number of frames that have passed between the space and down and the space bar up event, instead of just the wall clock time. If the number of frames is too low, this indicates that frames were dropped to the time is inflated.
Fixes https://github.com/enso-org/enso/issues/5223
Fixes an error in our scoring algorithm for computing match scores. It now correctly computes scores for patterns that are trailing the target text and ranks patterns at the end of the target text higher than patterns in the middle of the target text.
Closes #4965 (for now).
See also Discussion https://github.com/enso-org/enso/discussions/5649
In cloud we want to allow users to create new project from the template. List of templates is a bit outdated and doesn't contain all from the https://github.com/enso-org/project-templates. This PR simply adds missing ones
A combination of commands triggered separate compilation that only recompiled part of builtins. A mechanism that workaround annotation processor's problems with separate compilation was updated to include changes from https://github.com/enso-org/enso/pull/4111. This was pretty tough to find given the rather unusual circumstances in CI.
# Important Notes
This eliminates the _random_ failures in CI related to separate compilation.
To reproduce a specific set of steps has to be executed:
```
sbt> all buildEngineDistribution engine-runner/assembly runtime/Benchmark/compile language-server/Benchmark/compile searcher/Benchmark/compile
(exit sbt)
sbt> test
```
Expressions returning polyglot values were not reporting the type of the result because we have to do additional magic that infers the correct Enso type. Since this is exactly what `TypeOfNode` does, I re-used the logic.
Straightforward solution failed in tests because of assertions:
```
[enso] WARNING: Execution of function main failed (Invalid library usage. Cached library must be adopted by a RootNode before it is executed.).
java.lang.AssertionError: Invalid library usage. Cached library must be adopted by a RootNode before it is executed.
```
That is why this PR replaces `ExecutionEventListener` with `ExecutionEventNodeFactory`.
# Important Notes
Usage of `TypeOfNode` for programs that **do not** import stdlib means that we report types that do not involve stdlib e.g.
`Standard.Builtins.Main.Integer` instead of `Standard.Base.Data.Numbers.Integer`. While surprising, this is correct and I would say desirable. While reviewing the code, notice the difference in expectations in our runtime tests.
Implementation of https://www.pivotaltracker.com/story/show/184012743https://user-images.githubusercontent.com/919491/214082311-cf49e43c-1d1f-4654-903c-a4224cd954d8.mp4
This is also a step towards more general widget support. The widget metadata is queried using `Meta.get_annotation` method through a dedicated visualization. For now only `Single_Choice` case is handled, and always all suggestions are is returned.
# Important Notes
There are limitations as to which node segments receive a widget. Only chain method calls are supported now (`thing.method` syntax), and only outside of lambda scope. Widgets in lambdas will require support for visualisations of lambda subexpressions, which is currently missing in the engine. The IDE technically tries to place the widgets there, but the data never arrives. It should work once the engine support is added.
This PR includes a mock for `Meta.get_annotation` call that only supports `Table.at` method. Real implementation is a separate task that is already in progress.
This PR contains the first implementation of `cached_shape!` macro, which should help us with reducing draw calls in our application.
```rust
mod icon1 {
use super::*;
ensogl_core::cached_shape! { 32 x 32;
() {
let shape = Circle(16.px()).fill(color::Rgba::green());
shape.into()
}
}
}
mod icon2 {
use super::*;
ensogl_core::cached_shape! { 202 x 312;
() {
let shape = Rect((200.px(), 310.px())).fill(color::Rgba::red());
shape.into()
}
}
}
```
The above code creates two cached shapes. They are similar to normal shapes (created with `shape!` macro), except that:
1. they do not allow for any parametrization
2. They are rendered at the application start to the special texture with cached shapes.
The texture will be used in next PRs to cache all Component Browser icons on the texture and draw all of them just by single, fast draw call. In the future, more shapes can be cached, further reducing draw calls and making them simple.
# Important Notes
The results are presented in `cached_shapes` debug scene: there are two shapes displayed and a scaled cached texture is displayed in the background.
In order to investigate `engine/language-server` project, I need to be able to open its sources in IGV and NetBeans.
# Important Notes
By adding same Java source (this time `package-info.java`) and compiling with our Frgaal compiler the necessary `.enso-sources*` files are generated for `engine/language-server` and then the `enso4igv` plugin can open them and properly understand their compile settings.
![Logical View of language-server project](https://user-images.githubusercontent.com/26887752/215472696-ec9801f3-4692-4bdb-be92-c4d2ab552e60.png)
In addition to that this PR enhances the _"logical view"_ presentation of the project by including all source roots found under `src/*/*`.
https://github.com/enso-org/enso/pull/3764 introduced static wrappers for instance methods. Except it had a limitation to only be allowed for types with at least a single constructor.
That excluded builtin types as well which, by default, don't have them. This limitation is problematic for Array/Vector consolidation and makes builtin types somehow second-citizens.
This change lifts the limitation for builtin types only. Note that we do want to share the implementation of the generated builtin methods. At the same time due to the additional argument we have to adjust the starting index of the arguments.
This change avoids messing with the existing dispatch logic, to avoid unnecessary complexity.
As a result it is now possible to call builtin types' instance methods, statically:
```
arr = Array.new_1 42
Array.length arr
```
That would previously lead to missing method exception in runtime.
# Important Notes
The only exception is `Nothing`. Primarily because it requires `Nothing` to have a proper eigentype (`Nothing.type`) which would messed up a lot of existing logic for no obvious benefit (no more calling of `foo=Nothing` in parameters being one example).
This PR implements HTML generation from documentation IR for all suggestion database entries and replaces the old documentation panel with a newer one.
Additional adjustments to the looks of the documentation would be applied separately in a future PR. This PR focuses on the fastest possible delivery of a usable documentation panel. We want to test it in real-world use cases and gather feedback for future improvements.
Documentation demo scene with mocked data:
https://user-images.githubusercontent.com/6566674/213436313-88753ed8-346f-423e-956e-7db39f5dc266.mp4
Component browser with actual engine-provided data:
https://user-images.githubusercontent.com/6566674/213436375-d0ec074b-f7a6-4deb-a7de-3adee999cc86.mp4
# Important Notes
- Fixed language protocol data structures.
- Scrolling to the selected method is also implemented here.
- Also, the selected item is highlighted with yellow.
- Only some pieces of information we have are displayed. For example, we don't display return types for methods or types of arguments.
- A bunch of code related to previous implementation is removed, but probably not all of it.
Implements [#183453466](https://www.pivotaltracker.com/story/show/183453466).
https://user-images.githubusercontent.com/1428930/203870063-dd9c3941-ce79-4ce9-a772-a2014e900b20.mp4
# Important Notes
* the best laziness is used for `Text` type, which makes use of its internal representation to send data
* any type will first compute its default string representation and then send the content of that lazy to the IDE
* special handling of files and their content will be implemented in the future
* size of the displayed text can be updated dynamically based on best effort information: if the backend does not yet know the full width/height of the text, it can update the IDE at any time and this will be handled gracefully by updating the scrollbar position and sizes.
Introduces unboxed (and arity-specialized) storage schemes for Atoms. It results in improvements both in memory consumption and runtime.
Memory wise: instead of using an array, we now use object fields. We also enable unboxing. This cuts a good few pointers in an unboxed object. E.g. a quadruple of integers is now 64 bytes (4x8 bytes for long fields + 16 bytes for layout and constructor pointers + 16 bytes for a class header). It used to be 168 bytes (4x24 bytes for boxed Longs + 16 bytes for array header + 32 bytes for array contents + 8 bytes for constructor ptr + 16 bytes for class header), so we're saving 104 bytes a piece. In the least impressive scenarios (all-boxed fields) we're saving 8 bytes per object (saving 16 bytes for array header, using 8 bytes for the new layout field). In the most-benchmarked case (list of longs), we save 32 bytes per cons-cell.
Time wise:
All list-summing benchmarks observe a ~2x speedup. List generation benchmarks get ~25x speedups, probably both due to less GC activity and better allocation characteristics (only allocating one object per Cons, rather than Cons + Object[] for fields). The "map-reverse" family gets a neat 10x speedup (part of the work is reading, which is 2x faster, the other is allocating, which is now 25x faster, we end up with 10x when combined).
This is a followup to https://github.com/enso-org/enso/pull/4046#pullrequestreview-1248164069.
- Compiler job cancelation is now handled - the cache entry will be cleared or the job will be resumed if there is still demand.
- The compilation awaiting process has been rewritten to not use polling. The "read cache" job is now only used to dispatch known valid reads. It is always completed within a single run cycle.
- Changed shader struct to use `ImString` for storing code, so it can be cheaply cloned. This is now common, as we are cloning it from cache.
`@` should not be legal to use as a binary operator. I accepted it in the parser because it occurred in the .enso sources, but it was actually used to create a syntax error to test error recovery.
See: https://www.pivotaltracker.com/story/show/184054024
While doing regular node manipulation in editior, noticed a number of situations when
```
java.lang.IndexOutOfBoundsException: None
at java.base/java.lang.Character.offsetByCodePoints(Character.java:8699)
at java.base/java.lang.String.offsetByCodePoints(String.java:820)
at org.enso.text.buffer.CodePointView$Ops$.drop(CodePointView.scala:98)
at org.enso.text.buffer.CodePointView$Ops$.drop(CodePointView.scala:57)
at org.enso.text.buffer.Node.drop(Tree.scala:218)
at org.enso.text.buffer.Rope.dropWith(Rope.scala:86)
at org.enso.text.buffer.CodePointView.drop(CodePointView.scala:30)
at org.enso.text.editing.RopeTextEditor$.cutOutTail(RopeTextEditor.scala:42)
...
```
would be thrown. Further text edits would simply be rejected requiring a complete restart. I doubt we should propagate
`IndexOutOfBoundsException`. Instead it is safer to just apply the edit to the end of the rope.
* Hash codes prototype
* Remove Any.hash_code
* Improve caching of hashcode in atoms
* [WIP] Add Hash_Map type
* Implement Any.hash_code builtin for primitives and vectors
* Add some values to ValuesGenerator
* Fix example docs on Time_Zone.new
* [WIP] QuickFix for HashCodeTest before PR #3956 is merged
* Fix hash code contract in HashCodeTest
* Add times and dates values to HashCodeTest
* Fix docs
* Remove hashCodeForMetaInterop specialization
* Introduce snapshoting of HashMapBuilder
* Add unit tests for EnsoHashMap
* Remove duplicate test in Map_Spec.enso
* Hash_Map.to_vector caches result
* Hash_Map_Spec is a copy of Map_Spec
* Implement some methods in Hash_Map
* Add equalsHashMaps specialization to EqualsAnyNode
* get and insert operations are able to work with polyglot values
* Implement rest of Hash_Map API
* Add test that inserts elements with keys with same hash code
* EnsoHashMap.toDisplayString use builder storage directly
* Add separate specialization for host objects in EqualsAnyNode
* Fix specialization for host objects in EqualsAnyNode
* Add polyglot hash map tests
* EconomicMap keeps reference to EqualsNode and HashCodeNode.
Rather than passing these nodes to `get` and `insert` methods.
* HashMapTest run in polyglot context
* Fix containsKey index handling in snapshots
* Remove snapshots field from EnsoHashMapBuilder
* Prepare polyglot hash map handling.
- Hash_Map builtin methods are separate nodes
* Some bug fixes
* Remove ForeignMapWrapper.
We would have to wrap foreign maps in assignments for this to be efficient.
* Improve performance of Hash_Map.get_builtin
Also, if_nothing parameter is suspended
* Remove to_flat_vector.
Interop API requires nested vector (our previous to_vector implementation). Seems that I have misunderstood the docs the first time I read it.
- to_vector does not sort the vector by keys by default
* Fix polyglot hash maps method dispatch
* Add tests that effectively test hash code implementation.
Via hash map that behaves like a hash set.
* Remove Hashcode_Spec
* Add some polyglot tests
* Add Text.== tests for NFD normalization
* Fix NFD normalization bug in Text.java
* Improve performance of EqualsAnyNode.equalsTexts specialization
* Properly compute hash code for Atom and cache it
* Fix Text specialization in HashCodeAnyNode
* Add Hash_Map_Spec as part of all tests
* Remove HashMapTest.java
Providing all the infrastructure for all the needed Truffle nodes is no longer manageable.
* Remove rest of identityHashCode message implementations
* Replace old Map with Hash_Map
* Add some docs
* Add TruffleBoundaries
* Formatting
* Fix some tests to accept unsorted vector from Map.to_vector
* Delete Map.first and Map.last methods
* Add specialization for big integer hash
* Introduce proper HashCodeTest and EqualsTest.
- Use jUnit theories.
- Call nodes directly
* Fix some specializations for primitives in HashCodeAnyNode
* Fix host object specialization
* Remove Any.hash_code
* Fix import in Map.enso
* Update changelog
* Reformat
* Add truffle boundary to BigInteger.hashCode
* Fix performance of HashCodeTest - initialize DataPoints just once
* Fix MetaIsATest
* Fix ValuesGenerator.textual - Java's char is not Text
* Fix indent in Map_Spec.enso
* Add maps to datapoints in HashCodeTest
* Add specialization for maps in HashCodeAnyNode
* Add multiLevelAtoms to ValuesGenerator
* Provide a workaround for non-linear key inserts
* Fix specializations for double and BigInteger
* Cosmetics
* Add truffle boundaries
* Add allowInlining=true to some truffle boundaries.
Increases performance a lot.
* Increase the size of vectors, and warmup time for Vector.Distinct benchmark
* Various small performance fixes.
* Fix Geo_Spec tests to accept unsorted Map.to_vector
* Implement Map.remove
* FIx Visualization tests to accept unsorted Map.to_vector
* Treat java.util.Properties as Map
* Add truffle boundaries
* Invoke polyglot methods on java.util.Properties
* Ignore python tests if python lang is missing
The fix consists of two parts:
1. All the "review-apply" and "store temporary md" actions in the searcher controller are now guarded by an ignored transaction.
2. Because some of the temporary state may reach the UR frames assigned to other actions, added a bunch of code for removing all temporary expressions from the code and use it after restoring a frame. We may consider using it after project load as well.
### Important Notes
Added a useful method "log_err" to ResultOps (so every Result will have those).
Logging: Replace tracing with an efficient logging implementation, with 0-runtime cost for disabled log levels. (https://www.pivotaltracker.com/story/show/183755412)
Profiling: Support submitting `profiler` events to the User Timing Web API, so that measurements can be viewed directly in the browser. (https://www.pivotaltracker.com/story/show/184003550)
# Important Notes
Logging interface:
- The macros (`warn!`, etc.) now take standard `format_args!` arguments (the tracing implementations accepted a broader syntax).
- Compile-time log levels can now be set through the CLI, like so:
`./run ide start --log-level=trace --uncollapsed-log-level=info`
Profiling:
- The hotkey Ctrl+Alt+Shift+P submits all `profiler` events logged since the application was loaded to the Web API, so that they can then be viewed with the browser's developer tools. Note that standard tools are not able to represent async task lifetimes or metadata; this is a convenient interface to a subset of `profiler` data.
- As an alternative interface, a runtime flag enables continuous measurement submission. In the browser it can be set through a URL parameter, like http://localhost:8080/?emit_user_timing_measurements=true. Note that this mode significantly impacts performance.
Fixes an error when the logger processes NPE:
```
[internal-logger-error] One of the printers failed to write a message: java.lang.NullPointerException
```
Fixes https://www.pivotaltracker.com/story/show/184216698
Reduced impact of node dropdown widgets on load times by deferring creation of grid views until each widget is opened. This also improves node editing time, as the dropdowns are not recreated immediately.
This approach of lazy initialization now caused a significant lag when opening the dropdown. Two major causes of the lag spike is glyph generation (msdfgen, `new_glyph`) and shader compilation (happened every time, because each dropdown has unique layer stack). To reduce the impact of that, the shader compiler now caches the shaders based on generated shader source. Glyph creation hasn't been changed and is still slow. The startup performance is now roughly where it was before introducing widgets.
[Task link](https://www.pivotaltracker.com/story/show/184012434)
This PR implements Intermediate Representation for our documentation. Later these data structures would be used to generate HTML and CSS for the documentation panel. For now, we display it in the debug scene.
https://user-images.githubusercontent.com/6566674/210674850-480a3e6e-76c3-4f34-a235-15c44dc9ec01.mp4
# Important Notes
- `suggestion-database` now lives in a separate crate
- also, two utility crates were introduced for the `notification` and `executor` modules of enso-gui
- documentation debug scene is moved to a separate crate
- All refactorings are done in the last two commits
Implements https://www.pivotaltracker.com/n/projects/2539304/stories/184023445
Added a dropdown widget to graph node for all span tree nodes that have tag values present. When an option is selected, the controller receives a partial expression update, which targets specific crumbs of the expression (similar to how edge endpoint updates work).
https://user-images.githubusercontent.com/919491/210219931-8ae418fd-3ac4-44a5-abea-9e670f15cdf9.mp4
# Important Notes
Right now the dropdown widget is recreated every time the node is edited, including a dropdown option being selected. This causes it to close every time. I wanted to get around that by diffing span trees, but I wasn't able to do it in useful way. Additionally, current implementation of node input expression view heavily relies on being reinitialized from scratch every time. This led to more necessary changes than I was comfortable with for this task. I believe it will be easier to implement it as part of more complete widget support, especially after dynamic data support, as we will have proper widget type information.