---
layout: developer-doc
title: Contributing to Enso
category: summary
tags: [summary, contributing]
order: 2
---
# Contributing to Enso
Thank you for your interest in contributing to Enso! We believe that only
through community involvement can Enso be the best it can be! There are a whole
host of ways to contribute, and every single one is appreciated. The major
sections of this document are linked below:
- [The Contributor License Agreement](#the-contributor-license-agreement)
- [Issues](#issues)
- [Feature Enhancements](#feature-enhancements)
- [Bug Reports](#bug-reports)
- [Hacking on Enso](#hacking-on-enso)
- [Design Documentation](#design-documentation)
- [System Requirements](#system-requirements)
- [Getting the Sources](#getting-the-sources)
- [Getting Set Up \(Rust\)](#getting-set-up-rust)
- [Getting Set Up \(JVM\)](#getting-set-up-jvm)
- [Getting Set Up \(Documentation\)](#getting-set-up-documentation)
- [Building Enso](#building-enso)
- [Testing Enso](#testing-enso)
- [Running Enso](#running-enso)
- [Pull Requests](#pull-requests)
- [Documentation](#documentation)
- [Issue Triage](#issue-triage)
- [Out-of-Tree Contributions](#out-of-tree-contributions)
- [Helpful Documentation and Links](#helpful-documentation-and-links)
All contributions to Enso should be in keeping with our
[Code of Conduct](./CODE_OF_CONDUCT.md).
## The Contributor License Agreement
As part of your first contribution to this repository, you need to accept the
Contributor License Agreement. You will automatically be asked to sign the CLA
when you make your first pull request.
Any work intentionally submitted for inclusion in Enso shall be licensed under
this CLA.
The CLA you sign applies to all repositories associated with the Enso project,
so you will only have to sign it once at the start of your contributions.
## Issues
If you're wanting to get involved with Enso's development and are looking for
somewhere to start, you can check out the following tags in our issues:
- [Good First Issue](https://github.com/enso-org/enso/labels/Status%3A%20Good%20First%20Issue)
- [Help Wanted](https://github.com/enso-org/enso/labels/Status%3A%20Help%20Wanted)
You can use the "Size" and "Difficulty" labels that should be assigned to every
issue to get a better idea of how much work a given issue might be.
## Feature Enhancements
If you feel like you have a suggestion for a change to the way that Enso works
as a language, please take a look at the [Enso RFC process](./rfcs/README.md) to
learn how to file an RFC for the project.
In essence, the RFC process provides a way to propose major changes to the
language, the compiler, and the runtime in a way that ensures that they get seen
and discussed by all the major stakeholders involved.
If, on the other hand, you're asking for a smaller feature, please feel free to
submit a
[feature request](https://github.com/enso-org/enso/issues/new?assignees=&labels=Type%3A+Enhancement&template=feature-request.md&title=)
to the repository.
## Bug Reports
While it's never great to find a bug, they are a reality of software and
software development! We can't fix or improve on the things that we don't know
about, so report as many bugs as you can! If you're not sure whether something
is a bug, file it anyway!
**If you are concerned that your bug publicly presents a security risk to the
users of Enso, please look at our [security guidelines](./SECURITY.md).**
Even though GitHub search can be a bit hard to use sometimes, we'd appreciate if
you could
[search](https://github.com/enso-org/enso/search?q=&type=Issues&utf8=%E2%9C%93)
for your issue before filing a bug as it's possible that someone else has
already reported the issue. We know the search isn't the best, and it can be
hard to know what to search for, so we really don't mind if you do submit a
duplicate!
Opening an issue is as easy as following
[this link](https://github.com/enso-org/enso/issues/new?template=bug-report.md)
and filling out the fields. The template is intended to collect all the
information we need to best diagnose the issue, so please take the time to fill
it out accurately.
The reproduction steps are particularly important, as the more easily we can
reproduce it, the faster we can fix the bug! It's also helpful to have the
output of `enso --version`, as that will let us know if the bug is Operating
System or Architecture specific.
### Turning on verbose logs
Sometimes, it is helpful to attach a verbose log to your bug report. The way to
enable verbose logging depends on which version of Enso you are using. For a
standalone distribution (`.exe` on Windows, `.AppImage` on Linux), you can
enable verbose logging by passing `-debug.verbose` option. If you are starting
the `project-manager`, or language server separately, then pass
`--log-level trace` option. With verbose logging, there are a lot of messages
printed to the standard output, and it is possible that on slower terminal
emulators this will clog the terminal and hence the whole backend. To avoid
this, we recommend redirecting the output to `/dev/null`, via a command like
`enso -debug.verbose > /dev/null 2>&1`.
The logs are kept in a central location `$ENSO_DATA_DIRECTORY/log` - on Linux,
they are in `$XDG_DATA_HOME/enso/log` (usually `~/.local/share/enso/log`), and
on Windows they are in `%APPDATA%\enso\log`, see
[distribution.md](distribution/distribution.md) for details. The log level name
consists of the timestamp of the log file creation. There is no automatic log
rotation, so you may want to delete the old logs from time to time.
## Hacking on Enso
This will get you up and running for Enso development, with only a minimal
amount of setup required. Enso's build system is fairly simple, allowing you to
bootstrap the compiler as long as you have a minimal set of tools.
### Design Documentation
If you're going to start contributing to Enso, it is often a good idea to take a
look at the design documentation for the language. These files explain provide
both a rigorous specification of Enso's design, but also insight into the _why_
behind the decisions that have been made.
These can be found in [`docs/`](README.md), and are organised by the part of the
compiler that they relate to.
### System Requirements
The following operating systems are supported for developing Enso:
- Windows 10
- macOS 10.14 and above
- Linux 4.4 and above
Currently, we support `x86_64` (all mentioned OS) and `arm64` (Mac only)
architectures. You may be able to develop Enso on other systems, but issues
arising from unsupported configurations will not be fixed by the core team.
In order to build and run Enso you will need the following tools:
- [NodeJS](https://nodejs.org/) with the latest LTS version. We recommend
installing
[a Node version manager that automatically picks up the correct version](https://github.com/shadowspawn/node-version-usage#supporting-products),
like [fnm](https://github.com/Schniz/fnm).
- [sbt](https://www.scala-sbt.org/) with the same version as specified in
[`project/build.properties`](../project/build.properties).
- [Maven](https://maven.apache.org/) with version at least 3.6.3.
- [GraalVM](https://www.graalvm.org/) with the same version as described in the
[`build.sbt`](../build.sbt) file, configured as your default JVM. GraalVM is
distributed for different Java versions, so you need a GraalVM distribution
for the same Java version as specified in [`build.sbt`](../build.sbt).
- [Flatbuffers Compiler](https://google.github.io/flatbuffers) with version
1.12.0.
- [Rustup](https://rustup.rs), the rust toolchain management utility.
- On MacOS and Linux, the `tar` command is required for running some tests. It
should be installed by default on most distributions.
- On Windows, the `run` command must be run in the latest version of
`Powershell` or in `cmd`.
- If you want to be able to build the Launcher Native Image, you will need a
native C compiler for your platform as described in the
[Native Image Prerequisites](https://www.graalvm.org/reference-manual/native-image/#prerequisites).
On Linux that will be `gcc`, on macOS you may need `xcode` and on Windows you
need to configure the Developer Command Prompt for Microsoft Visual C++ for
the x64 architecture.
Managing multiple JVM installations can be a pain, so you can consider using
helper tools for that. We recommend:
- [Jenv](http://www.jenv.be/)
- or [sdkman](https://sdkman.io/)
**For users of M1 Mac**: installing GraalVM on M1 Mac requires manual actions,
please refer to a [dedicated documentation](./graalvm-m1-mac.md).
**For users of MacOS Monterey and later**: building desktop IDE currently
requires Python 2 installed in the system. It can be installed using the
following commands:
```sh
brew install pyenv
pyenv install 2.7.18
pyenv global 2.7.18
export PYTHON_PATH=$(pyenv root)/shims/python
```
The flatbuffers `flatc` compiler can be installed from the following locations:
- Using the `conda` package manager (`conda install flatbuffers`). This will
work on all platforms, but requires some knowledge of `conda` and how its
environments work.
- Windows users can download binaries directly from the flatbuffers github
[releases](https://github.com/google/flatbuffers/releases).
- MacOS users can install it via homebrew (`brew install flatbuffers`).
### Getting the Sources
Given you've probably been reading this document on GitHub, you might have an
inkling where to look!. You can clone Enso using two methods:
- **Via HTTPS:** We recommend you only use HTTPS if checking out the sources as
read-only.
```
git clone https://github.com/enso-org/enso.git
```
- **Via SSH:** For those who plan on regularly making direct commits, cloning
over SSH may provide a better user experience (but requires setting up your
SSH Keys with GitHub).
```
git clone git@github.com:enso-org/enso.git
```
### Getting Set Up (Rust)
The Rust code in this repository requires a specific nightly rust toolchain, as
defined by [rust-toolchain](../rust-toolchain.toml) override file. The `rustup`
will automatically download the appropriate compiler version along with the
necessary components.
Please consult the [GUI Contribution Guide](../app/gui/docs/CONTRIBUTING.md) to
learn details on setting your system up. Quick summary:
```bash
enso$ rustup toolchain install stable # Stable toolchain required for the following tools.
enso$ cargo +stable install wasm-pack # Install the wasm-pack toolkit.
enso$ cargo +stable install cargo-watch # To enable `./run wasm watch` utility
```
The previous three steps shall be enough to build the IDE via
`./run wasm build run wasm build --wasm-profile dev`.
### Using Cargo Watch Plus
Currently, `cargo-watch` has
[many issues](https://github.com/enso-org/cargo-watch-plus), including not
working on modern macOS properly. Thus, we've developed a replacement, the
[Cargo Watch Plus](https://github.com/enso-org/cargo-watch-plus). To use it,
simply export the `USE_CARGO_WATCH_PLUS=1` in your shell and the build system
will pick it up instead of the `cargo-watch`.
### Getting Set Up (JVM)
In order to properly build the `runtime` component, the JVM running SBT needs to
have some dependency JARs available in its module path at startup. To ensure
they are available, before running any compilation or other tasks, these
dependencies should be prepared. To do so, run the following command in the
repository root directory:
```bash
sbt bootstrap
```
It is preferred to not run this command from the sbt shell, but in batch mode,
because SBT has to be launched again anyway to pick up these JARs at startup.
Bootstrap has to be run only when building the project for the first time
**and** after each change of Graal version.
### Getting Set Up (Documentation)
We enforce automated formatting of all of our documentation and configuration
using the fairly common [prettier](https://prettier.io) automatic formatter. You
can install prettier for our project by running the following command:
```bash
npm install
```
This does, however, mean that you have to have node installed on your system.
Please follow the guidelines [above](#getting-set-up-rust) to install node if
you have not already done so.
The version if prettier is forced by our
[`package-lock.json`](../package-lock.json) in order for us to make formatting
bumps all at once.
You can format all of our documentation and configuration as follows:
```bash
npx prettier --write
```
### Building Enso
There are multiple projects in this repository, but all can be built, run and
tested using `sbt`. As long as your configuration is correct, with the correct
versions of SBT, Rust and GraalVM, the same steps can be followed on all of our
supported platforms (Linux, MacOS and Windows).
SBT will handle downloading and building library dependencies as needed, meaning
that you don't need to handle any of this manually.
**Please note** that at the current time, the Windows build of GraalVM is in an
experimental state. This means that while it may function, we are not intending
to provide work-arounds for building on that platform while it is still in an
unstable state.
#### Building Enso Components
In order to build a specific component (e.g. `runtime`), please follow the
following steps.
1. Enter the sbt shell in the repository root directory by typing `sbt`.
2. Change to the project you are concerned with (in our case `runtime`) by
executing `project runtime`.
3. Execute `compile` in order to compile the project in question. This will
compile the project and all its dependencies as necessary.
You can substitute both `bench` and `test` for `compile` in step 3, and the sbt
shell will execute the appropriate thing. Furthermore we have `testOnly` and
`benchOnly` that accept a glob pattern that delineates some subset of the tests
or benchmarks to run (e.g. `testOnly *FunctionArguments*`).
#### Building the Interpreter CLI Fat Jar
In order to build a fat jar with the CLI component, run the `assembly` task
inside the `runner` subproject:
```bash
sbt "engine-runner/assembly"
```
This will produce an executable `runner.jar` fat jar and a `runtime.jar` fat jar
in the repository root. The `runner.jar` depends only on the `runtime.jar` and a
vanilla GraalVM distribution.
#### Building the Project Manager Fat Jar
In order to build a fat jar with the Project Manager component, run the
`assembly` task on the `project-manager` subproject:
```bash
sbt "project-manager/assembly"
```
This will produce a `project-manager` fat jar and a `runtime.jar` fat jar in the
repository root.
#### Building the Launcher Native Binary
If you want to build the native launcher binary, you need to ensure that the
Native Image component is installed in your GraalVM distribution. To install it,
run:
```bash
/bin/gu install native-image
```
Then, you can build the launcher using:
```bash
sbt launcher/buildNativeImage
```
#### Passing Debug Options
GraalVM provides some useful debugging options, including the ability to output
the compilation graph during JIT optimisation, and the ASM generated by the JIT.
However, as we don't want these things polluting our standard builds, we provide
a helper SBT command `withDebug` to allow for passing these options. It supports
the following flags:
- `--dumpGraphs`: This dumps the IGV (read about
[Enso tooling for IGV](../tools/enso4igv/README.md)) graphs for the program to
allow for manual analysis and discovery of optimisation failures.
- `--showCompilations`: Prints the truffle compilation trace information.
- `--printAssembly`: Prints the assembly output from the HotSpot JIT tier.
- `--debugger`: Launches the JVM with the remote debugger enabled.
For more information on this sbt command, please see
[WithDebugCommand.scala](../project/WithDebugCommand.scala).
It is used as an addendum to the basic sbt command you want to run (e.g. `test`
from above). The format is `withDebug COMMAND [OPTIONS...]`, and if you need to
pass any additional options to `COMMAND` you must do so following a `--`. For
example:
```
withDebug run --dumpGraphs --printAssembly -- --run MyFile.enso
withDebug benchOnly --showCompilations -- RecursionBenchmark
```
Step by step debugging can be triggered as
```
sbt:runtime> withDebug testOnly --debugger -- *FavoriteTest*
```
One can debug `project-manager` code by executing
```
sbt:project-manager> withDebug run --debugger
```
read more about [debugging Java & Enso code](debugger/README.md).
#### Working with Assembly
In order to examine the assembly generated by GraalVM and HotSpot you need to
provide your JVM install with a dynamic library that supports the dumping of
assembly. It can be acquired for MacOS and Linux
[here](https://github.com/liuzhengyang/hsdis/), and for windows from
[here](http://fcml-lib.com/). There are other methods to acquire it, as well, so
please choose one best suited for you.
Once you have a copy of the dynamic library, it needs to be placed in
`$JVM_HOME/lib/server`.
#### Native Image
Native image is a capability provided alongside GraalVM that allows the
generation of native executables from JVM language programs (such as the Enso
interpreter itself). However, it results in significantly degraded peak
performance, so it is not part of our roadmap currently.
If you would like to experiment with it, you can execute the `buildNativeImage`
command in the sbt shell while inside the `runner` project. Please note that
while the command is available at the moment, and you are welcome to
[report an issue](https://github.com/enso-org/enso/issues/new?assignees=&labels=Type%3A+Bug&template=bug-report.md&title=)
with the functionality, any bugs you report will _not_ be considered high
priority.
**WE CURRENTLY DO NOT SUPPORT THE NATIVE IMAGE BUILD.**
#### Using IntelliJ
Internally, most of the developers working on the Enso project use IntelliJ as
their primary IDE. To that end, what follows is a basic set of instructions for
getting the project into a working state in IntelliJ.
1. Clone the project sources.
2. Open IntelliJ
3. File -> New -> Project From Existing Sources.
4. Navigate to the directory into which you cloned the project sources. By
default this will be called `enso`. Select the directory, and not the
`build.sbt` file it contains.
5. In the 'Import Project' dialogue, select 'Import project from external
model' and choose 'sbt'.
6. Where it says 'Download:', ensure you check both 'Library Sources' and 'sbt
sources'.
7. In addition, check the boxes next to 'Use sbt shell:' such that it is used
both 'for imports' and 'for builds'.
8. Disallow the overriding of the sbt version.
9. Under the 'Project JDK' setting, please ensure that it is set up to use a
GraalVM version as described in [System requirements](#system-requirements).
You may need to add it using the 'New' button if it isn't already set up.
10. Click 'Finish'. This will prompt you as to whether you want to overwrite the
`project` folder. Select 'Yes' to continue. The Enso project will load up
with an open SBT shell, which can be interacted with as described above. You
will want to use scalafmt for formatting of Scala code, and install Google
Java Format for formatting Java code. For more information see the relevant
[Style Guides](style-guide/README.md).
Depending on the version of GraalVM with which you are working, you may be
required to add the following flags to the per-module overrides for IntelliJ's
java compiler in order for it to not show spurious errors. This is because some
versions of GraalVM export their own closed version of `com.oracle.truffle.api`
that IntelliJ picks up preferentially to the version we use for development. You
can find these options in
`Preferences -> Build, Execution, Deployment -> Compiler -> Java Compiler`.
```
--add-exports org.graalvm.truffle/com.oracle.truffle.api=ALL-UNNAMED
--add-exports org.graalvm.truffle/com.oracle.truffle.api.debug=ALL-UNNAMED
--add-exports org.graalvm.truffle/com.oracle.truffle.api.dsl=ALL-UNNAMED
--add-exports org.graalvm.truffle/com.oracle.truffle.api.exception=ALL-UNNAMED
--add-exports org.graalvm.truffle/com.oracle.truffle.api.frame=ALL-UNNAMED
--add-exports org.graalvm.truffle/com.oracle.truffle.api.instrumentation=ALL-UNNAMED
--add-exports org.graalvm.truffle/com.oracle.truffle.api.interop=ALL-UNNAMED
--add-exports org.graalvm.truffle/com.oracle.truffle.api.io=ALL-UNNAMED
--add-exports org.graalvm.truffle/com.oracle.truffle.api.library=ALL-UNNAMED
--add-exports org.graalvm.truffle/com.oracle.truffle.api.memory=ALL-UNNAMED
--add-exports org.graalvm.truffle/com.oracle.truffle.api.nodes=ALL-UNNAMED
--add-exports org.graalvm.truffle/com.oracle.truffle.api.object=ALL-UNNAMED
--add-exports org.graalvm.truffle/com.oracle.truffle.api.profiles=ALL-UNNAMED
--add-exports org.graalvm.truffle/com.oracle.truffle.api.source=ALL-UNNAMED
--add-exports org.graalvm.truffle/com.oracle.truffle.api.utilities=ALL-UNNAMED
```
However, as mentioned in the [Troubleshooting](#troubleshooting) section below,
the forked nature of execution in the SBT shell means that we can't trivially
make use of the IntelliJ debugger. In order to get debugging working, you will
need to follow these steps:
1. Go to Run -> Edit Configurations.
2. Click the `+` button in the header of the 'Run/Debug Configurations' dialogue
that pops up.
3. Select 'Remote' and name the new configuration appropriately.
4. In the options for that configuration select 'Listen to remote JVM' under
'Debugger mode:'
5. Where it provides the command-line arguments for the remote JVM, copy these
and add them to `truffleRunOptions` in [`build.sbt`](build.sbt). Remove the
portion of these options after `suspend=y`, including the comma. They are
placeholders that we don't use.
6. Alternatively, certain tasks, such as `run`, `benchOnly` and `testOnly` can
be used through the `withDebug` SBT command. For this to work, your remote
configuration must specify the host of `localhost` and the port `5005`. The
command syntax is `withDebug --debugger TASK_NAME -- TASK_PARAMETERS`, e.g.
`withDebug --debugger testOnly -- *AtomConstructors*`.
7. Now, when you want to debug something, you can place a breakpoint as usual in
IntelliJ, and then execute your remote debugging configuration. Now, in the
SBT shell, run a command to execute the code you want to debug (e.g.
`testOnly *CurryingTest*`). This will open the standard debugger interface
and will allow you to step through your code.
**Please be careful** to ensure that you don't commit these changes to the sbt
configuration as they are specific to your machine.
#### Troubleshooting
If you are having issues building Enso, please check the list below before
filing an issue with us.
- **`StackOverflowError` During Compilation:** Please ensure that your version
of sbt is respecting the project's `.jvmopts` settings. We make significant
use of recursion when expanding macros for the parser, and these require use
of additional stack. Alternatively, you can explicitly pass `-Xss8M` to the
`sbt` invocation.
- **Debugging Not Working:** The sbt tasks run the invoked programs in a forked
JVM. This means that to attach a debugger to it you need to use the JVM remote
debugging support. Follow [Enso debugging instructions](debugger/README.md) or
see the [Using IntelliJ](#using-intellj) section for instructions.
If your problem was not listed above, please
[file a bug report](https://github.com/enso-org/enso/issues/new?assignees=&labels=Type%3A+Bug&template=bug-report.md&title=)
in our issue tracker and we will get back to you as soon as possible.
### Testing Enso
Running the tests for the JVM enso components is as simple as running
`sbt / test`. To test the Rust components you can run `./run wasm test`.
#### Testing Enso Libraries
To test the libraries that are shipped with Enso you need to first build the
engine, the easiest way to do so is to run `sbt buildEngineDistribution`. That
will create a distribution in the directory `built-distribution`. The engine
runner that can be used for running the tests is located at
`built-distribution/enso-engine--linux-amd64/enso-/bin/enso`
(or `enso.bat` for Windows).
To run the tests you can run the following commands (where `enso` refers to the
built runner executable as explained above):
```bash
enso --run test/Tests # for the Base library
enso --run test/Geo_Tests
enso --run test/Table_Tests
```
Or to run just a single test (e.g., `Duration_Spec.enso`):
```bash
enso --in-project test/Tests --run test/Tests/src/Data/Time/Duration_Spec.enso
```
The Database tests will by default only test the SQLite backend, to test other
backends see
[`test/Table_Tests/src/Database/README.md`](../test/Table_Tests/src/Database/README.md)
for information on how to configure them.
The Base tests rely in a few places on the system language. On Linux you can set
the `LANG` environment variable to `C` to make sure that the language is
configured correctly and run the tests as following:
```bash
LANG=C enso --run test/Tests
```
#### Test Dependencies
To run all the stdlib test suites, set `CI=true` environment variable:
```bash
env CI=true enso --run test/Tests/
```
For more details about the CI setup, you can check the
`.github/workflows/scala.yml` GitHub workflow.
### Running Enso
The language interpreter can be started by the `bin/enso` launcher script
located inside of the Enso runtime distribution. Use the following `sbt` command
to compile necessary bits (see
[Building the Interperter CLI Fat Jar](#building-the-interpreter-cli-fat-jar))
and generate the Enso distribution:
##### Bash
```bash
$ sbt buildEngineDistribution
$ sbt runEngineDistribution --help
```
Engine package created at
built-distribution/enso-engine-0.0.0-dev-linux-amd64/enso-0.0.0-dev - use it or
the `sbt runEngineDistribution` command to invoke Enso.
##### PowerShell
```powershell
sbt.bat buildEngineDistribution
sbt.bat runEngineDistribution --help
```
One can use the `runEngineDistribution` command or execute the launcher:
```bash
$ built-distribution/enso-engine-0.0.0-dev-linux-amd64/enso-0.0.0-dev/bin/enso
```
Detailed information on the flags it supports can be shown with the `--help`
flag, but the primary functionality is as follows:
- `--new PATH`: Creates a new Enso project at the location specified by `PATH`.
- `--run PATH`: Executes the interpreter on the Enso source specified by `PATH`.
In this case, `PATH` must point to either a standalone Enso file or an Enso
project.
##### Bash
```bash
distribution/bin/enso --new ~/Hello
distribution/bin/enso --run ~/Hello
Hello, World!
```
##### PowerShell
```bash
distribution/bin/enso.bat --new ~/Hello
distribution/bin/enso.bat --run ~/Hello
Hello, World!
```
#### Running IDE
You can start [IDE](https://github.com/enso-org/enso/tree/develop/gui) with a
development version of the language server. IDE executable has
`--external-backend` flag that switches off the bundled backend. That requires
you to run the project manager process yourself. Running development version of
the IDE is also possible via the `./run` script in the root of the repository:
```bash
enso$ ./run gui watch --skip-wasm-opt
```
To build the `project-manager` one needs to launch `sbt` - one way to do it is
to execute `./run backend sbt`. When in the _sbt prompt_ one can request
compilation of the `project-manager`:
```bash
sbt:enso> buildProjectManagerDistribution
```
When the command is completed, a development version of the project manager will
have appeared in the `built-distribution` directory.
Project manager is there to wait for the IDE to connect to it and then launch
the engine with its embedded language server. To build the engine issue
following command in the _sbt prompt_:
```bash
sbt:enso> buildEngineDistribution
```
Once all the components are assembled, it is time to execute them in
orchestration. One can pass following environment variables to
`project-manager`:
- `ENSO_JVM_OPTS` to for example turn
[debugging of the Engine runtime](debugger/README.md) on
- `ENSO_JVM_PATH` to force a fixed GraalVM to execute the engine/language server
process on
- `ENSO_ENGINE_PATH` the path to engine/language server as created by
`buildEngineDistribution`, usually
`/built-distribution/enso-engine-0.0.0-dev--/enso-0.0.0-dev/`
One doesn't need to deal with these options directly, there is an _sbt command_
to orchestrate them all:
```bash
sbt:enso> runProjectManagerDistribution
```
The above command invokes `buildProjectManagerDistribution`,
`buildEngineDistribution` and then defines `ENSO_ENGINE_PATH` to connect them
together and also specifies the `ENSO_JVM_PATH` to the JVM `sbt` process runs
on.
There also is a simple way to [debug](debugger/README.md). When adding `--debug`
option to the _sbt command_:
```bash
sbt:enso> runProjectManagerDistribution --debug
```
the system also sets
`ENSO_JVM_OPTS=-agentlib:jdwp=transport=dt_socket,address=5005`. Just
[configure your Java IDE](debugger/README.md) to listen on port 5005 before
invoking the command and you'll be able to debug the engine launched by the
project manager.
To summarize, these are the steps required to run IDE with the development
version of the language server:
```bash
enso$ ./run gui watch --skip-wasm-opt
```
together with that also (after launching `./run backend sbt`) following _sbt
command_:
```bash
sbt:enso> runProjectManagerDistribution
```
#### Language Server Mode
The Language Server can be run using the `--server` option. It requires also a
content root to be provided (`--root-id` and `--path` options). Command-line
interface of the runner prints all server options when you execute it with
`--help` option.
Below are options uses by the Language Server:
- `--server`: Runs the Language Server
- `--root-id `: Content root id. The Language Server chooses one randomly,
so any valid UUID can be passed.
- `--path `: Path to the content root.
- `--interface `: Interface for processing all incoming connections.
Default value is 127.0.0.1
- `--rpc-port `: RPC port for processing all incoming connections. Default
value is 8080.
- `--data-port `: Data port for visualization protocol. Default value
is 8081.
To run the Language Server on 127.0.0.1:8080 type:
```bash
distribution/bin/enso \
--server \
--root-id 3256d10d-45be-45b1-9ea4-7912ef4226b1 \
--path /tmp/content-root
```
If you want to provide a socket that the server should listen to, you must
specify the following options:
- `--interface`: The interface on which the socket will exist (e.g. `0.0.0.0`).
- `--port`: The port on `interface` where the socket will be opened (e.g. `80`).
## Pull Requests
Pull Requests are the primary method for making changes to Enso. GitHub has
[fantastic documentation](https://help.github.com/articles/about-pull-requests/)
on using the pull request feature. Enso uses the 'fork-and-pull' model of
development. It is as described
[here](https://help.github.com/articles/about-collaborative-development-models/)
and involves people pushing changes to their own fork and creating pull requests
to bring those changes into the main Enso repository.
Please make all pull requests against the `develop` branch.
- We run CI on all contributions to Enso, but it's still useful for you to run
the tests yourself locally first! This can be done by running `test` in the
`enso` project in sbt.
- Additionally, please ensure that your code conforms to the Enso style guides,
particularly the [Scala Style Guide](./style-guide/scala.md) and the
[Java Style Guide](./style-guide/java.md).
Make sure you perform these checks before _every_ pull request. You can even add
[git hooks](https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks) before
every push to make sure that you can't forget.
- Every pull request to the Enso repository is reviewed by a member of the core
team! You'll get assigned a reviewer based on the areas your PR touches, but
please feel free to ask for a specific person if you've worked with them in a
specific area before!
- If you have questions, or would like to begin the review process before your
PR is 'done', please use the
[Draft Pull Requests](https://github.blog/2019-02-14-introducing-draft-pull-requests/)
feature on GitHub. Doing so will allow you to make use of our CI
infrastructure as part of your development process.
Once the reviewer approves your pull request it will be tested by our continuous
integration provider before being merged. If we request changes to your PR,
please feel free to discuss the suggestions and comments! We can only achieve
the best results through open collaboration.
## Documentation
Documentation improvements are very welcome! For now, the main documentation
available is the _developer_ documentation for the language, which can be found
at the [dev docs site](https://enso.org/docs/developer). The source for this
documentation is found in the [`docs/`](.) folder, and can be altered from
there.
Documentation pull requests will be reviewed in exactly the same way as normal
pull requests.
To find documentation-related issues, sort by the
[Category: Documentation](hhttps://github.com/enso-org/enso/labels/Category%3A%20Documentation)
label.
## Issue Triage
Sometimes issues can be left open long after the bug has been fixed. Other
times, a bug might go stale because something has changed in the meantime.
It can be helpful to go through older bug reports and make sure that they are
still valid. Load up an older issue, double check that it's still true, and
leave a comment letting us know if it is or is not. The
[least recently updated](https://github.com/enso-org/enso/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-asc)
sort is good for finding issues like this.
Contributors with sufficient permissions can help by adding labels to help with
issue triage.
If you're looking for somewhere to start, take a look at the
[Difficulty: Beginner](https://github.com/enso-org/enso/labels/Difficulty%3A%20Beginner)
issue label, as well as the
[Status: Help Wanted](https://github.com/enso-org/enso/labels/Status%3A%20Help%20Wanted)
and
[Status: Good First Issue](https://github.com/enso-org/enso/labels/Status%3A%20Good%20First%20Issue)
labels.
## Out-of-Tree Contributions
As helpful as contributing to Enso directly is, it can also be just as helpful
to contribute in other ways outside this repository:
- Answer questions in the [Discord](https://chat.luna-lang.org) or on
[StackOverflow](https://stackoverflow.com/questions/tagged/enso).
## Helpful Documentation and Links
For people new to Enso, and just starting to contribute, or even for more
seasoned developers, some useful places to look for information are:
- The [design documentation](./README.md).
- The community! Don't be afraid to ask questions.