Facebook AI Research Sequence-to-Sequence Toolkit written in Python.
Go to file
alexeib 2409d5a36e refactor dataclass related files, add proper types for static checkin… (#1371)
Summary:
- refactor dataclass/ hierarchy to make it a bit more sane (while avoiding circular references)
- add top level FairseqConfig
- change typehints to reflect the correct config type if it is known

Pull Request resolved: https://github.com/fairinternal/fairseq-py/pull/1371

Reviewed By: myleott

Differential Revision: D24469026

Pulled By: alexeib

fbshipit-source-id: 01f68918f761d51ec5216286b8959ad35f41a7b2
2020-10-23 00:07:33 -07:00
.github delete windows build which always fails (#1245) 2020-08-13 15:28:04 -07:00
config Enable Hydra configs in fairseq (#1343) (#1510) 2020-10-20 00:32:26 -07:00
docs Dynamically generate versions based on commit hash (#2774) 2020-10-22 12:51:04 -07:00
examples rename remove_bpe to post_process; add aliasing (#1369) 2020-10-22 16:31:49 -07:00
fairseq refactor dataclass related files, add proper types for static checkin… (#1371) 2020-10-23 00:07:33 -07:00
fairseq_cli refactor dataclass related files, add proper types for static checkin… (#1371) 2020-10-23 00:07:33 -07:00
scripts Apply black+isort (#1357) 2020-10-18 18:14:51 -07:00
tests Enable Hydra configs in fairseq (#1343) (#1510) 2020-10-20 00:32:26 -07:00
.gitignore Dynamically generate versions based on commit hash (#2774) 2020-10-22 12:51:04 -07:00
.gitmodules adding model parallel multihead attention module (#1088) 2020-03-17 17:50:51 -07:00
CODE_OF_CONDUCT.md Update CODE_OF_CONDUCT.md (#1759) 2020-03-04 14:05:25 -08:00
CONTRIBUTING.md Relicense fairseq under MIT license (#786) 2019-07-30 07:48:23 -07:00
hubconf.py Apply black+isort (#1357) 2020-10-18 18:14:51 -07:00
LICENSE Relicense fairseq under MIT license (#786) 2019-07-30 07:48:23 -07:00
pyproject.toml fetch pyproject.toml for building cython codes without pre-installation (#1697) 2020-02-15 20:24:10 -08:00
README.md RXF OS Implementation (#2455) 2020-10-16 14:32:12 -07:00
setup.py Dynamically generate versions based on commit hash (#2774) 2020-10-22 12:51:04 -07:00
train.py Apply black+isort (#1357) 2020-10-18 18:14:51 -07:00



MIT License Latest Release Build Status Documentation Status


Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks. We provide reference implementations of various sequence modeling papers:

List of implemented papers

What's New:

Previous updates

Features:

  • multi-GPU training on one machine or across multiple machines (data and model parallel)
  • fast generation on both CPU and GPU with multiple search algorithms implemented:
  • large mini-batch training even on a single GPU via delayed updates
  • mixed precision training (trains faster with less GPU memory on NVIDIA tensor cores)
  • extensible: easily register new models, criterions, tasks, optimizers and learning rate schedulers

We also provide pre-trained models for translation and language modeling with a convenient torch.hub interface:

en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model')
en2de.translate('Hello world', beam=5)
# 'Hallo Welt'

See the PyTorch Hub tutorials for translation and RoBERTa for more examples.

Requirements and Installation

  • PyTorch version >= 1.4.0
  • Python version >= 3.6
  • For training new models, you'll also need an NVIDIA GPU and NCCL
  • To install fairseq and develop locally:
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./

# on MacOS:
# CFLAGS="-stdlib=libc++" pip install --editable ./
  • For faster training install NVIDIA's apex library:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./
  • For large datasets install PyArrow: pip install pyarrow
  • If you use Docker make sure to increase the shared memory size either with --ipc=host or --shm-size as command line options to nvidia-docker run.

Getting Started

The full documentation contains instructions for getting started, training new models and extending fairseq with new model types and tasks.

Pre-trained models and examples

We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below, as well as example training and evaluation commands.

We also have more detailed READMEs to reproduce results from specific papers:

Join the fairseq community

License

fairseq(-py) is MIT-licensed. The license applies to the pre-trained models as well.

Citation

Please cite as:

@inproceedings{ott2019fairseq,
  title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
  author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
  booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
  year = {2019},
}