Facebook AI Research Sequence-to-Sequence Toolkit written in Python.
Go to file
Junteng Jia 3c1abb59f5
using foreach to reduce kernel (#4904)
* using foreach to reduce kernel

* set reproducibility to looser threshold

* revert optimzer

* update

* update

* update

* update

* update

* update

* update

Co-authored-by: juntengjia <juntengjia@fb.com>
2022-12-16 17:06:21 -08:00
.circleci drop apex/megatron in CI (not used) (#4757) 2022-10-06 11:18:47 +02:00
.github Update release.yml (#4804) 2022-10-17 13:24:58 -04:00
docs run all tests (#4733) 2022-09-23 18:40:50 +02:00
examples Update README.md (#4893) 2022-12-14 09:54:14 -08:00
fairseq using foreach to reduce kernel (#4904) 2022-12-16 17:06:21 -08:00
fairseq_cli data2vec v2.0 (#4903) 2022-12-12 08:53:56 -08:00
hydra_plugins/dependency_submitit_launcher data2vec v2.0 (#4903) 2022-12-12 08:53:56 -08:00
scripts UnitY implementation (#4670) 2022-10-06 19:38:32 -07:00
tests data2vec v2.0 (#4903) 2022-12-12 08:53:56 -08:00
.gitignore Data2vec prelim (#2929) 2022-01-20 00:02:16 -08:00
.gitmodules Remove unused hf/transformers submodule (#1435) 2020-11-16 09:12:02 -08:00
.pre-commit-config.yaml add masked_lm test (#4344) 2022-04-18 14:47:00 -07:00
CODE_OF_CONDUCT.md Update CODE_OF_CONDUCT.md (#1759) 2020-03-04 14:05:25 -08:00
CONTRIBUTING.md Add pre commit config and flake8 config (#2676) 2021-11-24 18:03:37 -08:00
hubconf.py Move dep checks before fairseq imports in hubconf.py (fixes #3093) (#3104) 2021-01-05 12:14:46 -08:00
LICENSE Relicense fairseq under MIT license (#786) 2019-07-30 07:48:23 -07:00
MANIFEST.in Fix sdist install error (#4511) 2022-06-27 09:12:44 -07:00
pyproject.toml Lower numpy version requirement (#4798) 2022-10-14 21:40:11 -04:00
README.md run all tests (#4733) 2022-09-23 18:40:50 +02:00
release_utils.py Auto release (#4455) 2022-06-08 16:23:48 -07:00
RELEASE.md Refactor release.yml (#4475) 2022-06-11 11:49:18 -07:00
setup.cfg fix flake8 issues (#2570) 2021-12-09 02:34:30 -08:00
setup.py data2vec v2.0 (#4903) 2022-12-12 08:53:56 -08:00
train.py Apply black+isort (#1357) 2020-10-18 18:14:51 -07:00



Support Ukraine MIT License Latest Release Build Status Documentation Status CicleCI Status


Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks.

We provide reference implementations of various sequence modeling papers:

List of implemented papers

What's New:

Previous updates

Features:

We also provide pre-trained models for translation and language modeling with a convenient torch.hub interface:

en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model')
en2de.translate('Hello world', beam=5)
# 'Hallo Welt'

See the PyTorch Hub tutorials for translation and RoBERTa for more examples.

Requirements and Installation

  • PyTorch version >= 1.10.0
  • Python version >= 3.8
  • For training new models, you'll also need an NVIDIA GPU and NCCL
  • To install fairseq and develop locally:
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./

# on MacOS:
# CFLAGS="-stdlib=libc++" pip install --editable ./

# to install the latest stable release (0.10.x)
# pip install fairseq
  • For faster training install NVIDIA's apex library:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./
  • For large datasets install PyArrow: pip install pyarrow
  • If you use Docker make sure to increase the shared memory size either with --ipc=host or --shm-size as command line options to nvidia-docker run .

Getting Started

The full documentation contains instructions for getting started, training new models and extending fairseq with new model types and tasks.

Pre-trained models and examples

We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below, as well as example training and evaluation commands.

We also have more detailed READMEs to reproduce results from specific papers:

Join the fairseq community

License

fairseq(-py) is MIT-licensed. The license applies to the pre-trained models as well.

Citation

Please cite as:

@inproceedings{ott2019fairseq,
  title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
  author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
  booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
  year = {2019},
}