open-source-search-engine/DiskPageCache.cpp
Matt Wells 6ba3936d0b various core fixes. need to fix
json parser mem allocation right though.
Added dynamic rdb map ptr allocation
to save memory when you have thousands
of collections.
2014-01-09 11:34:52 -08:00

1285 lines
42 KiB
C++

#undef _XOPEN_SOURCE // needed for pread and pwrite
#define _XOPEN_SOURCE 500
#include "gb-include.h"
#include "DiskPageCache.h"
#include "RdbMap.h" // GB_PAGE_SIZE
#include "Indexdb.h"
// types.h uses key_t type that shmget uses
#undef key_t
#include <sys/ipc.h> // shmget()
#include <sys/shm.h> // shmget()
#define OFF_SIZE 0
#define OFF_SKIP 4
#define OFF_PREV 8
#define OFF_NEXT 12
#define OFF_PTR 16
#define oldshort long
DiskPageCache::DiskPageCache () {
m_numPageSets = 0;
// sometimes db may pass an unitialized DiskPageCache to a BigFile
// so make sure when BigFile::close calls DiskPageCache::rmVfd() our
// m_memOff vector is all NULLed out, otherwise it will core
memset ( m_memOff , 0 , 4 * MAX_NUM_VFDS2 );
m_availMemOff = NULL;
//m_isOverriden = false;
reset();
}
DiskPageCache::~DiskPageCache() {
reset();
}
static char *s_mem = NULL;
static int s_shmid = -1;
void DiskPageCache::reset() {
if ( m_numPageSets > 0 )
log("db: resetting page cache for %s",m_dbname);
for ( long i = 0 ; i < m_numPageSets ; i++ ) {
mfree ( m_pageSet[i], m_pageSetSize[i], "DiskPageCache");
m_pageSet [i] = NULL;
m_pageSetSize[i] = 0;
}
// free all the m_memOffs[] arrays
// free the map that maps this files pages on disk to pages/offs in mem
for ( long i = 0 ; i < MAX_NUM_VFDS2 ; i++ ) {
if ( ! m_memOff [ i ] ) continue;
long size = m_maxPagesInFile[i] * sizeof(long);
mfree ( m_memOff [ i ] , size , "DiskPageCache" );
m_memOff [ i ] = NULL;
}
// and these
if ( m_availMemOff ) {
long size = m_maxAvailMemOffs * sizeof(long);
mfree ( m_availMemOff , size , "DiskPageCache" );
}
// free current one, if exists
if ( s_shmid >= 0 && s_mem ) {
if ( shmdt ( s_mem ) == -1 )
log("disk: shmdt: reset: %s",mstrerror(errno));
s_mem = NULL;
s_shmid = -1;
}
// mark shared mem for destruction
for ( long i = 0 ; m_useSHM && i < m_numShmids ; i++ ) {
int shmid = m_shmids[i];
if ( shmctl ( shmid , IPC_RMID , NULL) == -1 )
log("db: shmctlt shmid=%li: %s",
(long)shmid,mstrerror(errno));
else
log("db: shmctl freed shmid=%li",(long)shmid);
}
m_numPageSets = 0;
m_nextMemOff = 0;
m_upperMemOff = 0;
m_maxMemOff = 0;
m_memAlloced = 0;
m_availMemOff = NULL;
m_numAvailMemOffs = 0;
m_headOff = -1;
m_tailOff = -1;
m_enabled = true;
m_nexti = 0;
m_ramfd = -1;
m_useRAMDisk = false;
m_useSHM = false;
}
bool DiskPageCache::init ( const char *dbname ,
char rdbId,
long maxMem ,
long pageSize,
bool useRAMDisk,
bool minimizeDiskSeeks ) {
// long maxMem ,
// void (*getPages2)(DiskPageCache*, long, char*,
// long, long long, long*,
// long long*),
// void (*addPages2)(DiskPageCache*, long, char*,
// long, long long),
// long (*getVfd2)(DiskPageCache*, long long),
// void (*rmVfd2)(DiskPageCache*, long) ) {
reset();
m_rdbId = rdbId;
bool *tog = NULL;
if (m_rdbId==RDB_INDEXDB ) tog=&g_conf.m_useDiskPageCacheIndexdb;
if (m_rdbId==RDB_POSDB ) tog=&g_conf.m_useDiskPageCachePosdb;
if (m_rdbId==RDB_DATEDB ) tog=&g_conf.m_useDiskPageCacheDatedb;
if (m_rdbId==RDB_TITLEDB ) tog=&g_conf.m_useDiskPageCacheTitledb;
if (m_rdbId==RDB_SPIDERDB ) tog=&g_conf.m_useDiskPageCacheSpiderdb;
if (m_rdbId==RDB_TFNDB ) tog=&g_conf.m_useDiskPageCacheTfndb;
if (m_rdbId==RDB_TAGDB ) tog=&g_conf.m_useDiskPageCacheTagdb;
if (m_rdbId==RDB_CLUSTERDB ) tog=&g_conf.m_useDiskPageCacheClusterdb;
if (m_rdbId==RDB_CATDB ) tog=&g_conf.m_useDiskPageCacheCatdb;
if (m_rdbId==RDB_LINKDB ) tog=&g_conf.m_useDiskPageCacheLinkdb;
m_switch = tog;
bool useSHM = false;
// a quick hacky thing, force them to use shared mem instead of ram dsk
if ( useRAMDisk ) {
useRAMDisk = false;
useSHM = true;
}
// not for tmp cluster
if ( g_hostdb.m_useTmpCluster ) useSHM = false;
// it is off by default because it leaks easily (if u Ctrl+C the process)
if ( ! g_conf.m_useSHM ) useSHM = false;
// right now shared mem only supports a single page size because
// we use s_mem/s_shmid, and if we have a small page size which
// we free, then shmat() may get ENOMEM when trying to get the larger
// of the two page sizes
if ( useSHM && pageSize != GB_INDEXDB_PAGE_SIZE) {char *xx=NULL;*xx=0;}
// don't use it until we figure out how to stop the memory from being
// counted as being the process's memory space. i think we can make
// shmat() use the same mem address each time...
if ( useSHM ) {
log("disk: shared mem currently not supported. Turn off "
"in gb.conf <useSharedMem>");
char *xx=NULL;*xx=0;
}
// save it;
m_useSHM = useSHM;
// clear it
m_numShmids = 0;
// set this
//m_maxAllocSize = 33554432;
// the shared mem page size is a little more than the disk page size
m_spageSize = pageSize + HEADERSIZE;
// . this is /proc/sys/kernel/shmmax DIVIDED BY 2 on titan and gk0 now
// . which is the max to get per call to shmat()
// . making this smaller did not seem to have much effect on speed
long max = 33554432/2;
// make sure it is "pageSize" aligned so we don't split pages
m_maxAllocSize = (max / m_spageSize) * m_spageSize;
// set it up
if ( m_useSHM ) {
// we can only use like 30MB shared mem pieces
long need = maxMem;
shmloop:
// how much to alloc now?
long alloc = need;
// this is /proc/sys/kernel/shmmax on titan and gk0 now
if ( alloc > m_maxAllocSize ) alloc = m_maxAllocSize;
// don't allow anything lower than this because we always
// "swap out" one for another below. that is, we call shmdt()
// to free it then shmat() to reclaim it. otherwise, shmat()
// will run out of memory!!
if ( alloc < m_maxAllocSize ) alloc = m_maxAllocSize;
// get it // SHM_R|SHM_W|SHM_R>>3|SHM_R>>6|...
int shmid = shmget(IPC_PRIVATE, alloc, SHM_R|SHM_W|IPC_CREAT);
// on error, bail
if ( shmid == -1 )
return log("db: shmget: %s",mstrerror(errno));
// don't swap it out (only 2.6 kernel i think)
//if ( shmctl ( shmid , SHM_LOCK , NULL ) )
// return log("db: shmctl: %s",mstrerror(errno));
// log it
log("db: allocated %li bytes shmid=%li",alloc,(long)shmid);
// add it to our list
m_shmids [ m_numShmids ] = shmid;
m_shmidSize [ m_numShmids ] = alloc;
m_numShmids++;
// count it
g_mem.m_sharedUsed += alloc;
// log it for now
//logf(LOG_DEBUG,"db: new shmid id is %li, size=%li",
// (long)shmid,(long)alloc);
// subtract it
need -= alloc;
// get more
if ( need > 0 ) goto shmloop;
}
// a malloc tag, must be LESS THAN 16 bytes including the NULL
char *p = m_memTag;
memcpy ( p , "pgcache-" , 8 ); p += 8;
if ( dbname ) strncpy ( p , dbname , 8 );
// so we know what db we are caching for
m_dbname = p;
p += 8;
*p++ = '\0';
// sanity check, we store bytes used as a short at top of page
//if ( m_pageSize > 0x7fff ) { char *xx = NULL; *xx = 0; }
// . do not use more than this much memory for caching
// . it may go over by like 2% for header information
m_maxMemOff = maxMem ;
// set m_pageSetSize. use this now instead of m_maxPageSetSize #define
long phsize = pageSize + HEADERSIZE;
m_maxPageSetSize = (((128*1024*1024)/phsize)*phsize);
m_pageSize = pageSize;
m_minimizeDiskSeeks = minimizeDiskSeeks;
// we need to keep a count memory of files being cached
if ( m_minimizeDiskSeeks )
m_memFree = m_maxMemOff;
// check for overriding functions
//if ( getPages2 && addPages2 && getVfd2 && rmVfd2 ) {
// // set override flag
// m_isOverriden = true;
// // set override functions
// m_getPages2 = getPages2;
// m_addPages2 = addPages2;
// m_getVfd2 = getVfd2;
// m_rmVfd2 = rmVfd2;
// // return here
// return true;
//}
// for now only indexdb will use the ramdisk
if ( strcmp ( dbname, "indexdb" ) == 0 && useRAMDisk ){
if ( !initRAMDisk( dbname, maxMem ) )
return log ( "db: failed to init RAM disk" );
}
// . use up to 800k for starters
// . it will grow more as needed
if ( ! growCache ( maxMem ) )
return log("db: pagecache init failed: %s.",
mstrerror(g_errno));
// success
return true;
}
// use Linux's ram disk for caching disk pages, in addition to the ram it
// already uses. I would like to be able to pass in a "maxMemForRamDisk" parm
// to its init() function and have it open a single, ram-disk file descriptor
// for writing up to that many bytes.
// then i would like only Indexdb (and later on Datedb) to pass in an 800MB
// "maxMemForRamDisk" value, and, furthermore, i do not want to cache disk
// pages from the indexdb root file, nor, any indexdb file that is larger than
// twice the "maxMemForRamDisk" value (in this case 1.6GB). this will be used
// exclusively for smaller indexdb files to eliminate excessive disk seeks and
// utilize ALL the 4GB of ram in each machine.
// lastly, we need some way to "force" a merge at around midnight when traffic
// is minimal, or when there are 3 or more indexdb files that are less than
// 80% in the indexdb disk page cache. because that means we are starting to
// do a lot of disk seeks.
bool DiskPageCache::initRAMDisk( const char *dbname, long maxMem ){
m_useRAMDisk = true;
if ( !dbname ) {char *xx=NULL; *xx=0;}
// open a file descriptor
char ff [1024];
sprintf ( ff, "/mnt/RAMDisk/%sPageCache", dbname );
// unlink it first
unlink (ff);
m_ramfd = open ( ff, O_RDWR | O_CREAT );
if ( m_ramfd < 0 )
return log ( LOG_WARN,"db: could not open fd in RAMdisk" );
return true;
}
// . this returns true iff the entire read was copied into
// "buf" from the page cache
// . it will move the used pages to the head of the linked list
// . if *buf is NULL we allocate here
void DiskPageCache::getPages ( long vfd ,
char **buf ,
long numBytes ,
long long offset ,
long *newNumBytes ,
long long *newOffset ,
char **allocBuf ,
long *allocSize ,
long allocOff ) {
// check for override function
//if ( m_isOverriden ) {
// //log ( LOG_INFO, "cache: Get Pages [%li] [%li][%lli]",
// // vfd, numBytes, offset );
// m_getPages2 ( this,
// vfd,
// buf,
// numBytes,
// offset,
// newNumBytes,
// newOffset );
// return;
//}
// return new disk offset, assume unchanged
*newOffset = offset;
*newNumBytes = numBytes;
// return if no pages allowed in page cache
if ( m_maxMemOff == 0 ) return;
// or disabled
if ( ! m_enabled ) return;
// disabled at the master controls?
if ( m_switch && ! *m_switch ) return;
// or if minimizeDiskSeeks did not accept the vfd
if ( m_minimizeDiskSeeks && vfd < 0 )
return;
// or if no pages in this vfd
if ( !m_memOff[vfd] )
return;
// debug point
//if ( offset == 16386 && numBytes == 16386 )
// log("hey");
// what is the page range?
long sp = offset / m_pageSize ;
long ep = (offset + (numBytes-1)) / m_pageSize ;
// . sanity check
// . we establish the maxPagesInFile when BigFile::open is called
// by RdbDump. Rdb.cpp calls m_dump.set with a maxFileSize based on
// the mem occupied by the RdbTree. BUT, recs can be added to the tree
// WHILE we are dumping, so we end up with a bigger file, and this
// disk page cache is not prepared for it!
if ( ep >= m_maxPagesInFile[vfd] ) {
// happens because rdbdump did not get a high enough
// maxfilesize so we did not make enough pages! we endedup
// dumping more than what was end the tree because stuff was
// added to the tree while dumping!
log("db: pagecache: Caught get breach. "
"ep=%li max=%li vfd=%li", ep,m_maxPagesInFile[vfd] ,vfd);
return;
//char *xx = NULL; *xx = 0;
}
char *bufPtr = *buf;
char *bufEnd = *buf + numBytes;
// our offset into first page on disk
oldshort start1 = offset - sp * m_pageSize;
// this is for second while loop
oldshort start2 = 0;
if ( ep == sp ) start2 = start1;
// store start pages
while ( sp <= ep ) {
// the page offset in memory
long poff = m_memOff[vfd][sp];
// get a ptr to it
//char *s = getMemPtrFromOff ( poff );
// break if we do not have page in memory
//if ( ! s ) break;
if ( poff < 0 ) break;
// first 2 bytes of page is how many bytes are used in page
oldshort size = 0;
readFromCache( &size, poff, OFF_SIZE, sizeof(oldshort));
//oldshort size = *(oldshort *)(s+OFF_SIZE);
// second set of 2 bytes is offset of data from page boundary
oldshort skip = 0;
readFromCache( &skip, poff, OFF_SKIP, sizeof(oldshort));
//oldshort skip = *(oldshort *)(s+OFF_SKIP);
// debug msg
//log("getPage: pageNum=%li page[0]=%hhx size=%li skip=%li",
// sp,s[HEADERSIZE],(long)size,(long)skip);
// if this page data starts AFTER our offset, it is no good
if ( skip > start1 ) break;
// adjust size by our page offset, we won't necessarily be
// starting our read at "skip"
size -= (start1 - skip);
// if size is 0 or less all cached data was below our offset
if ( size <= 0 ) break;
// . promote this page in the linked list
// . bytes 8-16 of each page in memory houses the
// next and prev ptrs to pages in memory
promotePage ( poff , false );
// allocate the read buffer if we need to
if ( ! *buf ) {
// allocate enough room for allocOff, too
long need = numBytes + allocOff;
char *p = (char *) mmalloc ( need,"PageCacheReadBuf" );
// let FileState know what needs to be freed
*allocBuf = p;
*allocSize = need;
// if couldn't allocate, return now, what's the point
if ( ! p ) return;
// let caller know his new read buffer
*buf = p + allocOff;
// assign the ptrs now
bufPtr = *buf ;
bufEnd = *buf + numBytes;
}
// don't store more than asked for
if ( bufPtr + size > bufEnd ) size = bufEnd - bufPtr;
readFromCache(bufPtr, poff, HEADERSIZE + start1 , size);
//memcpy ( bufPtr , s + HEADERSIZE + start1 , size );
bufPtr += size;
*newOffset += size;
*newNumBytes -= size;
// return if we got it all
if ( bufPtr >= bufEnd ) { m_hits += 1; return; }
// otherwise, advance to next page
sp++;
// and our page relative offset is zero now, iff ep > sp
if ( sp <= ep ) start1 = 0;
// if the cached page ended before the physical page, break out
// because we don't want any holes
readFromCache( &size, poff, OFF_SIZE, sizeof(oldshort));
if ( skip + size < m_pageSize ) break;
//if ( skip + *(oldshort *)(s+OFF_SIZE) < m_pageSize ) break;
}
// now store from tail down
/*
while ( ep > sp ) {
// the page offset in memory
long poff = m_memOff[vfd][ep];
// get a ptr to it
char *s = getMemPtrFromOff ( poff );
// break if we do not have page in memory
if ( ! s ) break;
// first 2 bytes of page is how many bytes are used
oldshort size = *(oldshort *)s;
// second set of 2 bytes is offset from boundary
oldshort skip = *(oldshort *)(s+OFF_SKIP);
// adjust size by our page offset, if not zero
if ( start2 > skip ) size -= (start2 - skip);
// his skip point could be beyond us, too
if ( skip >
// . promote this page in the linked list
// . bytes 8-16 of each page in memory houses the
// next and prev ptrs to pages in memory
promotePage ( s , poff , false );
// don't store more than asked for
if ( bufEnd - size < bufPtr ) size = bufEnd - bufPtr;
memcpy ( bufEnd - size , s + HEADERSIZE + start2 , size );
bufEnd -= size;
*newNumBytes -= size;
// return if we got it all
if ( bufEnd <= bufPtr ) { m_hits += 1; return; }
// if this page had a skip, break out, we don't wany any holes
if ( skip > 0 ) break;
// otherwise, advance to next page
ep--;
}
*/
m_misses += 1;
}
// after you read/write from/to disk, copy into the page cache
void DiskPageCache::addPages ( long vfd,
char *buf,
long numBytes,
long long offset ,
long niceness ){
// check for override function
//if ( m_isOverriden ) {
// m_addPages2 ( this,
// vfd,
// buf,
// numBytes,
// offset );
// return;
//}
// if vfd is -1, then we were not able to add a map for this file
if ( vfd < 0 ) return;
// no NULL ptrs
if ( ! buf ) return;
// return if no pages allowed in page cache
if ( m_maxMemOff == 0 ) return;
// or disabled
if ( ! m_enabled ) return;
// disabled at the master controls?
if ( m_switch && ! *m_switch ) return;
// sometimes the file got unlinked on us
if ( ! m_memOff[vfd] ) return;
// what is the page range?
long long sp = offset / m_pageSize ;
// point to it
char *bufPtr = buf;
char *bufEnd = buf + numBytes;
// . do not add first page unless right on the boundary
// . how much did we exceed the boundary by?
oldshort skip = offset - sp * m_pageSize ;
long size = m_pageSize - skip;
// now add the remaining pages
while ( bufPtr < bufEnd ) {
// breathe
QUICKPOLL(niceness);
// ensure "size" is not too big
if ( bufPtr + size > bufEnd ) size = bufEnd - bufPtr;
// add the page to memory
addPage ( vfd , sp , bufPtr , size , skip );
// advance
bufPtr += size;
sp++;
size = m_pageSize;
skip = 0;
}
}
char *DiskPageCache::getMemPtrFromOff ( long off ) {
if ( off < 0 ) return NULL; // NULL means not in DiskPageCache
// get set number
long sn = off / m_maxPageSetSize ;
// get offset from within the chunk of memory (within the set)
//long poff = off & (m_maxPageSetSize-1);
long poff = off % (m_maxPageSetSize);
// . sanity check
// . offset must be multiple of m_pageSize+HEADERSIZE, no cuz we skip
// ahead X bytes of a page set boundary...
//long off2 = off - sn * m_maxPageSetSize;
//if ( off2 != 0 && (off2% (m_pageSize+HEADERSIZE)) != 0) {
// char *xx = NULL; *xx = 0; }
// if we are not in the first page set, advance by one chunk
// because the first page is often mapped to by a truncated poff from
// the previous page set
//if ( sn > 0 && poff == 0 ) poff += m_pageSize + HEADER_SIZE;
// if it would breech our PAGE_SET, up it
if ( poff + m_pageSize + HEADERSIZE > m_maxPageSetSize ) {poff=0; sn++;}
// sanity check
if ( sn >= m_numPageSets ) { char *xx = NULL; *xx = 0; }
// return the proper ptr
return &m_pageSet[sn][poff];
}
// skip is offset of "page" into physical page
void DiskPageCache::addPage(long vfd,long pageNum,char *page,long size,
oldshort skip){
// . if pageNum is beyond the file size
// . see the explanation for this same error msg above
if ( pageNum >= m_maxPagesInFile[vfd] ) {
// this has happened during a merge before!! (at startup)
//log(LOG_LOGIC,"db: pagecache: addPage: Bad engineer. "
// happens because rdbdump did not get a high enough
// maxfilesize so we did not make enough pages! we endedup
// dumping more than what was end the tree because stuff was
// added to the tree while dumping!
log("db: pagecache: Caught add breach. "
"pageNum=%li max=%li db=%s",
pageNum,m_maxPagesInFile[vfd],m_dbname);
return;
}
// debug msg
//log("addPage: pageNum=%li page[0]=%hhx size=%li skip=%li",
// pageNum,page[0],size,(long)skip);
long poff = m_memOff [ vfd ] [ pageNum ] ;
// p will be NULL if page does not have any data in memory yet
//char *p = getMemPtrFromOff ( poff );
// if page already exists in cache and needs data on the boundaries
// we may be able to supply it
if ( poff >= 0 ) {
// debug msg
//log("ENHANCING off=%li",poff);
enhancePage ( poff , page , size , skip );
return;
}
// don't add any more if we're minimizing disk seeks and are full
if ( m_minimizeDiskSeeks &&
m_numPagesPresentOfFile[vfd] >= m_maxPagesPerFile[vfd] )
return;
// top:
// try to get an available memory spot from list
if ( m_numAvailMemOffs > 0 ) {
poff = m_availMemOff [ --m_numAvailMemOffs ] ;
// debug msg
//log("RECYCLING off=%li",poff);
}
// can we grab a page from memory without having to grow?
else if ( m_nextMemOff + m_pageSize + HEADERSIZE < m_upperMemOff ) {
poff = m_nextMemOff;
m_nextMemOff += m_pageSize + HEADERSIZE;
// debug msg
//log("CLAIMING off=%li",poff);
}
// . we now grow everything at start
// . otherwise, try to grow the page cache by 200k
//else if ( m_nextMemOff + m_pageSize + HEADERSIZE < m_maxMemOff ) {
// // grow by 100k worth of pages each time
// if ( ! growCache ( m_upperMemOff + 200*1024 ) ) return;
// goto top;
//}
// this should never happen. Since in minimizeDiskSeek we have
// an exact number of pages per file
else if ( m_minimizeDiskSeeks ) {
char *xx = NULL; *xx = 0;
}
// if no freebies left, take over the tail page in memory
else {
poff = m_tailOff;
//char *p = getMemPtrFromOff ( poff );
excisePage ( poff );
// . the file no longer owns him
// . this is a long ptr to &m_bufOffs[vfd][pageNum]
// . if that vfd no longer exists it should have added all its
// pages to m_avail list
//long tmp = -1;
long *memOffPtr = NULL;
readFromCache(&memOffPtr, poff, OFF_PTR, sizeof(long*));
*memOffPtr = -1;
//m_cacheBuf.writeToCache(poff, OFF_PTR, &tmp, sizeof(long));
// testing
//m_cacheBuf.readFromCache ( &tmp, poff+OFF_PTR, sizeof(long) );
//if ( tmp != -1 ){
//char *xx=NULL; *xx=0;}
//**(long **)(p+OFF_PTR) = -1;
// debug msg
//log("KICKINGTAIL off=%li",poff);
}
// sanity check
if ( poff < 0 ) { char *xx = NULL; *xx = 0; }
// get ptr to the page in memory from the memory offset
//p = getMemPtrFromOff ( poff );
// store the size as first 2 bytes
writeToCache(poff, OFF_SIZE, &size, sizeof(oldshort));
// oldshort tmp = 0;
// m_cacheBuf.readFromCache ( &tmp, poff, OFF_SIZE, sizeof(long) );
// if ( tmp != size ){
// char *xx=NULL; *xx=0;}
//*(oldshort *)(p+OFF_SIZE) = size;
writeToCache( poff, OFF_SKIP, &skip, sizeof(oldshort) );
//*(oldshort *)(p+OFF_SKIP) = skip;
// sanity check
if ( size + skip > m_pageSize ) { char *xx = NULL; *xx = 0; }
// store the link information in bytes 8-16
promotePage ( poff , true/*isNew?*/ );
// then store a ptr to m_memOff[vfd][pageNum] so we can set *ptr
// to -1 if they page gets replaced by another
long *memOffPtr = &m_memOff[ vfd ][ pageNum ];
writeToCache( poff, OFF_PTR, &memOffPtr, sizeof(long*));
//*(long **)(p+OFF_PTR) = &m_memOff [ vfd ] [ pageNum ] ;
// then the data from disk (skip over link info)
writeToCache( poff, HEADERSIZE + skip, page, size);
//memcpy ( p + HEADERSIZE + skip , page , size );
// transform mem ptr to offset
if ( !m_useRAMDisk && ! m_useSHM ) {
long off = -1;
char *p = getMemPtrFromOff ( poff );
for ( long i = 0 ; i < m_numPageSets ; i++ ) {
if ( p < m_pageSet[i] ) continue;
if ( p > m_pageSet[i] + m_pageSetSize[i] )
continue;
off = p - m_pageSet[i] + i * m_maxPageSetSize ;
break;
}
// update map
m_memOff [ vfd ] [ pageNum ] = off;
// sanity check
if ( off != poff ) { char *xx=NULL; *xx=0; }
}
else
m_memOff [ vfd ] [ pageNum ] = poff;
// update the header of that page
// we have added the page!
if ( m_minimizeDiskSeeks )
m_numPagesPresentOfFile[vfd]++;
}
// add data from "page" (we just read it from disk or wrote to disk)
// into "p" page in memory
void DiskPageCache::enhancePage (long poff, char *page, long size,
oldshort skip) {
oldshort psize = 0;
readFromCache( &psize, poff, OFF_SIZE, sizeof(oldshort));
//oldshort psize = *(oldshort *)(p+OFF_SIZE);
oldshort pskip = 0;
readFromCache( &pskip, poff, OFF_SKIP, sizeof(oldshort));
//oldshort pskip = *(oldshort *)(p+OFF_SKIP);
// can we add to front of page?
if ( skip < pskip ) {
long diff = pskip - skip;
// . we cored here because page[diff-1] was out of bounds. why?
// . do not allow gap in between cached data, that is, we have
// cached bytes at the end of the page, then we try to cache
// some at the beginning, and it's not contiguous... we are
// not built for that... this can happen when dumping a file,
// if your first reads up to the file end (somewhere in the
// middle of the page) and your second read starts somewhere
// else.... mmmm... i dunno....
if ( skip + size < pskip || diff > size ) {
log("db: Avoided cache gap in %s. diff=%li "
"size=%li pskip=%li skip=%li.",
m_dbname,diff,size,(long)pskip,(long)skip);
return;
}
writeToCache(poff, HEADERSIZE + skip , page , diff);
//memcpy ( p + HEADERSIZE + skip , page , diff );
psize += diff;
pskip -= diff;
writeToCache(poff, OFF_SIZE, &psize, sizeof(oldshort));
//*(oldshort *)(p+OFF_SIZE) = psize ;
writeToCache(poff, OFF_SKIP, &pskip, sizeof(oldshort));
//*(oldshort *)(p+OFF_SKIP) = pskip ;
}
// can we add to end of page?
long pend = pskip + psize;
long end = skip + size;
if ( end <= pend ) return;
long diff = end - pend ;
// if the read's starting point is beyond our ending point, bail,
// we don't want any holes...
if ( diff > size ) return;
writeToCache(poff, HEADERSIZE + pend, page + size - diff, diff);
//memcpy ( p + HEADERSIZE + pend , page + size - diff , diff );
oldshort tmp = psize+diff;
writeToCache(poff, OFF_SIZE, &tmp, sizeof(oldshort));
//*(oldshort *)(p+OFF_SIZE) = (oldshort)psize + diff;
}
// the link information is bytes 8-16 of each page in mem (next/prev mem ptrs)
void DiskPageCache::promotePage ( long poff , bool isNew ) {
if ( isNew ) {
here:
long tmp = -1;
writeToCache(poff, OFF_PREV, &tmp, sizeof(long));
// testing
readFromCache ( &tmp, poff, OFF_PREV, sizeof(long) );
if ( tmp != -1 ){
char *xx=NULL; *xx=0;}
//*(long *)(p + OFF_PREV) = -1 ;// our prev is -1 (none)
writeToCache(poff, OFF_NEXT, &m_headOff, sizeof(long));
//*(long *)(p+OFF_NEXT) = m_headOff;// our next is the old head
// the old head's prev is us
if ( m_headOff >= 0 ) {
writeToCache(m_headOff, OFF_PREV, &poff,
sizeof(long));
//char *headPtr = getMemPtrFromOff ( m_headOff ) ;
//*(long *)(headPtr + OFF_PREV) = poff;
}
// and we're the new head
m_headOff = poff;
// if no tail, we become that, too, we must be the first
if ( m_tailOff < 0 ) m_tailOff = poff;
return;
}
// otherwise, we have to excise
excisePage ( poff );
// and add as new
goto here;
}
// remove a page from the linked list
void DiskPageCache::excisePage ( long poff ) {
// get our neighbors, NULL if none
long prev = 0;
readFromCache(&prev, poff, OFF_PREV, sizeof(long));
//long prev = *(long *)(p + OFF_PREV);
long next = 0;
readFromCache(&next, poff, OFF_NEXT, sizeof(long));
//long next = *(long *)(p + OFF_NEXT);
// if we were the head or tail, then pass it off to our neighbor
if ( poff == m_headOff ) m_headOff = next;
if ( poff == m_tailOff ) m_tailOff = prev;
// our prev's next becomes our old next
if ( prev >= 0 ) {
//char *prevPtr = getMemPtrFromOff ( prev );
writeToCache(prev, OFF_NEXT, &next, sizeof(long));
//*(long *)(prevPtr + OFF_NEXT ) = next;
}
// our next's prev becomes our old prev
if ( next >= 0 ) {
//char *nextPtr = getMemPtrFromOff ( next );
writeToCache(next, OFF_PREV, &prev, sizeof(long));
//long *)(nextPtr + OFF_PREV ) = prev;
}
}
// . grow/shrink m_memOff[] which maps vfd/page to a mem offset
// . returns false and sets g_errno on error
// . called by DiskPageCache::open()/close() respectively
// . fileSize is so we can alloc m_memOff[vfd] big enough for all pgs
long DiskPageCache::getVfd ( long long maxFileSize, bool vfdAllowed ) {
// check for override function
//if ( m_isOverriden ) {
// return m_getVfd2 ( this, maxFileSize );
//}
// for RAMDisks, do not cache disk
// pages from the indexdb root file, nor, any indexdb file that is
// larger than twice the "maxMemForRamDisk" value
if ( m_useRAMDisk && maxFileSize > (m_maxMemOff * 2) ){
log (LOG_INFO,"db: getvfd: cannot cache on RAMDisk files that "
"larger than twice the max mem value. fileSize=%li",
m_maxMemOff);
return -1;
}
long numPages = (maxFileSize / m_pageSize) + 1;
// RESTRICT to only the first m_maxMemOff worth of files,
// starting with the SMALLEST file first. so if maxMemoff is 50MB, and
// we have 5 files that are 10,20,30 & 40MB,
// then we use 10MB for the first file, 20MB of the 2nd BUT only
// 20MB for the 3rd file, and the 4th file does not get any page cache.
// if doing "biased lookups" each file is virtually half the actual
// size, and this allocates page cache appropriately.
// don't to do a page cache for an indexdb0001.dat that is 100GB
// because we'd have to allocate too much mem for the m_memOff[] array
// so for the parital file make sure its less than 1 GB
if ( m_minimizeDiskSeeks && !vfdAllowed ){
log (LOG_INFO,"db: getVfd: cannot cache because minimizing "
"disk seeks. numPages=%li", numPages);
return -1;
}
// . pick a vfd for this BigFile to use
// . start AFTER last pick in case BigFile closed, released its
// m_vfd, a read thread returned and called addPages() using that
// old m_vfd!!!!!!! TODO: can we fix this better?
long i ;
long count = MAX_NUM_VFDS2;
for ( i = m_nexti ; count-- > 0 ; i++ ) {
if ( i >= MAX_NUM_VFDS2 ) i = 0; // wrap
if ( ! m_memOff [ i ] ) break;
}
// bail if none left
if ( count == 0 ) {
g_errno = EBADENGINEER;
log(LOG_LOGIC,"db: pagecache: getvfd: no vfds remaining.");
//char *xx = NULL; *xx = 0;
return -1;
}
// . file size has to be below 2 gigs because m_memOff is only a long
// . if we need to we could transform m_memOff into m_memPageNum
//if ( maxFileSize > 0x7fffffffLL ) {
// g_errno = EBADENGINEER;
// log("DiskPageCache::getVfd: maxFileSize too big");
// return -1;
//}
// assign it
long vfd = i;
// start here next time
m_nexti = i + 1;
// say which cache it is
// alloc the map space for this file
long need = numPages * sizeof(long) ;
long *buf = (long *)mmalloc ( need , m_memTag );
if ( ! buf ) {
log("db: Failed to allocate %li bytes for page cache "
"structures for caching pages for vfd %li. "
"MaxfileSize=%lli. Not enough memory.",need,i,maxFileSize);
return -1;
}
m_memOff [ vfd ] = buf;
m_maxPagesInFile [ vfd ] = numPages;
// keep a tab on the number of pages we can store of the file
if ( m_minimizeDiskSeeks ){
m_numPagesPresentOfFile[vfd] = 0;
if ( m_memFree > numPages * ( HEADERSIZE + m_pageSize ) )
m_maxPagesPerFile[vfd] = numPages;
else
m_maxPagesPerFile[vfd] = m_memFree / ( m_pageSize +
HEADERSIZE );
}
// add it in
m_memAlloced += need;
// debug msg
//log("%s adding %li",m_dbname,need);
// no pages are in memory yet, so set offsets to -1
for ( i = 0 ; i < numPages ; i++ ) m_memOff [ vfd ] [ i ] = -1;
// if minimizing disk seeks then calculate the memory used
if ( m_minimizeDiskSeeks ){
m_memFree -= maxFileSize;
// if the file is bigger than the mem only partially store it
if ( m_memFree < 0 )
m_memFree = 0;
}
// debug msg
//log("ALLOCINGFILE pages=%li",numPages);
return vfd;
}
// when a file loses its vfd this is called
void DiskPageCache::rmVfd ( long vfd ) {
// check for override function
//if ( m_isOverriden ) {
// m_rmVfd2 ( this, vfd );
// return;
//}
// ensure validity
if ( vfd < 0 ) return;
// if 0 bytes are allocated for disk cache, just skip this junk
if ( m_maxMemOff <= 0 ) return;
// this vfd may have already been nuked by call to unlink!
if ( ! m_memOff [ vfd ] ) return;
// add valid offsets used by vfd into m_availMemOff
for ( long i = 0 ; i < m_maxPagesInFile [ vfd ] ; i++ ) {
long off = m_memOff [ vfd ] [ i ];
if ( off < 0 ) continue;
// sanity check
if ( m_numAvailMemOffs > m_maxAvailMemOffs ) {
char *xx = NULL; *xx = 0; }
// debug msg
//log("MAKING off=%li available. na=%li",
// off,m_numAvailMemOffs+1);
// store it in list of available memory offsets so some other
// file can use it
m_availMemOff [ m_numAvailMemOffs++ ] = off;
// remove that page from linked list, too
//char *p = getMemPtrFromOff ( off );
excisePage ( off );
}
// free the map that maps this files pages on disk to pages/offs in mem
long size = m_maxPagesInFile[vfd] * sizeof(long);
mfree ( m_memOff [ vfd ] , size , "DiskPageCache" );
m_memOff [ vfd ] = NULL;
// debug msg
//log("%s rmVfd: vfd=%li down %li",m_dbname,vfd,size);
m_memAlloced -= size;
if ( m_minimizeDiskSeeks ){
m_memFree += m_maxPagesPerFile[vfd] * m_pageSize;
m_maxPagesPerFile[vfd] = 0;
m_numPagesPresentOfFile[vfd] = 0;
}
}
// use "mem" bytes of memory for the cache
bool DiskPageCache::growCache ( long mem ) {
// debug msg
//log("GROWING PAGE CACHE from %li to %li bytes", m_upperMemOff, mem );
// don't exceed the max
if ( mem > m_maxMemOff ) mem = m_maxMemOff;
// bail if we wouldn't be growing
if ( mem <= m_upperMemOff ) return true;
// how many pages? round up.
long npages = mem/(m_pageSize+HEADERSIZE) + 1;
// . we need one "available" slot for each page in the cache
// . this is a list of memory offsets that are available
long oldSize = m_maxAvailMemOffs * sizeof(long) ;
long newSize = npages * sizeof(long) ;
long *a = (long *) mrealloc(m_availMemOff,oldSize,newSize,m_memTag);
if ( ! a ) return log("db: Failed to regrow page cache from %li to "
"%li bytes. Not enough memory.",oldSize,newSize);
m_availMemOff = a;
m_maxAvailMemOffs = npages;
m_memAlloced += (newSize - oldSize);
// debug msg
//log("%s growCache: up %li",m_dbname,(newSize - oldSize));
// how much more mem do we need to alloc?
long need = mem - m_upperMemOff ;
// how big is our last page set?
long size = 0;
char *ptr = NULL;
long i = 0;
if ( m_numPageSets > 0 ) {
// since we allocate everything at init this shouldn't happen
char *xx=NULL; *xx=0;
i = m_numPageSets - 1;
ptr = m_pageSet [ i ];
size = m_pageSetSize [ i ];
}
// realloc him
long extra = m_maxPageSetSize - size ;
if ( extra > need ) extra = need;
if ( m_useRAMDisk ){
// since RAMdisk it creates a file, no reason to alloc
m_memAlloced = need;
m_upperMemOff = need;
return true;
}
// and shared mem already has the mem at this point
if ( m_useSHM ) {
m_memAlloced = need;
m_upperMemOff = need;
return true;
}
char *s = (char *)mrealloc ( ptr , size , size + extra,
m_memTag);
if ( ! s ) return log("db: Failed to allocate %li bytes more "
"for pagecache.",extra);
m_pageSet [ i ] = s;
m_pageSetSize [ i ] = size + extra;
// if we are not adding to an existing, we are a new page set
if ( ! ptr ) m_numPageSets++;
// discount it
need -= extra;
// add to alloc count
m_memAlloced += extra;
m_upperMemOff += extra;
// debug msg
//log("%s growCache2: up %li",m_dbname,extra);
// if we do not need more, we are done
if ( need == 0 ) return true;
// otherwise, alloc new page sets until we hit it
for ( i++ ; i < MAX_PAGE_SETS && need > 0 ; i++ ) {
long size = need;
if ( size > m_maxPageSetSize ) size = m_maxPageSetSize;
need -= size;
m_pageSet[i] = (char *) mmalloc ( size , m_memTag );
if ( ! m_pageSet[i] ) break;
m_pageSetSize[i] = size;
m_memAlloced += size;
m_upperMemOff += size;
m_numPageSets++;
// debug msg
//log("%s growCache3: up %li",m_dbname,size);
}
// update upper bound
if ( need == 0 ) return true;
return log(LOG_LOGIC,"db: pagecache: Bad engineer. Weird problem.");
}
long DiskPageCache::getMemUsed ( ) {
return m_nextMemOff - m_numAvailMemOffs * (m_pageSize+HEADERSIZE);
}
#include "BigFile.h"
#include "Threads.h"
bool DiskPageCache::verify ( BigFile *f ) {
long vfd = f->getVfd();
// ensure validity
if ( vfd < 0 ) return true;
// this vfd may have already been nuked by call to unlink!
if ( ! m_memOff [ vfd ] ) return true;
// debug msg
//log("VERIFYING PAGECACHE vfd=%li fn=%s",vfd,f->getFilename());
// read into here
char buf [ 32 * 1024 ];//GB_PAGE_SIZE ]; //m_pageSize ];
// ensure threads disabled
bool on = ! g_threads.areThreadsDisabled();
if ( on ) g_threads.disableThreads();
// disable ourselves
disableCache();
// add valid offsets used by vfd into m_availMemOff
for ( long i = 0 ; i < m_maxPagesInFile [ vfd ] ; i++ ) {
long off = m_memOff [ vfd ] [ i ];
if ( off < 0 ) continue;
//char *p = getMemPtrFromOff ( off );
oldshort size = 0;
readFromCache(&size, off, OFF_SIZE, sizeof(oldshort));
//oldshort size = *(oldshort *)(p+OFF_SIZE);
oldshort skip = 0;
readFromCache(&skip, off, OFF_SKIP, sizeof(oldshort));
if ( size > 32 * 1024 ){
char *xx=NULL; *xx=0; }
//oldshort skip = *(oldshort *)(p+OFF_SKIP);
FileState fstate;
if ( ! f->read ( buf ,
size ,
((long long)i * (long long)m_pageSize) +
(long long)skip ,
&fstate ,
NULL , // state
NULL , // callback
0 )){// niceness
// core if it did not complete
char *xx = NULL; *xx = 0; }
// compare to what we have in mem
log("checking page # %li size=%li skip=%li", i, size, skip);
char buf2[32 * 1024];
readFromCache( buf2, off, HEADERSIZE + skip, size );
if ( memcmp ( buf, buf2, size ) != 0 ){
char *xx = NULL; *xx = 0; }
//if ( memcmp ( buf , p + HEADERSIZE + skip, size ) != 0 ) {
//char *xx = NULL; *xx = 0; }
}
if ( on ) g_threads.enableThreads();
enableCache();
// debug msg
log("DONE VERIFYING PAGECACHE");
return true;
}
// bigOff is used to get the MemPtr, smallOff is the offset in the Mem
void DiskPageCache::writeToCache( long bigOff, long smallOff, void *inBuf,
long size ){
if ( m_useSHM ) {
// what page are we on?
long page = ( bigOff + smallOff ) / m_maxAllocSize;
// offset within that page
long poff = ( bigOff + smallOff ) % m_maxAllocSize;
// sanity check
if ( page >= m_numShmids ) { char *xx=NULL; *xx=0; }
// sanity check
if ( poff + size > m_shmidSize[page] ) { char *xx=NULL;*xx=0; }
// get first byte
int shmid = m_shmids[page];
// assume we already have it loaded in
char *mem = s_mem;
// . is this the page we currently have loaded?
// . th shmdt and shmat() seems to take about 12 microseconds
// on avg to execute. so about 100 times per milliseconds.
// . seems like the writeToCache() is 3x slower than the
// readFromCache() perhaps because the dirty pages are
// COPIED back into system mem?
if ( shmid != s_shmid ) {
// time it
//long long start = gettimeofdayInMicroseconds();
// free current i guess
if ( s_mem && shmdt ( s_mem ) == -1 ) {
log("disk: shmdt: %s",mstrerror(errno));
char *xx=NULL;*xx=0;
}
// load it in if not
mem = (char *) shmat ( shmid , NULL, SHM_R|SHM_W );
// if this happens at startup, try calling shmat
// when we init this page cache above...
if ( mem == (char *)-1 ) {
log("disk: shmat: %s",mstrerror(errno));
char *xx=NULL;*xx=0;
}
// store it
s_mem = mem;
s_shmid = shmid;
// time it
//long long took = gettimeofdayInMicroseconds() -start;
//if ( took > 1 )
// logf(LOG_DEBUG,"disk: took %lli us to write "
// "to shm page cache shmid=%li.",took,
// (long)shmid);
}
// store it into the cache
memcpy ( mem + poff , inBuf , size );
return;
}
if ( m_useRAMDisk ){
long numBytesWritten = pwrite( m_ramfd, inBuf, size,
bigOff + smallOff );
if ( numBytesWritten != size ){
char *xx=NULL; *xx=0;
}
return;
}
char *p = getMemPtrFromOff ( bigOff );
memcpy(p + smallOff, inBuf, size);
}
void DiskPageCache::readFromCache( void *outBuf, long bigOff, long smallOff,
long size ){
if ( m_useSHM ) {
// what page are we on?
long page = ( bigOff + smallOff ) / m_maxAllocSize;
// offset within that page
long poff = ( bigOff + smallOff ) % m_maxAllocSize;
// sanity check
if ( page >= m_numShmids ) { char *xx=NULL; *xx=0; }
// sanity check
if ( poff + size > m_shmidSize[page] ) { char *xx=NULL;*xx=0; }
// get first byte
int shmid = m_shmids[page];
// assume we already have it loaded in
char *mem = s_mem;
// . is this the page we currently have loaded?
// . the shmdt() and shmat() seems to take about 2 MICROSECONDS
// on avg to execute here. about 3x faster than the
// writeToCache() above.
if ( shmid != s_shmid ) {
// time it
//long long start = gettimeofdayInMilliseconds();
// free current first so shmat has some room?
if ( s_mem && shmdt ( s_mem ) == -1 ) {
log("disk: shmdt: %s",mstrerror(errno));
char *xx=NULL;*xx=0;
}
// load it in if not
mem = (char *) shmat ( shmid , NULL, SHM_R|SHM_W );
// if this happens at startup, try calling shmat
// when we init this page cache above...
if ( mem == (char *)-1 ) {
log("disk: shmat: %s",mstrerror(errno));
char *xx=NULL;*xx=0;
}
// store it
s_mem = mem;
s_shmid = shmid;
// time it
//long long took = gettimeofdayInMilliseconds() -start;
//if ( took > 1 )
// logf(LOG_DEBUG,"disk: took %lli ms to read "
// "to shm page cache shmid=%li.",took,
// (long)shmid);
}
// store it in outBuf
memcpy ( outBuf , mem + poff , size );
return;
}
if ( m_useRAMDisk ) {
long numBytesRead = pread( m_ramfd, outBuf, size,
bigOff + smallOff );
if ( numBytesRead != size ){
char *xx=NULL; *xx=0;
}
return;
}
// the old fashioned way
char *p = getMemPtrFromOff ( bigOff );
memcpy(outBuf, p + smallOff, size);
}
// lastly, we need some way to "force" a merge at around midnight when traffic
// is minimal, or when there are 3 or more indexdb files that are less than
// 80% in the indexdb disk page cache. because that means we are starting to
// do a lot of disk seeks.
// checks if indexdb needs merge
/*
bool DiskPageCache::needsMerge( ){
if ( !m_useRAMDisk ) return false;
long numVfds = 0;
for ( long i = 0; i < MAX_NUM_VFDS2; i++ ){
if ( !m_memOff[i] ) continue;
// check to see if a file is less than 80% in the indexdb
// disk page cache
long numOffsUsed = 0;
for ( long j = 0; j < m_maxPagesInFile[i]; j++ ){
if ( m_memOff[i][j] >= 0 )
numOffsUsed++;
}
if ( (numOffsUsed * 100)/m_maxPagesInFile[i] < 80 )
numVfds++;
}
if ( numVfds >= 3 )
return true;
return false;
}
*/
// 'ipcs -m' will show shared mem in linux
void freeAllSharedMem ( long max ) {
// free shared mem whose pid no longer exists
//struct shmid_ds buf;
//shmctl ( 0 , SHM_STAT , &buf );
//int shmctl(int shmid, int cmd, struct shmid_ds *buf);
// types.h uses key_t type that shmget uses
// try to nuke it all
for ( long i = 0 ; i < max ; i++ ) {
int shmid = i;
long status = shmctl ( shmid , IPC_RMID , NULL);
if ( status == -1 ) {
//if ( errno != EINVAL )
// log("db: shctlt %li: %s",(long)shmid,mstrerror(errno));
}
else
log("db: Removed shmid %li",i);
}
}
// types.h uses key_t type that shmget uses
#undef key_t