1
1
mirror of https://github.com/github/semantic.git synced 2024-12-20 05:11:44 +03:00
semantic/prototype/Doubt/Syntax.swift

119 lines
4.2 KiB
Swift
Raw Normal View History

2015-10-01 21:25:17 +03:00
/// A node in a syntax tree. Expressed algebraically to enable representation of both normal syntax trees and their diffs.
public enum Syntax<Recur, A>: CustomDebugStringConvertible {
2015-09-30 19:41:20 +03:00
case Leaf(A)
2015-10-03 00:12:49 +03:00
case Indexed([Recur])
2015-10-03 00:18:38 +03:00
case Keyed([String:Recur])
2015-07-18 22:43:49 +03:00
2015-10-06 18:08:39 +03:00
// MARK: Functor
public func map<T>(@noescape transform: Recur -> T) -> Syntax<T, A> {
2015-07-18 22:43:49 +03:00
switch self {
2015-09-30 17:36:25 +03:00
case let .Leaf(n):
return .Leaf(n)
2015-10-03 00:12:49 +03:00
case let .Indexed(x):
return .Indexed(x.map(transform))
2015-10-03 00:18:38 +03:00
case let .Keyed(d):
return .Keyed(Dictionary(elements: d.map { ($0, transform($1)) }))
2015-07-18 22:43:49 +03:00
}
}
// MARK: CustomDebugStringConvertible
public var debugDescription: String {
2015-07-18 22:43:49 +03:00
switch self {
2015-09-30 17:36:25 +03:00
case let .Leaf(n):
return ".Leaf(\(n))"
2015-10-03 00:12:49 +03:00
case let .Indexed(x):
2015-10-03 00:13:27 +03:00
return ".Indexed(\(String(reflecting: x)))"
2015-10-03 00:18:38 +03:00
case let .Keyed(d):
return ".Keyed(\(String(reflecting: d)))"
2015-07-18 22:43:49 +03:00
}
}
}
// MARK: - Hylomorphism
2015-10-23 01:31:06 +03:00
/// Hylomorphism through `Syntax`.
///
2015-10-23 18:36:05 +03:00
/// A hylomorphism (from the Aristotelian philosophy that form and matter are one) is a function of type `A B` whose call-tree is linear in the size of the nodes produced by `up`. Conceptually, its the composition of a catamorphism (see also `cata`) and an anamorphism (see also `ana`), but is implemented by [Stream fusion](http://lambda-the-ultimate.org/node/2192) and as such enjoys O(n) time complexity, O(1) size complexity, and small constant factors for both (modulo inadvisable implementations of `up` and `down`).
2015-10-23 01:31:06 +03:00
///
/// Hylomorphisms are used to construct diffs corresponding to equal terms; see also `CofreeType.zip`.
///
/// `hylo` can be used with arbitrary functors which can eliminate to and introduce with `Syntax` values.
public func hylo<A, B, Leaf>(down: Syntax<B, Leaf> -> B, _ up: A -> Syntax<A, Leaf>) -> A -> B {
return up >>> { $0.map(hylo(down, up)) } >>> down
}
2015-10-23 01:31:11 +03:00
/// Reiteration through `Syntax`.
///
2015-10-23 18:36:05 +03:00
/// This is a form of hylomorphism (from the Aristotelian philosophy that form and matter are one). As such, it returns a function of type `A B` whose call-tree is linear in the size of the nodes produced by `up`. Conceptually, its the composition of a catamorphism (see also `cata`) and an anamorphism (see also `ana`), but is implemented by [Stream fusion](http://lambda-the-ultimate.org/node/2192) and as such enjoys O(n) time complexity, O(1) size complexity, and small constant factors for both (modulo inadvisable implementations of `up` and `down`).
2015-10-23 01:31:11 +03:00
///
/// Hylomorphisms are used to construct diffs corresponding to equal terms; see also `CofreeType.zip`.
///
/// `reiterate` can be used with arbitrary functors which can eliminate to and introduce with `Annotation` & `Syntax` pairs.
public func reiterate<A, B, Leaf, Annotation>(down: (Annotation, Syntax<B, Leaf>) -> B, _ up: A -> (Annotation, Syntax<A, Leaf>)) -> A -> B {
return up >>> { ($0, $1.map(reiterate(down, up))) } >>> down
}
2015-10-14 23:02:33 +03:00
// MARK: - ArrayLiteralConvertible
extension Syntax: ArrayLiteralConvertible {
public init(arrayLiteral: Recur...) {
self = .Indexed(arrayLiteral)
}
}
// MARK: - DictionaryLiteralConvertible
extension Syntax: DictionaryLiteralConvertible {
public init(dictionaryLiteral elements: (String, Recur)...) {
self = .Keyed(Dictionary(elements: elements))
}
}
// MARK: - Equality
extension Syntax {
public static func equals(leaf leaf: (A, A) -> Bool, recur: (Recur, Recur) -> Bool)(_ left: Syntax<Recur, A>, _ right: Syntax<Recur, A>) -> Bool {
switch (left, right) {
case let (.Leaf(l1), .Leaf(l2)):
return leaf(l1, l2)
2015-10-03 00:12:49 +03:00
case let (.Indexed(v1), .Indexed(v2)):
return v1.count == v2.count && zip(v1, v2).lazy.map(recur).reduce(true) { $0 && $1 }
2015-10-03 00:18:38 +03:00
case let (.Keyed(d1), .Keyed(d2)):
return Set(d1.keys) == Set(d2.keys) && d1.keys.map { recur(d1[$0]!, d2[$0]!) }.reduce(true) { $0 && $1 }
default:
return false
}
}
}
2015-10-01 22:25:49 +03:00
public func == <F: Equatable, A: Equatable> (left: Syntax<F, A>, right: Syntax<F, A>) -> Bool {
return Syntax.equals(leaf: ==, recur: ==)(left, right)
2015-10-01 22:25:49 +03:00
}
2015-10-09 15:40:57 +03:00
// MARK: - JSON
2015-10-08 14:19:37 +03:00
extension Syntax {
public func JSON(@noescape leaf leaf: A -> Doubt.JSON, @noescape recur: Recur -> Doubt.JSON) -> Doubt.JSON {
2015-10-08 14:19:37 +03:00
switch self {
case let .Leaf(a):
return leaf(a)
2015-10-08 14:19:37 +03:00
case let .Indexed(a):
return .Array(a.map(recur))
2015-10-08 14:19:37 +03:00
case let .Keyed(d):
return .Dictionary(Dictionary(elements: d.map { ($0, recur($1)) }))
2015-10-08 14:19:37 +03:00
}
}
}
import Prelude