mirror of
https://github.com/github/semantic.git
synced 2024-12-25 07:55:12 +03:00
Enable autodiscovery of tests
Also splits up tests into different specs
This commit is contained in:
parent
433090f30b
commit
0223de4145
31
test/RangeSpec.hs
Normal file
31
test/RangeSpec.hs
Normal file
@ -0,0 +1,31 @@
|
||||
module RangeSpec where
|
||||
|
||||
import Test.Hspec
|
||||
import Range
|
||||
|
||||
spec :: Spec
|
||||
spec = do
|
||||
describe "rangesAndWordsFrom" $ do
|
||||
it "should produce no ranges for the empty string" $
|
||||
rangesAndWordsFrom 0 [] `shouldBe` []
|
||||
|
||||
it "should produce no ranges for whitespace" $
|
||||
rangesAndWordsFrom 0 " \t\n " `shouldBe` []
|
||||
|
||||
it "should produce a list containing the range of the string for a single-word string" $
|
||||
rangesAndWordsFrom 0 "word" `shouldBe` [ (Range 0 4, "word") ]
|
||||
|
||||
it "should produce a list of ranges for whitespace-separated words" $
|
||||
rangesAndWordsFrom 0 "wordOne wordTwo" `shouldBe` [ (Range 0 7, "wordOne"), (Range 8 15, "wordTwo") ]
|
||||
|
||||
it "should skip multiple whitespace characters" $
|
||||
rangesAndWordsFrom 0 "a b" `shouldBe` [ (Range 0 1, "a"), (Range 3 4, "b") ]
|
||||
|
||||
it "should skip whitespace at the start" $
|
||||
rangesAndWordsFrom 0 " a b" `shouldBe` [ (Range 2 3, "a"), (Range 4 5, "b") ]
|
||||
|
||||
it "should skip whitespace at the end" $
|
||||
rangesAndWordsFrom 0 "a b " `shouldBe` [ (Range 0 1, "a"), (Range 2 3, "b") ]
|
||||
|
||||
it "should produce ranges offset by its start index" $
|
||||
rangesAndWordsFrom 100 "a b" `shouldBe` [ (Range 100 101, "a"), (Range 102 103, "b") ]
|
283
test/Spec.hs
283
test/Spec.hs
@ -1,264 +1,25 @@
|
||||
module Main where
|
||||
-- module Main where
|
||||
|
||||
import qualified InterpreterSpec
|
||||
import qualified OrderedMapSpec
|
||||
-- import qualified InterpreterSpec
|
||||
-- import qualified OrderedMapSpec
|
||||
|
||||
import Categorizable
|
||||
import Diff
|
||||
import Interpreter
|
||||
import Patch
|
||||
import Range
|
||||
import Split
|
||||
import Syntax
|
||||
import Term
|
||||
import Control.Comonad.Cofree
|
||||
import Control.Monad
|
||||
import Control.Monad.Free hiding (unfold)
|
||||
import qualified Data.List as List
|
||||
import qualified OrderedMap as Map
|
||||
import qualified Data.Set as Set
|
||||
import GHC.Generics
|
||||
import Test.Hspec
|
||||
import Test.Hspec.QuickCheck
|
||||
import Test.QuickCheck hiding (Fixed)
|
||||
-- import Categorizable
|
||||
-- import Diff
|
||||
-- import Interpreter
|
||||
-- import Patch
|
||||
-- import Range
|
||||
-- import Split
|
||||
-- import Syntax
|
||||
-- import Term
|
||||
-- import Control.Comonad.Cofree
|
||||
-- import Control.Monad
|
||||
-- import Control.Monad.Free hiding (unfold)
|
||||
-- import qualified Data.List as List
|
||||
-- import qualified OrderedMap as Map
|
||||
-- import qualified Data.Set as Set
|
||||
-- import GHC.Generics
|
||||
-- import Test.Hspec
|
||||
-- import Test.Hspec.QuickCheck
|
||||
-- import Test.QuickCheck hiding (Fixed)
|
||||
|
||||
newtype ArbitraryTerm a annotation = ArbitraryTerm (annotation, (Syntax a (ArbitraryTerm a annotation)))
|
||||
deriving (Show, Eq, Generic)
|
||||
|
||||
unTerm :: ArbitraryTerm a annotation -> Term a annotation
|
||||
unTerm arbitraryTerm = unfold unpack arbitraryTerm
|
||||
where unpack (ArbitraryTerm (annotation, syntax)) = (annotation, syntax)
|
||||
|
||||
instance (Eq a, Eq annotation, Arbitrary a, Arbitrary annotation) => Arbitrary (ArbitraryTerm a annotation) where
|
||||
arbitrary = sized (\ x -> boundedTerm x x) -- first indicates the cube of the max length of lists, second indicates the cube of the max depth of the tree
|
||||
where boundedTerm maxLength maxDepth = ArbitraryTerm <$> ((,) <$> arbitrary <*> boundedSyntax maxLength maxDepth)
|
||||
boundedSyntax _ maxDepth | maxDepth <= 0 = liftM Leaf arbitrary
|
||||
boundedSyntax maxLength maxDepth = frequency
|
||||
[ (12, liftM Leaf arbitrary),
|
||||
(1, liftM Indexed $ take maxLength <$> listOf (smallerTerm maxLength maxDepth)),
|
||||
(1, liftM Fixed $ take maxLength <$> listOf (smallerTerm maxLength maxDepth)),
|
||||
(1, liftM (Keyed . Map.fromList) $ take maxLength <$> listOf (arbitrary >>= (\x -> ((,) x) <$> smallerTerm maxLength maxDepth))) ]
|
||||
smallerTerm maxLength maxDepth = boundedTerm (div maxLength 3) (div maxDepth 3)
|
||||
shrink term@(ArbitraryTerm (annotation, syntax)) = (++) (subterms term) $ filter (/= term) $
|
||||
ArbitraryTerm <$> ((,) <$> shrink annotation <*> case syntax of
|
||||
Leaf a -> Leaf <$> shrink a
|
||||
Indexed i -> Indexed <$> (List.subsequences i >>= recursivelyShrink)
|
||||
Fixed f -> Fixed <$> (List.subsequences f >>= recursivelyShrink)
|
||||
Keyed k -> Keyed . Map.fromList <$> (List.subsequences (Map.toList k) >>= recursivelyShrink))
|
||||
|
||||
data CategorySet = A | B | C | D deriving (Eq, Show)
|
||||
|
||||
instance Categorizable CategorySet where
|
||||
categories A = Set.fromList [ "a" ]
|
||||
categories B = Set.fromList [ "b" ]
|
||||
categories C = Set.fromList [ "c" ]
|
||||
categories D = Set.fromList [ "d" ]
|
||||
|
||||
instance Arbitrary CategorySet where
|
||||
arbitrary = elements [ A, B, C, D ]
|
||||
|
||||
instance Arbitrary HTML where
|
||||
arbitrary = oneof [
|
||||
Text <$> arbitrary,
|
||||
Span <$> arbitrary <*> arbitrary,
|
||||
const Break <$> (arbitrary :: Gen ()) ]
|
||||
|
||||
instance Arbitrary Line where
|
||||
arbitrary = oneof [
|
||||
Line <$> arbitrary <*> arbitrary,
|
||||
const EmptyLine <$> (arbitrary :: Gen ()) ]
|
||||
|
||||
instance Arbitrary Row where
|
||||
arbitrary = oneof [
|
||||
Row <$> arbitrary <*> arbitrary ]
|
||||
|
||||
main :: IO ()
|
||||
main = hspec $ do
|
||||
describe "Term" $ do
|
||||
prop "equality is reflexive" $
|
||||
\ a -> unTerm a == unTerm (a :: ArbitraryTerm String ())
|
||||
|
||||
describe "Diff" $ do
|
||||
prop "equality is reflexive" $
|
||||
\ a b -> let diff = interpret comparable (unTerm a) (unTerm (b :: ArbitraryTerm String CategorySet)) in
|
||||
diff == diff
|
||||
|
||||
prop "equal terms produce identity diffs" $
|
||||
\ a -> let term = unTerm (a :: ArbitraryTerm String CategorySet) in
|
||||
diffCost (interpret comparable term term) == 0
|
||||
|
||||
describe "annotatedToRows" $ do
|
||||
it "outputs one row for single-line unchanged leaves" $
|
||||
annotatedToRows (unchanged "a" "leaf" (Leaf "")) "a" "a" `shouldBe` ([ Row (Line False [ span "a" ]) (Line False [ span "a" ]) ], (Range 0 1, Range 0 1))
|
||||
|
||||
it "outputs one row for single-line empty unchanged indexed nodes" $
|
||||
annotatedToRows (unchanged "[]" "branch" (Indexed [])) "[]" "[]" `shouldBe` ([ Row (Line False [ Ul (Just "category-branch") [ Text "[]" ] ]) (Line False [ Ul (Just "category-branch") [ Text "[]" ] ]) ], (Range 0 2, Range 0 2))
|
||||
|
||||
it "outputs one row for single-line non-empty unchanged indexed nodes" $
|
||||
annotatedToRows (unchanged "[ a, b ]" "branch" (Indexed [
|
||||
Free . offsetAnnotated 2 2 $ unchanged "a" "leaf" (Leaf ""),
|
||||
Free . offsetAnnotated 5 5 $ unchanged "b" "leaf" (Leaf "")
|
||||
])) "[ a, b ]" "[ a, b ]" `shouldBe` ([ Row (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ", ", span "b", Text " ]" ] ]) (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ", ", span "b", Text " ]" ] ]) ], (Range 0 8, Range 0 8))
|
||||
|
||||
it "outputs one row for single-line non-empty formatted indexed nodes" $
|
||||
annotatedToRows (formatted "[ a, b ]" "[ a, b ]" "branch" (Indexed [
|
||||
Free . offsetAnnotated 2 2 $ unchanged "a" "leaf" (Leaf ""),
|
||||
Free . offsetAnnotated 5 6 $ unchanged "b" "leaf" (Leaf "")
|
||||
])) "[ a, b ]" "[ a, b ]" `shouldBe` ([ Row (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ", ", span "b", Text " ]" ] ]) (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ", ", span "b", Text " ]" ] ]) ], (Range 0 8, Range 0 9))
|
||||
|
||||
it "outputs two rows for two-line non-empty unchanged indexed nodes" $
|
||||
annotatedToRows (unchanged "[ a,\nb ]" "branch" (Indexed [
|
||||
Free . offsetAnnotated 2 2 $ unchanged "a" "leaf" (Leaf ""),
|
||||
Free . offsetAnnotated 5 5 $ unchanged "b" "leaf" (Leaf "")
|
||||
])) "[ a,\nb ]" "[ a,\nb ]" `shouldBe`
|
||||
([
|
||||
Row (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ",", Break ] ])
|
||||
(Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ",", Break] ]),
|
||||
Row (Line False [ Ul (Just "category-branch") [ span "b", Text " ]" ] ])
|
||||
(Line False [ Ul (Just "category-branch") [ span "b", Text " ]" ] ])
|
||||
], (Range 0 8, Range 0 8))
|
||||
|
||||
it "outputs two rows for two-line non-empty formatted indexed nodes" $
|
||||
annotatedToRows (formatted "[ a,\nb ]" "[\na,\nb ]" "branch" (Indexed [
|
||||
Free . offsetAnnotated 2 2 $ unchanged "a" "leaf" (Leaf ""),
|
||||
Free . offsetAnnotated 5 5 $ unchanged "b" "leaf" (Leaf "")
|
||||
])) "[ a,\nb ]" "[\na,\nb ]" `shouldBe`
|
||||
([
|
||||
Row (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ",", Break ] ])
|
||||
(Line False [ Ul (Just "category-branch") [ Text "[", Break ] ]),
|
||||
Row EmptyLine
|
||||
(Line False [ Ul (Just "category-branch") [ span "a", Text ",", Break ] ]),
|
||||
Row (Line False [ Ul (Just "category-branch") [ span "b", Text " ]" ] ])
|
||||
(Line False [ Ul (Just "category-branch") [ span "b", Text " ]" ] ])
|
||||
], (Range 0 8, Range 0 8))
|
||||
|
||||
it "" $
|
||||
let (sourceA, sourceB) = ("[\na\n,\nb]", "[a,b]") in
|
||||
annotatedToRows (formatted sourceA sourceB "branch" (Indexed [
|
||||
Free . offsetAnnotated 2 1 $ unchanged "a" "leaf" (Leaf ""),
|
||||
Free . offsetAnnotated 6 3 $ unchanged "b" "leaf" (Leaf "")
|
||||
])) sourceA sourceB `shouldBe`
|
||||
([
|
||||
Row (Line False [ Ul (Just "category-branch") [ Text "[", Break ] ])
|
||||
(Line False [ Ul (Just "category-branch") [ Text "[", span "a", Text ",", span "b", Text "]" ] ]),
|
||||
Row (Line False [ Ul (Just "category-branch") [ span "a", Break ] ])
|
||||
EmptyLine,
|
||||
Row (Line False [ Ul (Just "category-branch") [ Text ",", Break ] ])
|
||||
EmptyLine,
|
||||
Row (Line False [ Ul (Just "category-branch") [ span "b", Text "]" ] ])
|
||||
EmptyLine
|
||||
], (Range 0 8, Range 0 5))
|
||||
|
||||
it "should split multi-line deletions across multiple rows" $
|
||||
let (sourceA, sourceB) = ("/*\n*/\na", "a") in
|
||||
annotatedToRows (formatted sourceA sourceB "branch" (Indexed [
|
||||
Pure . Delete $ (Info (Range 0 5) (Set.fromList ["leaf"]) :< (Leaf "")),
|
||||
Free . offsetAnnotated 6 0 $ unchanged "a" "leaf" (Leaf "")
|
||||
])) sourceA sourceB `shouldBe`
|
||||
([
|
||||
Row (Line True [ Ul (Just "category-branch") [ Div (Just "delete") [ span "/*", Break ] ] ]) EmptyLine,
|
||||
Row (Line True [ Ul (Just "category-branch") [ Div (Just "delete") [ span "*/" ], Break ] ]) EmptyLine,
|
||||
Row (Line False [ Ul (Just "category-branch") [ span "a" ] ]) (Line False [ Ul (Just "category-branch") [ span "a" ] ])
|
||||
], (Range 0 7, Range 0 1))
|
||||
|
||||
describe "unicode" $
|
||||
it "equivalent precomposed and decomposed characters are not equal" $
|
||||
let (sourceA, sourceB) = ("t\776", "\7831")
|
||||
syntax = Leaf . Pure $ Replace (info sourceA "leaf" :< (Leaf "")) (info sourceB "leaf" :< (Leaf ""))
|
||||
in
|
||||
annotatedToRows (formatted sourceA sourceB "leaf" syntax) sourceA sourceB `shouldBe`
|
||||
([ Row (Line False [ span "t\776" ]) (Line False [ span "\7831"]) ], (Range 0 2, Range 0 1))
|
||||
|
||||
|
||||
describe "adjoin2" $ do
|
||||
prop "is idempotent for additions of empty rows" $
|
||||
\ a -> adjoin2 (adjoin2 [ a ] mempty) mempty == (adjoin2 [ a ] mempty)
|
||||
|
||||
prop "is identity on top of empty rows" $
|
||||
\ a -> adjoin2 [ mempty ] a == [ a ]
|
||||
|
||||
prop "is identity on top of no rows" $
|
||||
\ a -> adjoin2 [] a == [ a ]
|
||||
|
||||
it "appends appends HTML onto incomplete lines" $
|
||||
adjoin2 [ rightRowText "[" ] (rightRowText "a") `shouldBe`
|
||||
[ rightRow [ Text "[", Text "a" ] ]
|
||||
|
||||
it "does not append HTML onto complete lines" $
|
||||
adjoin2 [ leftRow [ Break ] ] (leftRowText ",") `shouldBe`
|
||||
[ leftRowText ",", leftRow [ Break ] ]
|
||||
|
||||
it "appends breaks onto incomplete lines" $
|
||||
adjoin2 [ leftRowText "a" ] (leftRow [ Break ]) `shouldBe`
|
||||
[ leftRow [ Text "a", Break ] ]
|
||||
|
||||
it "does not promote HTML through empty lines onto complete lines" $
|
||||
adjoin2 [ rightRowText "b", leftRow [ Break ] ] (leftRowText "a") `shouldBe`
|
||||
[ leftRowText "a", rightRowText "b", leftRow [ Break ] ]
|
||||
|
||||
it "promotes breaks through empty lines onto incomplete lines" $
|
||||
adjoin2 [ rightRowText "c", rowText "a" "b" ] (leftRow [ Break ]) `shouldBe`
|
||||
[ rightRowText "c", Row (Line False [ Text "a", Break ]) (Line False [ Text "b" ]) ]
|
||||
|
||||
describe "termToLines" $ do
|
||||
it "splits multi-line terms into multiple lines" $
|
||||
termToLines (Info (Range 0 5) (Set.singleton "leaf") :< (Leaf "")) "/*\n*/"
|
||||
`shouldBe`
|
||||
([
|
||||
Line True [ span "/*", Break ],
|
||||
Line True [ span "*/" ]
|
||||
], Range 0 5)
|
||||
|
||||
describe "openLine" $ do
|
||||
it "should produce the earliest non-empty line in a list, if open" $
|
||||
openLine [
|
||||
Line True [ Div (Just "delete") [ span "*/" ] ],
|
||||
Line True [ Div (Just "delete") [ span " * Debugging", Break ] ],
|
||||
Line True [ Div (Just "delete") [ span "/*", Break ] ]
|
||||
] `shouldBe` (Just $ Line True [ Div (Just "delete") [ span "*/" ] ])
|
||||
|
||||
it "should return Nothing if the earliest non-empty line is closed" $
|
||||
openLine [
|
||||
Line True [ Div (Just "delete") [ span " * Debugging", Break ] ]
|
||||
] `shouldBe` Nothing
|
||||
|
||||
describe "rangesAndWordsFrom" $ do
|
||||
it "should produce no ranges for the empty string" $
|
||||
rangesAndWordsFrom 0 [] `shouldBe` []
|
||||
|
||||
it "should produce no ranges for whitespace" $
|
||||
rangesAndWordsFrom 0 " \t\n " `shouldBe` []
|
||||
|
||||
it "should produce a list containing the range of the string for a single-word string" $
|
||||
rangesAndWordsFrom 0 "word" `shouldBe` [ (Range 0 4, "word") ]
|
||||
|
||||
it "should produce a list of ranges for whitespace-separated words" $
|
||||
rangesAndWordsFrom 0 "wordOne wordTwo" `shouldBe` [ (Range 0 7, "wordOne"), (Range 8 15, "wordTwo") ]
|
||||
|
||||
it "should skip multiple whitespace characters" $
|
||||
rangesAndWordsFrom 0 "a b" `shouldBe` [ (Range 0 1, "a"), (Range 3 4, "b") ]
|
||||
|
||||
it "should skip whitespace at the start" $
|
||||
rangesAndWordsFrom 0 " a b" `shouldBe` [ (Range 2 3, "a"), (Range 4 5, "b") ]
|
||||
|
||||
it "should skip whitespace at the end" $
|
||||
rangesAndWordsFrom 0 "a b " `shouldBe` [ (Range 0 1, "a"), (Range 2 3, "b") ]
|
||||
|
||||
it "should produce ranges offset by its start index" $
|
||||
rangesAndWordsFrom 100 "a b" `shouldBe` [ (Range 100 101, "a"), (Range 102 103, "b") ]
|
||||
|
||||
describe "OrderedMap" OrderedMapSpec.spec
|
||||
describe "InterpreterSpec" InterpreterSpec.spec
|
||||
|
||||
where
|
||||
rightRowText text = rightRow [ Text text ]
|
||||
rightRow xs = Row EmptyLine (Line False xs)
|
||||
leftRowText text = leftRow [ Text text ]
|
||||
leftRow xs = Row (Line False xs) EmptyLine
|
||||
rowText a b = Row (Line False [ Text a ]) (Line False [ Text b ])
|
||||
info source category = Info (totalRange source) (Set.fromList [ category ])
|
||||
unchanged source category = formatted source source category
|
||||
formatted source1 source2 category = Annotated (info source1 category, info source2 category)
|
||||
offsetInfo by (Info (Range start end) categories) = Info (Range (start + by) (end + by)) categories
|
||||
offsetAnnotated by1 by2 (Annotated (left, right) syntax) = Annotated (offsetInfo by1 left, offsetInfo by2 right) syntax
|
||||
span = Span (Just "category-leaf")
|
||||
{-# OPTIONS_GHC -F -pgmF hspec-discover #-}
|
||||
|
180
test/SplitSpec.hs
Normal file
180
test/SplitSpec.hs
Normal file
@ -0,0 +1,180 @@
|
||||
module SplitSpec where
|
||||
|
||||
import Test.Hspec
|
||||
import Split
|
||||
import qualified Data.Set as Set
|
||||
import Diff
|
||||
import Range
|
||||
import Term
|
||||
import Test.Hspec.QuickCheck
|
||||
import Test.QuickCheck hiding (Fixed)
|
||||
import Control.Comonad.Cofree
|
||||
import Control.Monad.Free hiding (unfold)
|
||||
import Patch
|
||||
import Syntax
|
||||
|
||||
instance Arbitrary Row where
|
||||
arbitrary = oneof [
|
||||
Row <$> arbitrary <*> arbitrary ]
|
||||
|
||||
|
||||
instance Arbitrary HTML where
|
||||
arbitrary = oneof [
|
||||
Text <$> arbitrary,
|
||||
Span <$> arbitrary <*> arbitrary,
|
||||
const Break <$> (arbitrary :: Gen ()) ]
|
||||
|
||||
instance Arbitrary Line where
|
||||
arbitrary = oneof [
|
||||
Line <$> arbitrary <*> arbitrary,
|
||||
const EmptyLine <$> (arbitrary :: Gen ()) ]
|
||||
|
||||
spec :: Spec
|
||||
spec = do
|
||||
describe "annotatedToRows" $ do
|
||||
it "outputs one row for single-line unchanged leaves" $
|
||||
annotatedToRows (unchanged "a" "leaf" (Leaf "")) "a" "a" `shouldBe` ([ Row (Line False [ span "a" ]) (Line False [ span "a" ]) ], (Range 0 1, Range 0 1))
|
||||
|
||||
it "outputs one row for single-line empty unchanged indexed nodes" $
|
||||
annotatedToRows (unchanged "[]" "branch" (Indexed [])) "[]" "[]" `shouldBe` ([ Row (Line False [ Ul (Just "category-branch") [ Text "[]" ] ]) (Line False [ Ul (Just "category-branch") [ Text "[]" ] ]) ], (Range 0 2, Range 0 2))
|
||||
|
||||
it "outputs one row for single-line non-empty unchanged indexed nodes" $
|
||||
annotatedToRows (unchanged "[ a, b ]" "branch" (Indexed [
|
||||
Free . offsetAnnotated 2 2 $ unchanged "a" "leaf" (Leaf ""),
|
||||
Free . offsetAnnotated 5 5 $ unchanged "b" "leaf" (Leaf "")
|
||||
])) "[ a, b ]" "[ a, b ]" `shouldBe` ([ Row (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ", ", span "b", Text " ]" ] ]) (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ", ", span "b", Text " ]" ] ]) ], (Range 0 8, Range 0 8))
|
||||
|
||||
it "outputs one row for single-line non-empty formatted indexed nodes" $
|
||||
annotatedToRows (formatted "[ a, b ]" "[ a, b ]" "branch" (Indexed [
|
||||
Free . offsetAnnotated 2 2 $ unchanged "a" "leaf" (Leaf ""),
|
||||
Free . offsetAnnotated 5 6 $ unchanged "b" "leaf" (Leaf "")
|
||||
])) "[ a, b ]" "[ a, b ]" `shouldBe` ([ Row (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ", ", span "b", Text " ]" ] ]) (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ", ", span "b", Text " ]" ] ]) ], (Range 0 8, Range 0 9))
|
||||
|
||||
it "outputs two rows for two-line non-empty unchanged indexed nodes" $
|
||||
annotatedToRows (unchanged "[ a,\nb ]" "branch" (Indexed [
|
||||
Free . offsetAnnotated 2 2 $ unchanged "a" "leaf" (Leaf ""),
|
||||
Free . offsetAnnotated 5 5 $ unchanged "b" "leaf" (Leaf "")
|
||||
])) "[ a,\nb ]" "[ a,\nb ]" `shouldBe`
|
||||
([
|
||||
Row (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ",", Break ] ])
|
||||
(Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ",", Break] ]),
|
||||
Row (Line False [ Ul (Just "category-branch") [ span "b", Text " ]" ] ])
|
||||
(Line False [ Ul (Just "category-branch") [ span "b", Text " ]" ] ])
|
||||
], (Range 0 8, Range 0 8))
|
||||
|
||||
it "outputs two rows for two-line non-empty formatted indexed nodes" $
|
||||
annotatedToRows (formatted "[ a,\nb ]" "[\na,\nb ]" "branch" (Indexed [
|
||||
Free . offsetAnnotated 2 2 $ unchanged "a" "leaf" (Leaf ""),
|
||||
Free . offsetAnnotated 5 5 $ unchanged "b" "leaf" (Leaf "")
|
||||
])) "[ a,\nb ]" "[\na,\nb ]" `shouldBe`
|
||||
([
|
||||
Row (Line False [ Ul (Just "category-branch") [ Text "[ ", span "a", Text ",", Break ] ])
|
||||
(Line False [ Ul (Just "category-branch") [ Text "[", Break ] ]),
|
||||
Row EmptyLine
|
||||
(Line False [ Ul (Just "category-branch") [ span "a", Text ",", Break ] ]),
|
||||
Row (Line False [ Ul (Just "category-branch") [ span "b", Text " ]" ] ])
|
||||
(Line False [ Ul (Just "category-branch") [ span "b", Text " ]" ] ])
|
||||
], (Range 0 8, Range 0 8))
|
||||
|
||||
it "" $
|
||||
let (sourceA, sourceB) = ("[\na\n,\nb]", "[a,b]") in
|
||||
annotatedToRows (formatted sourceA sourceB "branch" (Indexed [
|
||||
Free . offsetAnnotated 2 1 $ unchanged "a" "leaf" (Leaf ""),
|
||||
Free . offsetAnnotated 6 3 $ unchanged "b" "leaf" (Leaf "")
|
||||
])) sourceA sourceB `shouldBe`
|
||||
([
|
||||
Row (Line False [ Ul (Just "category-branch") [ Text "[", Break ] ])
|
||||
(Line False [ Ul (Just "category-branch") [ Text "[", span "a", Text ",", span "b", Text "]" ] ]),
|
||||
Row (Line False [ Ul (Just "category-branch") [ span "a", Break ] ])
|
||||
EmptyLine,
|
||||
Row (Line False [ Ul (Just "category-branch") [ Text ",", Break ] ])
|
||||
EmptyLine,
|
||||
Row (Line False [ Ul (Just "category-branch") [ span "b", Text "]" ] ])
|
||||
EmptyLine
|
||||
], (Range 0 8, Range 0 5))
|
||||
|
||||
it "should split multi-line deletions across multiple rows" $
|
||||
let (sourceA, sourceB) = ("/*\n*/\na", "a") in
|
||||
annotatedToRows (formatted sourceA sourceB "branch" (Indexed [
|
||||
Pure . Delete $ (Info (Range 0 5) (Set.fromList ["leaf"]) :< (Leaf "")),
|
||||
Free . offsetAnnotated 6 0 $ unchanged "a" "leaf" (Leaf "")
|
||||
])) sourceA sourceB `shouldBe`
|
||||
([
|
||||
Row (Line True [ Ul (Just "category-branch") [ Div (Just "delete") [ span "/*", Break ] ] ]) EmptyLine,
|
||||
Row (Line True [ Ul (Just "category-branch") [ Div (Just "delete") [ span "*/" ], Break ] ]) EmptyLine,
|
||||
Row (Line False [ Ul (Just "category-branch") [ span "a" ] ]) (Line False [ Ul (Just "category-branch") [ span "a" ] ])
|
||||
], (Range 0 7, Range 0 1))
|
||||
|
||||
describe "unicode" $
|
||||
it "equivalent precomposed and decomposed characters are not equal" $
|
||||
let (sourceA, sourceB) = ("t\776", "\7831")
|
||||
syntax = Leaf . Pure $ Replace (info sourceA "leaf" :< (Leaf "")) (info sourceB "leaf" :< (Leaf ""))
|
||||
in
|
||||
annotatedToRows (formatted sourceA sourceB "leaf" syntax) sourceA sourceB `shouldBe`
|
||||
([ Row (Line False [ span "t\776" ]) (Line False [ span "\7831"]) ], (Range 0 2, Range 0 1))
|
||||
|
||||
|
||||
describe "adjoin2" $ do
|
||||
prop "is idempotent for additions of empty rows" $
|
||||
\ a -> adjoin2 (adjoin2 [ a ] mempty) mempty == (adjoin2 [ a ] mempty)
|
||||
|
||||
prop "is identity on top of empty rows" $
|
||||
\ a -> adjoin2 [ mempty ] a == [ a ]
|
||||
|
||||
prop "is identity on top of no rows" $
|
||||
\ a -> adjoin2 [] a == [ a ]
|
||||
|
||||
it "appends appends HTML onto incomplete lines" $
|
||||
adjoin2 [ rightRowText "[" ] (rightRowText "a") `shouldBe`
|
||||
[ rightRow [ Text "[", Text "a" ] ]
|
||||
|
||||
it "does not append HTML onto complete lines" $
|
||||
adjoin2 [ leftRow [ Break ] ] (leftRowText ",") `shouldBe`
|
||||
[ leftRowText ",", leftRow [ Break ] ]
|
||||
|
||||
it "appends breaks onto incomplete lines" $
|
||||
adjoin2 [ leftRowText "a" ] (leftRow [ Break ]) `shouldBe`
|
||||
[ leftRow [ Text "a", Break ] ]
|
||||
|
||||
it "does not promote HTML through empty lines onto complete lines" $
|
||||
adjoin2 [ rightRowText "b", leftRow [ Break ] ] (leftRowText "a") `shouldBe`
|
||||
[ leftRowText "a", rightRowText "b", leftRow [ Break ] ]
|
||||
|
||||
it "promotes breaks through empty lines onto incomplete lines" $
|
||||
adjoin2 [ rightRowText "c", rowText "a" "b" ] (leftRow [ Break ]) `shouldBe`
|
||||
[ rightRowText "c", Row (Line False [ Text "a", Break ]) (Line False [ Text "b" ]) ]
|
||||
|
||||
describe "termToLines" $ do
|
||||
it "splits multi-line terms into multiple lines" $
|
||||
termToLines (Info (Range 0 5) (Set.singleton "leaf") :< (Leaf "")) "/*\n*/"
|
||||
`shouldBe`
|
||||
([
|
||||
Line True [ span "/*", Break ],
|
||||
Line True [ span "*/" ]
|
||||
], Range 0 5)
|
||||
|
||||
describe "openLine" $ do
|
||||
it "should produce the earliest non-empty line in a list, if open" $
|
||||
openLine [
|
||||
Line True [ Div (Just "delete") [ span "*/" ] ],
|
||||
Line True [ Div (Just "delete") [ span " * Debugging", Break ] ],
|
||||
Line True [ Div (Just "delete") [ span "/*", Break ] ]
|
||||
] `shouldBe` (Just $ Line True [ Div (Just "delete") [ span "*/" ] ])
|
||||
|
||||
it "should return Nothing if the earliest non-empty line is closed" $
|
||||
openLine [
|
||||
Line True [ Div (Just "delete") [ span " * Debugging", Break ] ]
|
||||
] `shouldBe` Nothing
|
||||
|
||||
where
|
||||
rightRowText text = rightRow [ Text text ]
|
||||
rightRow xs = Row EmptyLine (Line False xs)
|
||||
leftRowText text = leftRow [ Text text ]
|
||||
leftRow xs = Row (Line False xs) EmptyLine
|
||||
rowText a b = Row (Line False [ Text a ]) (Line False [ Text b ])
|
||||
info source category = Info (totalRange source) (Set.fromList [ category ])
|
||||
unchanged source category = formatted source source category
|
||||
formatted source1 source2 category = Annotated (info source1 category, info source2 category)
|
||||
offsetInfo by (Info (Range start end) categories) = Info (Range (start + by) (end + by)) categories
|
||||
offsetAnnotated by1 by2 (Annotated (left, right) syntax) = Annotated (offsetInfo by1 left, offsetInfo by2 right) syntax
|
||||
span = Span (Just "category-leaf")
|
70
test/TermSpec.hs
Normal file
70
test/TermSpec.hs
Normal file
@ -0,0 +1,70 @@
|
||||
module TermSpec where
|
||||
|
||||
import Test.Hspec
|
||||
import Test.Hspec.QuickCheck
|
||||
import Test.QuickCheck hiding (Fixed)
|
||||
|
||||
import Categorizable
|
||||
import qualified OrderedMap as Map
|
||||
import qualified Data.List as List
|
||||
import qualified Data.Set as Set
|
||||
import Interpreter
|
||||
import Diff
|
||||
import Control.Comonad.Cofree
|
||||
import Control.Monad
|
||||
import GHC.Generics
|
||||
import Syntax
|
||||
import Term
|
||||
|
||||
newtype ArbitraryTerm a annotation = ArbitraryTerm (annotation, (Syntax a (ArbitraryTerm a annotation)))
|
||||
deriving (Show, Eq, Generic)
|
||||
|
||||
unTerm :: ArbitraryTerm a annotation -> Term a annotation
|
||||
unTerm arbitraryTerm = unfold unpack arbitraryTerm
|
||||
where unpack (ArbitraryTerm (annotation, syntax)) = (annotation, syntax)
|
||||
|
||||
instance (Eq a, Eq annotation, Arbitrary a, Arbitrary annotation) => Arbitrary (ArbitraryTerm a annotation) where
|
||||
arbitrary = sized (\ x -> boundedTerm x x) -- first indicates the cube of the max length of lists, second indicates the cube of the max depth of the tree
|
||||
where boundedTerm maxLength maxDepth = ArbitraryTerm <$> ((,) <$> arbitrary <*> boundedSyntax maxLength maxDepth)
|
||||
boundedSyntax _ maxDepth | maxDepth <= 0 = liftM Leaf arbitrary
|
||||
boundedSyntax maxLength maxDepth = frequency
|
||||
[ (12, liftM Leaf arbitrary),
|
||||
(1, liftM Indexed $ take maxLength <$> listOf (smallerTerm maxLength maxDepth)),
|
||||
(1, liftM Fixed $ take maxLength <$> listOf (smallerTerm maxLength maxDepth)),
|
||||
(1, liftM (Keyed . Map.fromList) $ take maxLength <$> listOf (arbitrary >>= (\x -> ((,) x) <$> smallerTerm maxLength maxDepth))) ]
|
||||
smallerTerm maxLength maxDepth = boundedTerm (div maxLength 3) (div maxDepth 3)
|
||||
shrink term@(ArbitraryTerm (annotation, syntax)) = (++) (subterms term) $ filter (/= term) $
|
||||
ArbitraryTerm <$> ((,) <$> shrink annotation <*> case syntax of
|
||||
Leaf a -> Leaf <$> shrink a
|
||||
Indexed i -> Indexed <$> (List.subsequences i >>= recursivelyShrink)
|
||||
Fixed f -> Fixed <$> (List.subsequences f >>= recursivelyShrink)
|
||||
Keyed k -> Keyed . Map.fromList <$> (List.subsequences (Map.toList k) >>= recursivelyShrink))
|
||||
|
||||
data CategorySet = A | B | C | D deriving (Eq, Show)
|
||||
|
||||
instance Categorizable CategorySet where
|
||||
categories A = Set.fromList [ "a" ]
|
||||
categories B = Set.fromList [ "b" ]
|
||||
categories C = Set.fromList [ "c" ]
|
||||
categories D = Set.fromList [ "d" ]
|
||||
|
||||
instance Arbitrary CategorySet where
|
||||
arbitrary = elements [ A, B, C, D ]
|
||||
|
||||
main :: IO ()
|
||||
main = hspec spec
|
||||
|
||||
spec :: Spec
|
||||
spec = do
|
||||
describe "Term" $ do
|
||||
prop "equality is reflexive" $
|
||||
\ a -> unTerm a == unTerm (a :: ArbitraryTerm String ())
|
||||
|
||||
describe "Diff" $ do
|
||||
prop "equality is reflexive" $
|
||||
\ a b -> let diff = interpret comparable (unTerm a) (unTerm (b :: ArbitraryTerm String CategorySet)) in
|
||||
diff == diff
|
||||
|
||||
prop "equal terms produce identity diffs" $
|
||||
\ a -> let term = unTerm (a :: ArbitraryTerm String CategorySet) in
|
||||
diffCost (interpret comparable term term) == 0
|
Loading…
Reference in New Issue
Block a user