1
1
mirror of https://github.com/github/semantic.git synced 2024-12-27 17:05:33 +03:00

add contents to GenerateSyntax

This commit is contained in:
Ayman Nadeem 2020-01-27 19:21:41 -05:00
parent be28836c25
commit 3e25491053

View File

@ -1 +1,186 @@
module GenerateSyntax () where
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeApplications #-}
module AST.GenerateSyntax
( syntaxDatatype
, astDeclarationsForLanguage
) where
import Data.Aeson hiding (String)
import Data.Foldable
import Data.List
import Data.List.NonEmpty (NonEmpty (..))
import Data.Text (Text)
import Foreign.C.String
import Foreign.Ptr
import GHC.Generics hiding (Constructor, Datatype)
import GHC.Records
import Language.Haskell.TH as TH
import Language.Haskell.TH.Syntax as TH
import System.Directory
import System.FilePath.Posix
import AST.Deserialize (Children (..), Datatype (..), DatatypeName (..), Field (..), Multiple (..), Named (..), Required (..), Type (..))
import qualified TreeSitter.Language as TS
import TreeSitter.Node
import TreeSitter.Symbol (TSSymbol, toHaskellCamelCaseIdentifier, toHaskellPascalCaseIdentifier)
import AST.Token
import qualified AST.Unmarshal as TS
-- | Derive Haskell datatypes from a language and its @node-types.json@ file.
--
-- Datatypes will be generated according to the specification in the @node-types.json@ file, with anonymous leaf types defined as synonyms for the 'Token' datatype.
--
-- Any datatypes among the node types which have already been defined in the module where the splice is run will be skipped, allowing customization of the representation of parts of the tree. Note that this should be used sparingly, as it imposes extra maintenance burden, particularly when the grammar is changed. This may be used to e.g. parse literals into Haskell equivalents (e.g. parsing the textual contents of integer literals into 'Integer's), and may require defining 'TS.UnmarshalAnn' or 'TS.SymbolMatching' instances for (parts of) the custom datatypes, depending on where and how the datatype occurs in the generated tree, in addition to the usual 'Foldable', 'Functor', etc. instances provided for generated datatypes.
astDeclarationsForLanguage :: Ptr TS.Language -> FilePath -> Q [Dec]
astDeclarationsForLanguage language filePath = do
_ <- TS.addDependentFileRelative filePath
currentFilename <- loc_filename <$> location
pwd <- runIO getCurrentDirectory
let invocationRelativePath = takeDirectory (pwd </> currentFilename) </> filePath
input <- runIO (eitherDecodeFileStrict' invocationRelativePath) >>= either fail pure
allSymbols <- runIO (getAllSymbols language)
debugSymbolNames <- [d|
debugSymbolNames :: [String]
debugSymbolNames = $(listE (map (litE . stringL . debugPrefix) allSymbols))
|]
(debugSymbolNames <>) . concat @[] <$> traverse (syntaxDatatype language allSymbols) input
-- Build a list of all symbols
getAllSymbols :: Ptr TS.Language -> IO [(String, Named)]
getAllSymbols language = do
count <- TS.ts_language_symbol_count language
mapM getSymbol [(0 :: TSSymbol) .. fromIntegral (pred count)]
where
getSymbol i = do
cname <- TS.ts_language_symbol_name language i
n <- peekCString cname
t <- TS.ts_language_symbol_type language i
let named = if t == 0 then Named else Anonymous
pure (n, named)
-- Auto-generate Haskell datatypes for sums, products and leaf types
syntaxDatatype :: Ptr TS.Language -> [(String, Named)] -> Datatype -> Q [Dec]
syntaxDatatype language allSymbols datatype = skipDefined $ do
typeParameterName <- newName "a"
case datatype of
SumType (DatatypeName _) _ subtypes -> do
types' <- fieldTypesToNestedSum subtypes
let fieldName = mkName ("get" <> nameStr)
con <- recC name [TH.varBangType fieldName (TH.bangType strictness (pure types' `appT` varT typeParameterName))]
hasFieldInstance <- makeHasFieldInstance (conT name) (varT typeParameterName) (varE fieldName)
pure
( NewtypeD [] name [PlainTV typeParameterName] Nothing con [deriveGN, deriveStockClause, deriveAnyClassClause]
: hasFieldInstance)
ProductType (DatatypeName datatypeName) named children fields -> do
con <- ctorForProductType datatypeName typeParameterName children fields
result <- symbolMatchingInstance allSymbols name named datatypeName
pure $ generatedDatatype name [con] typeParameterName:result
-- Anonymous leaf types are defined as synonyms for the `Token` datatype
LeafType (DatatypeName datatypeName) Anonymous -> do
tsSymbol <- runIO $ withCStringLen datatypeName (\(s, len) -> TS.ts_language_symbol_for_name language s len False)
pure [ TySynD name [] (ConT ''Token `AppT` LitT (StrTyLit datatypeName) `AppT` LitT (NumTyLit (fromIntegral tsSymbol))) ]
LeafType (DatatypeName datatypeName) Named -> do
con <- ctorForLeafType (DatatypeName datatypeName) typeParameterName
result <- symbolMatchingInstance allSymbols name Named datatypeName
pure $ generatedDatatype name [con] typeParameterName:result
where
-- Skip generating datatypes that have already been defined (overridden) in the module where the splice is running.
skipDefined m = do
isLocal <- lookupTypeName nameStr >>= maybe (pure False) isLocalName
if isLocal then pure [] else m
name = mkName nameStr
nameStr = toNameString (datatypeNameStatus datatype) (getDatatypeName (AST.Deserialize.datatypeName datatype))
deriveStockClause = DerivClause (Just StockStrategy) [ ConT ''Eq, ConT ''Ord, ConT ''Show, ConT ''Generic, ConT ''Foldable, ConT ''Functor, ConT ''Traversable, ConT ''Generic1]
deriveAnyClassClause = DerivClause (Just AnyclassStrategy) [ConT ''TS.Unmarshal]
deriveGN = DerivClause (Just NewtypeStrategy) [ConT ''TS.SymbolMatching]
generatedDatatype name cons typeParameterName = DataD [] name [PlainTV typeParameterName] Nothing cons [deriveStockClause, deriveAnyClassClause]
makeHasFieldInstance :: TypeQ -> TypeQ -> ExpQ -> Q [Dec]
makeHasFieldInstance ty param elim =
[d|instance HasField "ann" $(ty `appT` param) $param where
getField = TS.gann . $elim |]
-- | Create TH-generated SymbolMatching instances for sums, products, leaves
symbolMatchingInstance :: [(String, Named)] -> Name -> Named -> String -> Q [Dec]
symbolMatchingInstance allSymbols name named str = do
let tsSymbols = elemIndices (str, named) allSymbols
names = intercalate ", " $ fmap (debugPrefix . (!!) allSymbols) tsSymbols
[d|instance TS.SymbolMatching $(conT name) where
matchedSymbols _ = tsSymbols
showFailure _ node = "expected " <> $(litE (stringL names))
<> " but got " <> if nodeSymbol node == 65535 then "ERROR" else genericIndex debugSymbolNames (nodeSymbol node)
<> " [" <> show r1 <> ", " <> show c1 <> "] -"
<> " [" <> show r2 <> ", " <> show c2 <> "]"
where TSPoint r1 c1 = nodeStartPoint node
TSPoint r2 c2 = nodeEndPoint node|]
-- | Prefix symbol names for debugging to disambiguate between Named and Anonymous nodes.
debugPrefix :: (String, Named) -> String
debugPrefix (name, Named) = name
debugPrefix (name, Anonymous) = "_" <> name
-- | Build Q Constructor for product types (nodes with fields)
ctorForProductType :: String -> Name -> Maybe Children -> [(String, Field)] -> Q Con
ctorForProductType constructorName typeParameterName children fields = ctorForTypes constructorName lists where
lists = annotation : fieldList ++ childList
annotation = ("ann", varT typeParameterName)
fieldList = map (fmap toType) fields
childList = toList $ fmap toTypeChild children
toType (MkField required fieldTypes mult) =
let ftypes = fieldTypesToNestedSum fieldTypes `appT` varT typeParameterName
in case (required, mult) of
(Required, Multiple) -> appT (conT ''NonEmpty) ftypes
(Required, Single) -> ftypes
(Optional, Multiple) -> appT (conT ''[]) ftypes
(Optional, Single) -> appT (conT ''Maybe) ftypes
toTypeChild (MkChildren field) = ("extra_children", toType field)
-- | Build Q Constructor for leaf types (nodes with no fields or subtypes)
ctorForLeafType :: DatatypeName -> Name -> Q Con
ctorForLeafType (DatatypeName name) typeParameterName = ctorForTypes name
[ ("ann", varT typeParameterName) -- ann :: a
, ("text", conT ''Text) -- text :: Text
]
-- | Build Q Constructor for records
ctorForTypes :: String -> [(String, Q TH.Type)] -> Q Con
ctorForTypes constructorName types = recC (toName Named constructorName) recordFields where
recordFields = map (uncurry toVarBangType) types
toVarBangType str type' = TH.varBangType (mkName . toHaskellCamelCaseIdentifier $ str) (TH.bangType strictness type')
-- | Convert field types to Q types
fieldTypesToNestedSum :: NonEmpty AST.Deserialize.Type -> Q TH.Type
fieldTypesToNestedSum xs = go (toList xs)
where
combine lhs rhs = (conT ''(:+:) `appT` lhs) `appT` rhs -- (((((a :+: b) :+: c) :+: d)) :+: e) ((a :+: b) :+: (c :+: d))
convertToQType (MkType (DatatypeName n) named) = conT (toName named n)
go [x] = convertToQType x
go xs = let (l,r) = splitAt (length xs `div` 2) xs in combine (go l) (go r)
-- | Create bang required to build records
strictness :: BangQ
strictness = TH.bang noSourceUnpackedness noSourceStrictness
-- | Prepend "Anonymous" to named node when false, otherwise use regular toName
toName :: Named -> String -> Name
toName named str = mkName (toNameString named str)
toNameString :: Named -> String -> String
toNameString named str = prefix named <> toHaskellPascalCaseIdentifier str
where
prefix Anonymous = "Anonymous"
prefix Named = ""
-- | Get the 'Module', if any, for a given 'Name'.
moduleForName :: Name -> Maybe Module
moduleForName n = Module . PkgName <$> namePackage n <*> (ModName <$> nameModule n)
-- | Test whether the name is defined in the module where the splice is executed.
isLocalName :: Name -> Q Bool
isLocalName n = (moduleForName n ==) . Just <$> thisModule